Exceptional Topology of
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Non-Hermitian, really”?

e Complex “energies”, non-unitary time-evolution, ...,
Pandora’s box!?

Relevance:

* Dissipative systems — experiments!

e Classical mechanical, electrical, robotic and
optical metamaterials

* Photonic systems with gain and/or loss

—
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e Open gquantum systems

e Scattering problems, ...

New:

* Perspective of topological phases <—> uniquely NH phenomena



A mathematical curiosity

* We are used to the stability of eigenvalues of Hermitian matrices:

AE <|e]
/

Largest eigenvalue of
the perturbation

e But for non-Hermitian /N X /N matrices we have

AFE|<lene/N)

/
O(1)

Qualitatively new response forany N > 2

(9(1) change for arbitrarily small € as /N — 00 |



Minimal example:
a two-level system

0 «
H:(1 O) a# 1

* Take home: Exceptional degeneracies & Square roots



A two-level system

-

» Eigenvalues generally complex Fi = v/«

—
—_

Note the branch point
and branch cut

- Winding of & twice yield a
winding of £ only oncel!

- Left and right
eigenvectors are different \Iij _ (1 - \/a)




An exceptional point  (a=0)

=1y

* Doubly degenerate eigenvalue ELr =0
* But only one normalisable eigenvector! Wpg 4 =
- The left eigenvector
W, L =

IS the “opposite” , T

» “Exceptional points” (EPs) with singular behaviour
- Diverging response 0 FE(a)| = o

* When can we expect EPs to occur and what are
their consequences?



Relevant for physics®

* Yes, EPs have a long history especially

in optics/photonics

- | remember hearing about them at
a talk by Michael Berry when | was

undergraduate...

Review:

Miri et al., Science

363, 42 (2019

* New perspective...

RESEARCH

REVIEW SUMMARY

OPTICS

Exceptional points in optics

and photonics
Mohammad-Ali Miri and Andrea Alu*

BACKGROUND: Singularities are critical points
for which the behavior of a mathematical model
governing a physical system is of a fundamentally
different nature compared to the neighboring
points. Exceptional points are spectral singu-
larities in the parameter space of a system in
which two or more eigenvalues, and their cor-
responding eigenvectors, simultaneously co-
alesce. Such degeneracies are peculiar features
of nonconservative systems that exchange
energy with their surrounding environment.
In the past two decades, there has been a
growing interest in investigating such non-
conservative systems, particularly in connec-
tion with the quantum mechanics notions of
parity-time symmetry, after the realization
that some non-Hermitian Hamiltonians ex-
hibit entirely real spectra. Lately, non-Hermitian
systems have raised considerable attention
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in photonics, given that optical gain and loss
can be integrated as nonconservative ingre-
dients to create artificial materials and struc-
tures with altogether new optical properties.

ADVANCES: As we introduce gain and loss in
a nanophotonic system, the emergence of ex-
ceptional point singularities dramatically alters
the overall response, leading to a range of exotic
functionalities associated with abrupt phase
transitions in the eigenvalue spectrum. Even
though such a peculiar effect has been known
theoretically for several years, its controllable
realization has not been made possible until re-
cently and with advances in exploiting gain and
loss in guided-wave photonic systems. As shown
in a range of recent theoretical and experimental
works, this property creates opportunities for
ultrasensitive measurements and for manipu-

Frequency

Ubiquity of non-Hermitian systems, supporting exceptional points, in photonics. (A) A

generic non-Hermitian optical system involving two coupled modes with different detuning, tay »,
and gain-loss values, ty; , coupled at rate of u. The real part of the associated eigenvalues in a two-
dimensional parameter space of the system, revealing the emergence of an exceptional point (EP)
singularity. a; and a, are the modal amplitudes. (B to E) A range of different photonic systems, which
are all governed by the coupled-mode equations. (B) Two coupled lasers pumped at different rates.
(C) Dynamical interaction between optical and mechanical degrees of freedom in an optomechan-
ical cavity. (D) A resonator with counter-rotating whispering gallery modes. CW, clockwise; CCW,
counterclockwise. (E) A thin metasurface composed of coupled nanoantennas as building blocks.

Miri et al., Science 363, 42 (2019) 4 January 2019

lating the modal content of multimode lasers. In
addition, adiabatic parametric evolution around
exceptional points provides interesting schemes
for topological energy transfer and designing
mode and polarization converters in photonics.
Lately, non-Hermitian degeneracies have also
been exploited for the design of laser systems,
new nonlinear optics phenomena, and exotic
scattering features in open systems.

OUTLOOK: Thus far, non-Hermitian systems
have been largely disregarded owing to the
dominance of the Hermitian theories in most
areas of physics. Recent advances in the theory
of non-Hermitian systems in connection with
exceptional point singularities has revolution-
ized our understanding of such complex sys-
tems. In the context of optics and photonics,
in particular, this topic is highly important be-

cause of the ubiquity of

ON OUR WEBSITE nonconservative elements

Read the full article of gain and loss. In this

at http:/dx.doi. regard, the theoretical de-
org/10.1126/ velopments in the field
science.aar7709 of non-Hermitian physics

have allowed us to revisit
some of the well-established platforms with a
new angle of utilizing gain and loss as new
degrees of freedom, in stark contrast with the
traditional approach of avoiding these elements.
On the experimental front, progress in fabri-
cation technologies has allowed for harnessing
gain and loss in chip-scale photonic systems.
These theoretical and experimental develop-
ments have put forward new schemes for
controlling the functionality of micro- and
nanophotonic devices. This is mainly based on
the anomalous parameter dependence in the
response of non-Hermitian systems when op-
erating around exceptional point singularities.
Such effects can have important ramifications
in controlling light in new nanophotonic device
designs, which are fundamentally based on en-
gineering the interplay of coupling and dis-
sipation and amplification mechanisms in
multimode systems. Potential applications of
such designs reside in coupled-cavity laser
sources with better coherence properties, cou-
pled nonlinear resonators with engineered dis-
persion, compact polarization and spatial mode
converters, and highly efficient reconfigurable
diffraction surfaces. In addition, the notion of
the exceptional point provides opportunities
to take advantage of the inevitable dissipation
in environments such as plasmonic and semi-
conductor materials, which play a key role in
optoelectronics. Finally, emerging platforms such
as optomechanical cavities provide opportunities
to investigate exceptional points and their asso-
ciated phenomena in multiphysics systems.

The list of author affiliations is available in the full article online.
*Corresponding author. Email: aalu@gc.cuny.edu

Cite this article as M.-A. Miri and A. Alii, Science 363,
eaar7709 (2019). DOI: 10.1126/science.aar7709
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CREDITS: IMAGE IN (A) BASED ON A CONCEPT FROM H. HODAEI ET AL., SCIENCE 346, 975 (2014); IMAGE IN (D) BASED ON CONCEPTS FROM W. CHEN ET AL., NATURE 548, 192 (2017).
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loday:
Minimal examples:
1. H = ((1) 8‘) a# 1 2. H= Z (JLCICi—i—l + JRCZ-LHCZ-)

N =2 large IV
Focus:

» Exceptional nodal phases * Anomalous bulk-boundary correspondence




Exceptional nodal phases
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e Take home: Abundant & conceptually rich




A step back:
Band crossings in Hermitian systems

* When can we expect two energy bands to cross at a single point?
von Neumann & Wigner 1929

dz(k) +do(k)  di(k) —idy(k) PN
H(k) = ( di (K) + ida(k) —ds(k) + do(k)> ° “\f**i:-’ T~ '” S
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Ek) =+ \/ d?(k) + d3(k) + d?(k) + do(k) _,«H% ’—_ /)

- 3 real constraints L e
- Fine-tuning in 2d |
- Stable and generic in 3d!

* Simplest case — the Weyl Hamiltonian H=vk- o




Weyl semimetals

e Band touching points generic and protected by Chern numbers

* Implies novel “Fermi arc”
surface states

X. Wan, A. M. Turner, A. Vishwanath, and S. Y.
Savrasov, Phys. Rev. B 83, 205101 (2011)



Non-Hermitian band-crossings

H(k) = d(k) -0 now with d(k) — dR(k) -+ ZdI(k)
E(k) = £1/dgr(k)? — d;(k)? + 2idg (k) - di(k)

* Generic band crossings from tuning only two real parameters! éiir;;harit“am'
- Look at B#(k) in 2d |
2 2 dg -d; =0
dg —d;f =0 L

T

* EPs come in pairs and are generic in 2d, hence much more abundant than
In the Hermitian case!



Spectral features

e EPs are non-analytical,
“square roots of Weyl points”

» E(k) is different than what one naively infers from E2(k)!
Re[E (k)]

- 2d bulk Fermi arcs! V. Kozii and L. Fu, arXiv: 1 708.0584 |



| et’s have a closer look: arcs

E(k) = +£1/dr(k)? — di(k)2 + 2idg (k) - di(k)

e Fermiarcs Re[E]=0 when dr-di=0 and d%—dj <0 //
* i-Fermiarcs Im[E] =0 when dr-d; =0 and d% —d7 >0 ‘

* |rremovable degeneracies; generic (d-1)-dimensional open nodal surfaces/arcs



‘Braiding”

* Move around an exceptional point, track an eigenstate

- 47 periodicity! )~

Unigque, no (complex) ::reiQ/Q
band closng /- - S /TG % |

- “Half” winding number Im[E] =0

- We end up In the other
* Cf. our simple example and non-Abelian braiding eigenstate after one

- But no obvious analogue of closed orbit!
adiabatic transport...



Splitting Weyl/Dirac points

* Minimal 2d model

H=%Fkk,o,

+ ko + i€0,

= > FE =-

K2+ K2 — €2 + 2k,




* Fermi arcs observed In
photonic crystal slabs with

losses

H.Zhou, et. al. Science p. eaap9859 (2018)

* These experiments directly
measure the spectral density of

states.

0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10
kxa/2m kxa/2m

o T . — 1 o
a.u. a.u.

=Xperimental observation of 2d bulk Fermi arcs

- Light scattering,

ISO-frequency
contours vs.
theoretical band
structure



Quantum materials (more next time)

e Self-energies of interacting and disordered systems — intrinsic dissipation

V. Kozii and L. Fu, arXiv:1708.0584 1 and many later works

e Coupling to environments — example: 3d
topological insulator coupled to a TN
ferromagnetic lead |

E.J. Bergholtz and J.C. Budich,
Phys. Rev. Research [, 012003
(2019)

\

* Symmetry protected state promoted to a |
generic topological phase!

- Sufficiently generic coupling needed

* Similar ideas can be applied e.g. to K.Yang, 5.C. Morampudi and EJ. Bergholtz
Kitaev spin liquids Phys. Rev. Lett. 126,077201 (2021)

K.Yang, D.Varjas, EJ. Bergholtz, 5. Morampudi, and k. Wilczek
arXiv:2202.03445



Symmetries in non-Hermitian systems

D. Bernard and A. LeClair;

Specifically non-Hermitian arXiv:cond-mat/0 | 10649 (2001)

symmetries (43 or 38 sym. classes)
» Example H = qHTq_l, qTq—l _ qu — T “Pseudo-hermiticity”

- For 2-band models, pick G = O

ds;,dy € R, d,,d, € iR.

- Generally dp-d;y =0 % EL = i\/d%% — d2, (do = 0)

/!

Purely real or imaginary!

* PT symmetric systems, popular in optics, work analogously.  Homework!



Symmetry protected nodal non-Hermitian phases

e Generically one equation less...

—>

* Exceptional (d-1)-dimensional surfaces

* d-dimensional open “Fermi volumes”

e 2d example

H = (2 —cosky —cosky)o, + i0,/4

J.C. Budich, J. Carlstrom, FK. Kunst and E.J. Bergholtz, Phys. Rev. B 99, 041406 (2019)
+ several subsequent postings...



2d NH nodal phases summarised

2D Weylnode

NH symmetry protected E
Exceptional ring 44%) b Ua: E‘}?tlonal points I [E]

e Turns out that more bands further enriches the picture further (tbd next week)

e How about 3d?



3d: generic exceptional rings, ...

e 3 parameters but only 2 constraints — generic line-like solutions!
* E=0 solutions form exceptional rings Y. Xu, S.-T.Wang, and L.-M. Duan, PRL |18,045701(2017)

* Think about this geometrically

- Intersections between 2d surfaces

* | eads to unusual open Fermi
surfaces

- Terminated by exceptional lines

J. Carlstrom and EJ. Bergholtz,
Phys.Rev. A 98,0421 14 (2018)




—xceptional links and twisted “Fermi

Ribbons”

* Exceptional links generated as generic J. Carlstrém and E.J. Bergholtz,
intersections between more general 2d Phys. Rev. A 98,0421 14 (2018)

closed surfaces

* | eads to open “Fermi ribbons”

O

- Seifert surfaces, orientable




Generalization: Knotted
o J. Carlstrom, M. Stalhammar, J.C. Budich and
non-Hermitian metals £J. Bergholtz, Phys. Rev. B 99, 161115 (2019)

15 (a) E=0 os
k: g k2 0 “Fermi-Seifert
surfaces”
E =0 -0.8
-1.5
1.5
R
ky, -1.5 1.5 kxO 1.5

* Two notions of topology combined

- Hermitian generic line-like nodes occur in D=4, but in D>3 all knots are trivial!

* Boundary states, hyperbolic knots, C.H.Lee et al, Com.Phys. 4,47 (2021)

Alexander polynomials etc in followu
works PO P M. Stalhammar, et. al., SciPost Phys. 7,019 (2019)



—xceptional rings & knots:

=Xperiments

=
o/

dbreak

* Exceptional rings
realised with coupled
waveguides

\f;g'
Cerjan et. al.

Nature Photonics 13, 623 A

R A T )

(2019) e

* Exceptional knots anad
Seifert surfaces in

single-photon @, r———
interferometry "

Wang et. al.

Hermitian, dy = 0 Non-Hermitian, dye. > 0

=

Re[dw]

~_ Surface
states

BD PBS

HWP BS

%p Mirror

Compens—éted Crystal

Phys. Rev. Lett. 127/,
026404 (2021)




Minimal example 2:
Large N

* Take home: Topology of complex energies &
strong response to boundary conditions



Hatano-Nelson model N. Hatano and D.R. Nelson
Phys. Rev. Lett. 77,570 (1996)

Single-band model with asymmetric hopping

H:Z(JLCICi+1+JRCZ+1Ci) Jr,Jr € R JL#JR

@ o o o “ o “ o ®
i=1 2 3 -

- Complex dispersion relation

E, = (Jr + Jg)cos(k) +i(Jp — Jr) sin(k)

- Winding number distinguishes different phases
with respect to a point gap

1 s
W = —— dk ﬁk lnEk

21 |

T

N Gong et. al.
- Phase transition at |J| = |Jg| Phys. Rev. X 8,031079 (2018)



Hatano-Nelson with open

boundaries

N. Hatano and D.R. Nelson
Phys. Rev. Lett. 77,570 (1996)

* The spectrum with open boundaries is completely different from the
periodic system — states pile up at one of the boundaries!

Hopen —

- Single Jordan block and order N exceptional point with at

- Extreme sensitivity to boundary conditions:

0
(v

0

0

Jr
0
Jr

0
0

0 0 0
Jr 0 O\
0 ... 0
o J
0 Jr (f)

b =0

All states at the
end site

Jp =20

vs B = JRe_ik

Bloch states

* Actually, what, more precisely, do we mean by “states” above”?



FOCUS 2:
Anomalous bulk-boundary
correspondence

F K. Kunst, E. Edvardsson, |. C. Budich, and E. |. Bergholtz,
Phys. Rev. Lett. 121,026808 (2018)

Alternative approach :

S.Yao, k. Song, and Z.Wang,
Phys. Rev. Lett. 121, 136802 (2018)

e Take home: Open and closed boundary
conditions give very different physics — but
cases can be understood and are
experimentally relevant!




3asic observation (cf. also minimal example 2)

e Open and periodic energy spectra can be dramatically different!

e Example: non-Hermitian SSH chain t1 — ) to
L~ N N
- - - - s - -~ -
\/7' \
t1 + 5 o

 Literature filled with topological invariants calculated with periodic boundary
conditions — but these do not generally dictate the presence of boundary modes!

* Need to consider the open system from the outset...



Non-Hermitian skin effect

e At the heart of the problem

1;

02
= = 3
R &
= N -
= = =
0 10 20 30 41 0 10 | 0 10 20 30 41
m

* |eft and right eigenstates pile up at opposite sides

e But their “product” does not



Biorthogonal quantum mechanics
Brody, | Phys. A: Math. Theor: 4/,035305 (2013)

e By definition we have

Hluy) = Enluy)  and  H'luy) = E; |uy)

* Away from exceptional points one can get a complete orthonormal basis by
choosing

(U [tim) = Onim (e i)

n m

- Leading to

e This provides the “product”...



A step back, again: Exact boundary states

e Basic example (SSH chain)

t t
A B /N
- - © O
m =1 2 3 - M
" m
‘\Ijend>:NZ <_é> erél,m‘o>
E:O tl t2

* Phase transition when the boundary
state delocalises!

E

4t

2t

Odd length




Back to the non-Hermitian SSH chain

) b4 Lty
2
£~ N~ )
- - [ - [ ~ -
AT NS
Y
t1—§ t2

e Exact zero energy boundary states:
M
Yr) = Ni Z Rl (0) n) =N Y rpel L [0)

tl—— t1-|—%

rp = — = —
R y 7 T ry

* Observation: when |r; rgr| = 1 we have an exact zero energy biorthogonal bulk
state!

<Hm> = <¢L|Hm‘¢R> ~ (TZTR)m (now with II,,, = |ea.m) (ea.m| + |€5.m) (e5.m]|)

/'

Not positive definite!

2 2
* Phase transitions and changes in zero-modes at ¢, = i\/ WZ + 12, i\/ % — 12 7



Siorthogonal polarisation and boundary modes

* We construct a “biorthogonal polarisation”, P, which is quantised and jumps
precisely when |r7rg| =1

P=1-— lim <¢L 2 ™ ¢R>

M — o0

* Predicts the correct phase transitions — strikingly different from bulk invariants
and also from indicators involving only right or left eigenstates!

- Works also for non-solvable models and multiple boundary modes



't generalises directly: Non-Hermitian Chern
insulators

£ N t1 =t + dcos(k) to =t — 0 cos(k)
-1t d,(k) = —Asin(k)




Chern insulator phase diagram
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Why does it work”?

* Spectrum from left and right eigenvectors

IS <UTI{|H|U§>

- Extended/delocalised biorthogonal states play the same role
as extended states does in Hermitian models where the
distinction between right and left is gone



Periodic vs. open boundary
. Inspired by: Xiong, Journal of Physics
conditions Communications 2, 035043 (2018)

 Effect of coupling the ends

» Crossover at exponentially small I

0 10 20 30 40 50 60 70
M

e |Intuitive from the perspective of the skin effect (but we’ll get back to some
subtleties...)

b
@

,,,
N
Y A \Q\:\ | |,

|E]




Domain walls

e Physical mechanism: coupling ends via a Hermitian domain

Hermitian chain
- - - - - - - -

C )

- - . - -~ - - -
Non-Hermitian chain

Crossover gap

Gapless

* Both periodic and open system physics can be realised depending on the
strength of the effective coupling!

- Also tuneable geometrically and/or by Wannier function engineering



(In)stabllity of the spectra of large NH matrices

e Same thing, different perspective

Hopen —

- The spectrum of H

open

(

s
|

- Stability in math and physics literature quite different concepts

(

\

\

y

is stable to small perturbations like 1 but not H

(

\@

@




Experiments!

* A wave of experimental studies of the bulk-lboundary correspondence followed...

b PBC

300 nF

INIC

20Q

33 pH

Mechanical/robotic system:

Ghatak et al., arXiv:1907.11619.
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Topolectric circuits: Helbig et al., arXiv:1907.11562.
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Quantum walks: Xiao et al., arXiv:1907.12566
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There Is much more...

Im[E]

* New notions of gapped
topological phases

e Non-Hermitian sensing devices”?

- harnessing non-analytic dispersion
relations”?

e Topological lasers?

- gain needed, previously thought
to be in conflict with topological
phases

Science 16 Mar 2018: Science 16 Mar 2018:
Vol. 359, Issue 6381, eaar4005 Vol. 359, Issue 6381, eaar4003

Re[rE] Re[:E ]

LETTER

doi:10.1038/nature23281

Exceptional points enhance sensing in an optical
microcavity

Weijian Chen!, Sahin Kaya Ozdemir!, Guangming Zhao!, Jan Wiersig? & Lan Yang!

Nature volume 548, pages
192—-196 (10 August 2017)

RESEARCH ARTICLE

TOPOLOGICAL PHOTONICS

Topological insulator laser:
Theory

Gal Harari,'* Miguel A. Bandres,'* Yaakov Lumer,” Mikael C. Rechtsman,®
Y. D. Chong,* Mercedeh Khajavikhan,” Demetrios N. Christodoulides,” Mordechai Segev't

RESEARCH ARTICLE

TOPOLOGICAL PHOTONICS

Topological insulator laser:
Experiments

Miguel A. Bandres,'* Steffen Wittek,?* Gal Harari,"* Midya Parto,> Jinhan Ren,”
Mordechai Segev,'t Demetrios N. Christodoulides,?t Mercedeh Khajavikhant

Kawabata et. al.
PRX 9,041015 (2019)
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Summary for today

* Non-Hermiticity implies qualitatively new topological features

* Exceptional degeneracies, square roots

e Gapless nodal phases theoretically far more abundant
and conceptually rich than in the Hermitian realm

* Topology of complex energies & strong response to
boundary conditions

* Open and closed boundary conditions give very different
physics — but cases can be understood and are
experimentally relevant!

* Booming field with lot’s of fun to discover...

E.. Bergholtz, |.C. Budich, and FK. Kunst, Rev. Mod. Phys. 93, 15005 (2021)



Next time (Midsummer Eve)

* More bands and symmetries

N =3/4,..

-----
aee
Pt

* Non-Hermitian Topological Sensors

Spectral
measurement

1"

-" o~

l‘ "

P y

l"
P
/7
P
p
" "
/
p
P
P
—8 Y
10 /
r
y
P,
0\ ~
i,
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large IV

e'=10"H
0 50 100 150
N

10—14

e Classical -> Quantum

e Other recent developments and topics on demand...



