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Hamiltonians and Systems Physics

Need simple and scalable concepts for complex systems:
   (Combine circuit theory (linear) + quantum physics)



A. Leggett (1980): 
Do Macroscopic Variables Obey Quantum Mechanics?

Hypothesis: Schrodinger’s cat 
collapses to classical states because 
QM not allowed on macroscopic object 

Note: Microscopic QM observable
on macroscopic scale;
e.g. crystals, superconductors

Will macroscopic object show QM?
(normally tiny effect)

diffraction effects
(Zeilinger group)



( ) 0Ψ+=Ψ ∏ +
−

+

k
kk

i
k ccevu

k

φ

Macroscopic Variable: Current in SC wire

Xcm

Center of mass of ball
(single variable describes position)

Phase of superconductor
(Single phase for all Cooper pairs)

Would ball tunnel through wall?



Macroscopic QM Enables New Physics
Control of single quantum systems, to quantum computers

1 nm 1 μm 1 cm

•New quantum systems
   e.g. nanomechanics
•Strategy: Large “atom” has
   room for complex control

H atom
wavefunctions:

0

1

Need 
large “Molecules” 
for Control Signals



Geometry of Harmonic Oscillators and Qubits

Both vectors have
length α, phase φ

φ



Superconducting Qubits
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• LC oscillator (linear):  memory and communication

• Josephson junction: non-linear inductance with 1 photon
                                   (+ low loss)

1.7 
nm
1.7 
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• Macroscopic “atom”: quantize I and V,    5 GHz >> 20 mK



Linear Circuits & Universality / Equivalence

complex 
linear
circuit

=
source dissipative &

dispersive
admittance

describe with 
simple circuits

1:   Zseries = Z1+Z2

2:   1/Zparallel = 1/Z1 + 1/Z2

3:   Thevanin-Norton
      (series – parallel)

Z

V = ZI=
V/Zproof:

linear, so match 2 cases –
short & open



Example: Capacitor Coupling

V
C =

Cc

C
85fF
100Ω

   Cc
   50aF
100kΩ @6 GHz

 V
50Ω

CCc
Q=
CcV

R
C =

Cc

CCc
Rp=

(1/ωCc)
2

R

Easier, match loss tangents:



Quantum Harmonic Oscillator

0
1
2
3
4

Nature typically gives
Z0 ~ 377Ω << RK

Φzp << Φ0
Qzp >> 2e

Frequency: ω0 = 1/(LC)1/2

Impedance: Z0 = 1/ω0C





Xmon Circuit
  

Flux 
Bias

Self capacitance

Readout 
resonator

BusAC drive

Frequency (Z)

μwaves (X,Y)

Variable L
ground 
plane

Transmon is non-linear LC oscillator



Junction is Nonlinear Inductor

LJ
I0

     = Φ0/2πI0cos δ
nonlinear inductor
LJ

Looks like 

Junction energy:

Small signal:

δ is dimensionless flux

Non-linear  I-Φ

AC:

DC:



Nonlinear Resonator
cosine

parabola

phase δ/π
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Linear:   1 - 0.125 E/E
J

At low energy E, 
   classical oscillation frequency: 

LJ

I0C

dim’less:

energies:
charging                Josephson

ħ
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At low energy E, 
   classical oscillation frequency: 

LJ

I0C

dim’less:

energies:
charging                Josephson

0 1 2 3
quantum states m

EC

ħω0

quantized E level
Semiclassical perturbation:

ħ

ħ
ħ



Qubit: Weakly Anharmonic LC Resonator

Harmonic oscillator:

Non-linearity  η=Ec ~ 200 MHz:

δ

I0C

commuting operators:

ħ

ħ

ħ



Zeroing Decoherence from Charge Noise

For exponential small dependence on Qn,
  choose large C
For large energy non-linearity, small C

Good choice is EC=200 MHz non-linearity
  EJ/EC = 80:  exp(-25)

QP tunneling nb={0,1/2}, defect motion
   in dielectrics produces charge noise.
In δ basis, described as 
   displacement operator

δ

H.O.

WKB

ω0/2π = 6 GHz
EC=  200 MHz, C = 0.1 pF
EJ = 22.5 GHz, I0 = 200 nA
1/ω0C = 250 Ω
Non-linearity η/2π = 200 MHz

ħ



Numerical Solution via Matrix Eigenvalues
Flux is natural basis set: Ψ(δ) 

phase δ/π

E
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Plot of |Ψ(δ)|2 at eigenenergies

Ec=0.2 GHz
EJ=22.5 GHz
ng=0.1

running, 
charge states

bound, 
flux states



Qubit: Microwave Drive

CLJ

I0Vb

CLJ

I0

Cc

Use weak coupling (Cc << C)
  but strong drive with large Vb

Microwave drive
on resonance:

Y
t

π/2 pulse
π

Meas.time

  time (ns)  

ħ



Probability Oscillations - Chevron Curve
Tune up sequence using measurement P0
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f

Rotation Phase (Pulse Amplitude x Time )

0 2π  4π 6π

H

P0

Any gate
(+ change μw phase)

 time

 Xπ  

V

|0〉

Basis of 
quantum logic

Rabi Oscillations



Randomized Benchmarking*
Realistic multi-qubit test of long algorithm 
    (1000+ gates)

10 us

1

Clifford gate set:
“rotation” to 
6 states99.93(3)%

*Magesan et. al., PRL 106.18 (2011): 180504



Qubit Coupling with Nearest Neighbor capacitance
(simplicity gives good performance)

qubit readout
(freq. mux’d)

qubit control 

5 Xmon qubits, 
C coupling



Resonator – Resonator Coupling (Classical)
Cc

1 2

I sum 
at nodes

Linearize ω 

Normal modes (eigen-frequencies)

Equations of motion:



Qubit – Qubit Coupling (Quantum)

C
I0

Cc

For weak coupling
Cc << C

C
I0

1 2
excitation swapping: |01) to |10)coupling energy

Schrodinger equation

Eigen-frequencies

Same formula as for classical normal modes!

ħ

ħ

ħ
ħ

ħ
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Swapping Physics of States 
Swapping: display of qubit-qubit couplingAvoided level crossing

2g time
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Coupling Physics of States 

1.Swapping: basis of qubit-qubit gates
Avoided level crossing

2.Dispersive frequency shift

2g

time

0 π/g 2π/g



Q1

Q2

X
CZ

X/2 θ/2

No XX

π

|0) or|1)

Functionality Check (truth table)

truth
table

*Similar to Strauch; DiCarlo; Yamamoto

CZ entangling gate*

New theory for Fast Adiabatic Gate:
      tgate 2g/2π=1.1 for 10-5 error



Detuning to Turn Off - How Much Off?

Want small coupling so 
   easier to turn off,
   g/2π = 30 MHz

detuning Δ/2π (GHz)

10

1

Ω
zz

/2
π

 (M
H

z)

|11> has shifted frequency
   from coupling to |02>

Small RB error at 800 MHz detuning

Need short gate
for low error

    Idle length (ns)      

Use short gate times
   Perr=(φerr)

2/4  α  (tgate)
2

0.1



C C

L L

L
g

L
g

L
c

X & Y 
rotations

X & Y 
rotations

Z 
rotations

Z 
rotations

g 
control

150 μm

L L

Adjustable Coupling g : “gmon” qubits



Coupling Physics of States 

1.Swapping: basis of qubit-qubit gates

Avoided level crossing

2.Dispersive frequency shift

2g

time

0 π/g 2π/g



Dispersive Readout - Semiclassical
g q r

Δη|g〉 
|e〉

from avoided 
level crossing

|g〉 |e〉

Resonator frequency
  changes for |g〉 and |e〉

λ/2 resonator (7 GHz)            xmon (6 / 5.8 GHz) readout to amp



Dispersive Coupling (Qubit-Resonator) - Readout
g q r

Δη

1. Frequency shift between |0〉and |1〉

2. Qubit energy from resonator
       energy

|0〉 
|1〉

Avoided level crossing

Voltage divider

|0〉 |1〉

Limit on measure
energy

Semiclassical (qualitative) understanding:

ħ
ħ

ħ

ħ



Dispersive Coupling (Qubit-Resonator)- Readout
g q r

Δη

0-1-0 1-2-1 1-0-1

qubit-resonator coupling

2nd order; dispersive

Interaction Hamiltonian

|0〉 
|1〉

   (state conserving)

Energy shift proportional to n



Qubit Measurement

1. Measure with large signal / noise
    Resonator (large n) signal 
    and quantum limited preamps

2. Shift of resonator frequency with qubit state
    Dispersive interaction

3. Phase shift of readout signal
    Good separation of states  

4. Collapse of entanglement gives projection
    Coherent state is eigenstate of dissipation
    (a pointer state)

Im{α}

Re{α}

α


