FRACTIONALIZATION OF CHA STATISTICS IN TWO DIMENSI

Michael Manfra

Department of Physics and Astronomy, Purdue University

Microsoft Quantum Lab West Lafayette

Topics to cover...

- Anyons from an experimentalist's view
- Short introduction to the 2DEG in semiconductors and FQHE
- How can we "measure" anyons? Challenges of operation of electronic Fabry-Perot interferometers in the quantum Hall regime
- Determination of anyonic braiding statistics at v=1/3
- Beyond v=1/3 in the lowest Landau level; v=2/3 and v=2/5
- Routes to v=5/2 interferometry

Elementary partic Esergent particles in 2D

FERMIONS

Pauli Exclusion Principle Fermions switch places: (-1) * Wavefunction

BOSONS

Flock Together Bosons switch places: (1) * Wavefunction

ANYONS

Novel Quantum Statistics - Fractional charge - Anyonic braiding statistics $(e^{i\theta})$ * Wavefunction

Quasiparticles in the fractional quantum Hall state at v=1/3

θ=2π/3

What is an Anyon? Quantum Statistics in 2 dimensions

Quantum Statistics:

What happens to a many-particle wave function under exchange or "braiding" of identical particles

3 Dimensions: Bosons or Fermions

Bosons: $\psi(x_1, x_2, x_3,...) \longrightarrow \psi(x_2, x_1, x_3,...)$ same wave function: phase factor 2π

Fermions: $\psi(x_1, x_2, x_3,...) \longrightarrow -1^* \psi(x_2, x_1, x_3,...)$ same wave function multiplied by -1: phase factor π

- In 3D: : Two permutations equivalent to identity operation
- In 2D: Can have fractional statistics (Abelian anyons) : $e^{i2\pi\alpha}$ (e.g., v=1/3 FQHE) Why? Because world lines can form knots in 2D

Non-Abelian anyons possible as well (e.g., v=5/2 FQHE, topological superconductors) Braiding corresponds to a unitary rotation within a degenerate manifold of states

Leinaas and Myrheim, Nuovo Cimento B 37, 1-23 (1977)

F. Wilczek, PRL 49, 957-959 (1982) "anyons" defined for the first time

Early analysis of fractional statistics and the FQHE

Quantum Mechanics of Fractional-Spin Particles

Frank Wilczek Institute for Theoretical Physics, University of California, Santa Barbara, California 9310 (Received 22 June 1982)

Composites formed from charged particles and vortices in (2+1)-dimensional models, or flux tubes in three-dimensional models, can have any (fractional) angular momentum. The statistics of these objects, like their spin, interpolates continuously between the usual boson and fermion cases. How this works for two-particle quantum mechanics is discussed here.

Statistics of Quasiparticles and the Hierarchy of Fractional Quantized Hall States

B. I. Halperin Physics Department, Harvard University, Cambridge, Massachusetts 02138 (Received 9 November 1983)

Quasiparticles at the fractional quantized Hall states obey quantization rules appropriate to particles of fractional statistics. Stable states at various rational filling factors may be constructed iteratively by adding quasiparticles or holes to lower-order states, and the corresponding energies have been estimated.

Although practical applications of these phenomena seem remote. I think they have considerable methodological interest and do shed light on the fundamental spin-statistics connection.

The appearance of fractional statistics in the present context is strongly reminiscent of the fractional statistics introduced by Wilczek to describe charged particles tied to "magnetic flux tubes" in two dimensions.⁶ VOLUME 53, NUMBER 7

PHYSICAL REVIEW LETTERS

13 AUGUST 1984

Fractional Statistics and the Quantum Hall Effect

Daniel Arovas

Department of Physics, University of California, Santa Barbara, California 93106

and

J. R. Schrieffer and Frank Wilczek

Department of Physics and Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (Received 18 May 1984)

The statistics of quasiparticles entering the quantum Hall effect are deduced from the adiabatic theorem. These excitations are found to obey fractional statistics, a result closely related to their fractional charge.

PACS numbers: 73.40.Lq, 05.30.-d, 72.20.My

Excitations of the FQHE are anyons: fractional of

How does one make a two-dimensional electron gas and what's the quantum Hall effect?

How does one make a two-dimensional electron gas?

Molecular Beam Epitaxy: (Al Cho, Bell Labs, 1970's)

TEM images of AlAs/GaAs superlattice

Translational Invariance in x-y plane

CONDUCTION BAND (EMPTY)

CONDUCTION BAND (EMPTY)

H = H(x, y) + H(z) $\Psi(x, y, z) = \psi(x, y)\varphi(z)$

Z-motion is FROZEN OUT Strictly 2-D Motion

Simple theory of the QHE

(ignore spin)

Simple theory of the QHE

(ignore spin)

$$\nu = \frac{N\phi_0}{(Area)B} = \frac{n\phi_0}{B} = \# \text{ Landau Levels Filled With Electrons}$$
$$= \text{Filling Fraction}$$

$$\nu = \frac{N\phi_0}{(Area)B} = \frac{n\phi_0}{B} = \# \text{ Landau Levels Filled With Electrons}$$
$$= \text{Filling Fraction}$$

But why the Plateau?

$$\nu = \frac{N\phi_0}{(Area)B} = \frac{n\phi_0}{B} = \# \text{ Landau Levels Filled With Electrons}$$
$$= \text{Filling Fraction}$$

250 10 $R_{H} = V_{H} / I$ $2\pi\hbar 1$ 3 +0.38mm VH 200 8 i = 4 Imm e^2 5 () ¹⁵⁰ V 6 (/m) 6 × × VH. 100 8 *v* =4 4 V_{X} 10 12 50 *v* =6 0 80 0 2 3 4 5 6 7 MAGNETIC FIELD

(T)

Simple theory of the QHE

NOT **RESOLUTE**IN THIS SIMPLES ORDERY!

Why Hall Quantization? Why So Precise?

Laughlin 1981 : Must be some "conservation" law…

Gauge Invariance

Bob Laughlin

Bert Halperin

Detailed arguments, importance of edge states (1982)

Bob Laughlin PRL **50**, 1395 (1983)

 $|z_i|^2/4l_B^2$

Modern samples at ultra-low temperatures

Fractional states in the N=1 Landau level

Electron mobility: >35x10⁶cm²/Vs

Putative non-Abelian states in 2nd Landau level

Moore and Read, Nucl. Phys. B, 362-396 (1991) Nayak and Wilczek, Nucl. Phys. B, 529-553 (1996) Read and Green, Phys. Rev. B **61**, 10267-10297 (2000)

Electronic Fatnyt interferometer in the IQHE and FQHE reg

- Surface gates define electron interference path
- Quantum point contacts (QPCs) act as beam splitters

B.I. Halperin, A. Stern, I. Neder, and B. Rosenow PRB 83, 155440 (2011)

C. de C. Chamon, D. Freed, S. Kivelson, S. Sondhi, X. Wen Phys. Rev. B 55, 2331 (1997)

Early pathfinding experiments: challenges and clues

small devices ~4μm² Ofek, PNAS 2010 (M. Heiblum group)

large devices ~20μm² Zhang, PRB **79**, 241304 (R) (2009) (C. Marcus group)

small interferometers

Not AB oscillations, positive slope

Ofek, PNAS 2010

big interferometers

AB oscillations, but only at low magnetic fields Zhang, PRB **79**, 241304 (R) (2009) C. Marcus' group

AB vs. CD in early experiments: a valuable lesson

- Many early experiments observed Coulomb dominated behavior
- C. Marcus group observed AB behavior (negative slope) in devices with large area which included metal screening gates
- Coherence was poor due to large path length
- Need better way to screen to observe AB interference in smaller devices

Zhang et al. PRB 79, 241304 (2009)

Aharonov-Bohm vs. Coulomb dominated regime

Aharonov-Bohm

Coulomb dominated

- Regime of operation depends on the ratio of K_{IL}/K_I, where K_{IL} parameterizes bulk-edge interaction and K_I parameterizes the energy cost to add charge to the edge
- Critically, θ_{anyon} is unobservable in the Coulomb dominated regime: phase change is multiple of 2π .

B. I. Halperin, A. Stern, I. Neder, and B. Rosenow. PRB 83, 155440 (2011)
D. Feldman and B. Halperin, arXiv.org/abs/2102.08998 (2021)
C. W. von Keyserlingk, S. H. Simon, B. Rosenow, *PRL* 115, 126807 (2015)

Problem: strong bulk-edge interaction

Expectation: Aharonov-Bohm Interference

Reality: Coulomb-dominated oscillations

- Bulk-edge interactions cause area to change with magnetic field
- Cannot change A and B independently flux *decreases* when increase B!
- Makes braiding unobservable

$$\delta A = -\nu \bar{A} \delta B$$

B.I. Halperin, A. Stern, I. Neder, and B. Rosenow. PRB 83, 155440 (2011)

Challenges for QHE interferometry

Small interferometers

- good coherence (short path length)
- Coulomb-dominated transport (large charging energy)

(e)

Large interferometers

- low coherence (long path length)
- Aharonov-Bohm interference (low charging energy)
- Limited to large filling factor (low Bfield)

Screening well heterostructure and device desi

Top and back-gated interferometer

J. P. Eisenstein, L. N. Pfeiffer, & K. W. West. APL 57, 2324 (1990)

Interferometer with screening layers

- Presence of screening wells enables AB oscillations in small device size (~0.7 μm^2) and thus improved coherence
- Simulations indicate SWs promote steeper confining potential

Suppression of Coulomb charging effects

Aharonov-Bohm interference at v = 1 using screening wells

- Aharonov-Bohm interference in device ~20x smaller
- Interference is large amplitude and robust (survives up to hundreds of mK)

Coherence: temperature dependence at v = 1

$$G/G_0 = 1 - 2r^2 \left[1 + \eta \cos\left(2\pi \frac{AB}{\phi_0}\right) \right]$$

Selective interference of inner modes and edge mode velocity determination

v=1, v=1 edge mode

v=3, v=3 inner edge mode

H. Sahasrabudhe et al. "Optimization of edge state velocity in the integer quantum Hall regime", *Phys. Rev. B.* **97**, 0853202 (2018)

Sharper Confining Potential due to SW structure

- Simulations indicate that SW structure results in a sharper confining potential at the edge of the gates
- Qualitatively, SW creates a "mask" so QW feels gate potential only in a sharply defined area
- QPCs exhibit much sharper conductance curves compared to standard structures

Edge mode velocity at v=1/3

$$\Delta V_{SD} = 108 \mu V$$

 $v_{edge} = 8.9 \times 10^4 m/s$

velocity at $\nu = 1$

velocity at
$$\nu = \frac{1}{3}$$

 $\int_{0}^{10} \int_{0}^{10} \int_{0$

Aharonov-Bohm interference in the FQH regime

J. Nakamura^{1,2}, S. Fallahi^{1,2}, H. Sahasrabudhe¹, R. Rahman³, S. Liang^{1,2}, G. C. Gardner^{2,4} and M. J. Manfra^{1,2,3,4,5*}

Theoretical analysis: fixed ν vs. fixed density

B. Rosenow and A. Stern. PRL 124, 106805 (2020)

• Competition between energy cost to create quasiparticles Δ and electrostatic energy cost to keep ν fixed

• Predicted transition from AB with $3\Phi_0 \approx$ period regime of no magnetic field dependence with higher order Φ_0 modulations.

Equation for width of B with fixed ν and $3\Phi_0$ oscillations:

$$\Delta B_{fixed-\nu} = \frac{\Delta \times \Phi_0}{\nu e^* \times \frac{e^2}{C}}$$

 Δ = Energy gap of quantum Hall state C = capacitance to screening layers (per unit area)

Braiding experiments in lower density and smaller device

- Smaller interferometer 1micron by 1micron
- Lower density 2DEG: n~7x10¹⁰cm⁻² : lower gate potential enhances stability
- Examine interference over broad range of magnetic field around v=1/3

Experimental lead: Dr. James Nakamura

Interference=at1/3: discrete phase jumps

• Observe discrete jumps in interference pattern:

$$\theta = 2\pi \left(\frac{AB}{\Phi_0}\right) \frac{e^*}{e} + N_L \theta_{anyon}$$

• Fit conductance *between* jumps to $\delta G = \delta G_0 \cos \left(2\pi \frac{e^*}{e} \frac{AB}{\Phi_0} + \theta_0 \right)$ to get phase jumps $\Delta \theta$

Take average:

$$\Delta\theta = -2\pi \times (0.31 \pm 0.04)$$

Demonstration Experiments

ARTICLES https://doi.org/10.1038/s41567-019-0441-8

physics 2020

ARTICLES https://doi.org/10.1038/s41567-020-1019-1

Check for updates

Aharonov-Bohm interference of fractional quantum Hall edge modes

nature

physics

2019

J. Nakamura^{1,2}, S. Fallahi^{1,2}, H. Sahasrabudhe¹, R. Rahman³, S. Liang^{1,2}, G. C. Gardner^{2,4} and M. J. Manfra^{1,2,3,4,5*}

Aharonov Bohm Interference in the FQHE via novel heterostructure and device

Direct observation of anyonic braiding statistics

J. Nakamura^{1,2}, S. Liang^{1,2}, G. C. Gardner^{1,2,3} and M. J. Manfra^{1,2,3,4,5}

