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Introduction

SLE is a method to generate scale invariant (fractal) curves in 2d 
SLE operates in the complex plane and use conformal invariance
SLE generates a family of fractal curves characterized by a parameter κ
SLE is based on a method by Loewner for generating curves in 2d driven 
by a real function
Schramm et al showed that driving the 2d curve by Brownian motion of
strength κ the curve becomes random with fractal dimension 1+ κ/8
SLE provides an extension of local field theory to extended fractal
structures
SLE represents an important step in probability theory and statistical
mechanics
SLE seems to have applications to turbulence and spin glasses
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Some fractal shapes in 2d
Random walk Percolation cluster at the critical concentration

Self-avoiding random walkIsing cluster at the critical temperature

http://images.google.dk/imgres?imgurl=http://www.thp.uni-koeln.de/~dt/science/percolation/leath75.png&imgrefurl=http://www.thp.uni-koeln.de/~dt/science/percolation/index.html&h=454&w=536&sz=14&hl=da&start=2&tbnid=iGbVgL26K_DIrM:&tbnh=112&tbnw=132&prev=/images%3Fq%3Dpercolation%2Bcluster%26svnum%3D10%26hl%3Dda%26lr%3D%26sa%3DG
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Cases to be discussed
Random walk
Self-avoiding random walk (SAW)
Ising model
Percolation
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Random walk (RW)
Basic random process -
Wiener process
Model for diffusion
Wide applications in 
statistical physics and 
probability theory
NN independent jumps on
lattice (Markov property -
no memory) 
Simple scaling properties

Long random walk



Nordita - 2008 Stochastic Loewner Evolution 7

Self-avoiding random walk (SAW)

Subtle random process
NN independent jumps on
lattice – BUT no self
crossing - long range effects
Model for dilute solution of
polymers
Subtle scaling properties

Self-avoiding RW
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Ising model
Simple model with a phase
transition (critical point)
Model for magnetism and 
many other systems in 
statistical mechanics
Occupy site with a spin 1/2 
degree of freedom and 
introduce NN interaction
At critical temperature
Ising model has a second
order phase transition 

2d Ising model on square lattice
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Ising model at critical point
  Order parameter:
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Ising model at the critical point
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Phase diagrams for fluid and Ising
Ising modelFluid
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Percolation
Simple model with
geometric phase transition
Model for transport in 
porous medium
Occupy site with
probability p (0<p<1)
No interaction
At critical concentration pc
infinite cluster
Cluster scaling properties

Critical spanning cluster (blue)
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Fractal dimension 

Mandelbrot and Nature
"Clouds are not spheres, mountains are not cones,
coastlines are not circles, and bark is not smooth,
nor does lightning travel in a straight line.“

Mandelbrot, 1983.

New geometrical description of scale invariant objects
in natural sciences and mathematics
Fractals characterized by non integer dimension
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Fractal dimension
Cover object with N boxes of size a
N(a) will depend on a as a power
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D is the fractal dimension
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Fractal dimension
The Koch curveN(a)=a-D, D fractal dimension

N(a=1) = 1
N(a=1/3) = 4, 
N(a=1/9)=16, ..
N(a=(1/3)n)=4n

DKoch =log4/log3 ~ 1.26
1< DKoch <2

Koch kurve is self-similar
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Diffusion limited aggregation (DLA)
Fractal dimension

D ≈ 1.70

( ) DN R R≈

DLA cluster
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Scaling limit
Lattice shrinks (continuum limit)
Site variables becomes local fields
Lattice models become field theories
Lattice models at the critical point become
conformal field theories
Issue: How to understand scaling in the
continuum limit
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Scaling limit of random walk
Random walk Brownian motion (BM) Self similarity
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BM is a  continuous curve
BM is not differentiable
BM is scale invariant
BM is at a critical point
BM has fractal dimension D=2
BM is plane-filling
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Scaling limit of SAW
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Size of polymer:
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SAW SAW

SAW is a  continuous non crossing curve
SAW is not differentiable
SAW is scale invariant
SAW is at a critical point
SAW has fractal dimension D=4/3
SAW is not plane-filling

Mean field theory for dilute
polymers and SAW (Flory)
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Scaling limit of Ising model
In scaling limit the Ising model 
described by Landau functional
Renormalization group (RG) 
methods yield exponents
The local field and its
correlations are the central 
objects
RG method does not describe
critical domains etc
RG method does not give the
GEOMETRY at criticality
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Renormalization group
Ken Wilson

Nobel prize 1982
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Ising self similarity at Tc
T=0.99 Tc T=Tc T=1.22 Tc



Nordita - 2008 Stochastic Loewner Evolution 21

Scaling limit of percolation
Percolation probability P(p)
P(p) probability that origin is 
included in infinite cluster
Geometrical phase transitions at 
critical concentration p=pc

At pc clusters of all sizes

Infinite cluster (blue)
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Critical domain walls and curves
Enforce domain wall by choosing appropriate boundary conditions
By construction domain walls are non crossing

SAW  random path Percolation cluster
boundary at critical
concentration

Ising domain wall
at critical temperature
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The issue

Investigate critical behavior directly in the
continuum limit
Focus on critical domains and curves
Assume conformal invariance at the critical
point
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Conformal transformations 

Rotation

Dilatation

Shear
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Conformal transformation
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Examples (transformation of grid)

Conformal transformations
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Riemann’s mapping theorem
Riemann’s theorem: 
A shape without holes in plane z
can be mapped to the unit disk
in plane w by means of an analytic
function:

w = g(z)

Any shape can be mapped to any other shape

In 2D geometry is the same as complex analysis !
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Loewner evolution (LE)
Loewner evolution designed to generate curves in 2d 
in the continuum limit
Idea: Define gradual conformal transformation g(z)
Change shapes by changing conformal transformation
Parametrize transformation by ”time variable” t
Assume identity transformation at infinity
Map shape to half plane ( reference plane)
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Mapping shape by Riemann’s theorem
Half plane: H
Growing shape: Kt
Complement to shape: H\Kt
Complement H\Kt mapped to H by 
analytic function gt
Real axis plus boundary of Kt mapped
to real axis
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Boundary and initial conditions

0( )tg z z= =

2( )  for large t
tg z z z

z
= +

The identity map at infinity in H

The identity map at the initial time t=0
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The growing stick
2
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Equation of motion for growing stick

2

Growing stick map:
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The Loewner equation

Riemann’s theorem
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Loewner evolution - examples

Constant forcing

Linear forcing

Periodic forcing Growing periodic
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Loewner evolution - summary

Time evolution of map gt(z) from z to w
Curve γ(t) in 2d driven by real function ξ(t)
Tip of curve zc(t) given by ξ(t)= gt(zc(t))
ξ smooth - curve γ non-intersecting
ξ periodic - curve γ self-similar
ξ singular - curve γ self-intersecting at finite time
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Stochastic Loewner evolution (SLE)
Schramm Loewner
Evolution
Idea: Grow domain wall
step by step like a random
walk (Markov process)
Implement Markov
property in the continuum
limit

P is probability density (measure) on curve γ

2 1 1 2 2 1 2( | ; , , ) ( ; \ , , )P D r r P D rγ γ γ γ τ=
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Stochastic Loewner evolution (SLE)
Implement conformal
invariance to ensure scaling
Probability distribution 
invariant under conformal
transformation
Conformal transformation 
to upper half plane as 
reference plane

Transformation of the probability density

1 2 1 2( )( ; , , ) ( ( ); ', ', ')P D r r P D r rγ γΦ ∗ = Φ



Nordita - 2008 Stochastic Loewner Evolution 38

Stochastic Loewner evolution (SLE)

Loewner equation (1923):

Schramm (1999):

Bt: Brownian motion, <(Bt - Bs)2> = |t-s|
Parameter κ, SLEκ
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SLE - summary

Drive curve γ(t)  by random function ξ(t)
Curve is fractal if ξ(t) is a 1d Brownian motion
< [ξ(t)- ξ(s)]2 >= κ |t-s|
κ is the SLE parameter, notation SLEκ
Fractal dimension D=1+κ/8
0< κ <4: curve non-intersecting (1<D<3/2)
4< κ <8: curve intersecting (3/2<D<2)
κ >8:      curve space-filling (D=2)
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Phases of SLEκ
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Phases of SLEκ

Non-intersecting fractal curve
Fractal dimension D=5/4

Self-intersecting fractal curve
Fractal dimension D=7/4
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Some results of SLEκ

Case discussed
by Schramm:
Loop erased
random walk
κ = 2, D=5/4

Percolation
domain
κ = 6, D=7/4

Ising domain
wall random walk
κ = 3, D=11/8

Self avoiding
random walk
κ = 8/3, D=4/3
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Application to 2d turbulence
2d turbulence governed by Navier Stokes equation with random forcing
Energy and enstrophy (vorticity) injected at scale L
Direct enstrophy cascade (from large to small scales)
Inverse energy cascade (from small to large scales)

Colored clusters of vorticity
of given signNavier Stokes equation

v (v )v v+fp
t
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ρ

∂ ∇
+ ⋅∇ = − + Δ
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2 2
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2d turbulence: vorticity clusters

A large macroscopic filled
vorticity cluster

Frontier of a vorticity cluster
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Vorticity clusters and SLE

Fractal dimension vorticity cluster
frontier: D=7/4 
Corresponds to κ=6, percolation

Fractal dimension of external
perimeter: D=4/3
Corresponds to κ=8/3, 
Self-avoiding random walk (polymer)
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SLE in 2d turbulence
Extract contour samples from simulation
of turbulent flows
Code them into conformal maps
Reconstruct Loewner driving source
Analyse statistics

Reconstructed driving sources Distribution of driving sources
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Summary and conclusion
SLE is only 6-7 years old – but moving fast
SLE represents qualitative progress in 2d critical phenomena in the
scaling limit
SLE is mainly driven by mathematicians – but the theoretical
physicists are catching up
SLE demonstrates the power of analysis when it applies
SLE provides geometrical understanding of conformal field theory
The SLE parameter κ delimits universality classes in 2d
SLE ideas have already been applied to 2d turbulence and spin
glasses
There is surely more to come

Thank you for your attention
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