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There used to be a universal belief that identical particles are either bosons or fermions.

1. Introduction
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 (r2, r1) = ± (r1, r2)

Reason:  Wave fcts. are1D reps. of the permutation group Sn

                       only 2 such reps., symmetric and antisymmmetric

Also: Spin-statistics theorem: integer spins bosons, half-integer spins fermions

→
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Figure 1: Examples of topologically distinct windings of two particles in 2D with and without interchanges, and
the associated phase factors according to (3).

two such representations, the antisymmetric and the symmetric one. Particles described by
wave functions transforming under either representation are called fermions and bosons.

Another angle of approach is through a deep connection between the intrinsic angular
momentum or spin of particles, and their mutual quantum statistics in quantum field the-
ory, called the spin-statistics theorem.1 It states that fermions have half-integer spin, while
bosons have integer spin. Since the generators of rotations in three spatial dimensions (3D),
the components of angular momentum or spin, obey the su(2) commutation relations

⇥
Si , Sj
⇤
= i~h✏i jkSk, (1)

where ✏i jk is the totally antisymmetric tensor, and the allowed values s for the quantization
of angular momentum or spin according to S2 = ~h2s(s+1) are limited to s = 0, 1

2 , 1, 3
2 , 2, . . ..

Half integer values for s correspond to fermions, while integer values correspond to bosons.
Since (1) precludes fractional values for 2s, the only allowed choices for the statistics are
once again fermions and bosons.

The latter considerations, however, only apply to 3D. In two spatial dimensions (2D),
there is only one generator of angular momentum (which generates rotations within the
plane), and spin does not have to be quantized. The spin-statistics theorem hence does
not exclude the possibility of exotic quantum statistics interpolating between bosons and
fermions.2 At first glance, however, the argument relying on the representations of the
permutation group appears to hold in 2D as well.

2. Path integrals and the braid group

This consensus was challenged by Leinaas and Myrheim3 in 1977. They pointed out that the
fundamental quantity to consider was not the wave function, but the relative amplitudes of
paths belonging to topological distinct sectors when particles are interchanged, which are
constrained only by unitarity and the composition principle.4 In 2D, we can define winding
numbers as we interchange particles, and all paths with different windings are topologically
distinct (see Figure 1). In 3D, by contrast, the only topological distinct sectors are those
where particles are interchanged or not interchanged, as all windings can be untangled.
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around the flux tube, the wave function picks up an Aharonov–Bohm phase

q
~hc

I
a(r)dr =

q�
~hc
= 2✓ , (8)

as required by (3) for a full counterclockwise winding of one anyon with statistical para-
meter ✓ around another.

This simple exercise suggests that we can transmute the statistics of a many particle
system in 2D by attaching both charges q and flux tubes of strength � = ✓

⇡�0 to the particles.
Formally, we introduce a fictitious vector potential

a(ri) =
✓

⇡

~hc
q

X

j
( j 6=i)

ez ⇥ (r i � r j)
|r i � r j |2

, (9)

which effects that particle i sees fictitious flux tubes at the positions of all other particles j.
The many anyon Hamiltonian is then given by

H =
1

2m

X

i

⇣
pi �

q
c

a(r i) +
e
c
A(r i)
⌘2

, (10)

where we have included a coupling to an external, electromagnetic vector potential A(r ),
with electron charge �e.

Strictly speaking, as we interchange two anyons consisting of charge-flux tube compos-
ites, we obtain a phase for each charge as it moves in the vector potential of the other flux
tube. The usual view assumed when we consider the model described by (10) with (9),
however, is that each particle moves in the vector potential of all the other flux tubes, while
we ignore the effect of the flux attached to the moving particle on all the other particles. The
profound reason is that when we attach the fluxes to the charges in Chern–Simons theory,
we find winding phases and kinetic relative angular momenta according to this “simple”
counting, due to a field correction to the induced statistics.8 On a more mundane level,
this counting is consistent with both the statistics we obtain for the quasiparticles in the
fractional quantum Hall effect9,10 (see (37) below), and an exact model of charge-flux tube
composites which connects integer and fractional quantum Hall states through an adiabatic
process of attaching flux tubes to the charges.11

The connection between anyons and charge-flux tube composites becomes even more
apparent on closed surfaces, such as spheres and tori.12,11 There, the allowed values for the
number of anyons N and the statistical parameter ✓ are restricted such that the total flux—
that is the sum of the fictitious and the electromagnetic flux—through the surface seen by
each particle is a multiple of the Dirac flux quantum �0.
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The spin-statistics theorem, however, only applies to 3D:  In 2D, we only have one 
generator Lz of angular momentum, and spin is not quantized.

The argument regarding the symmetry of      , however, applies to any dimension.



2. Path integrals and the braid group
Leinaas & Myrheim 1977:

Fundamental quantity to consider is not the wave function, but relative amplitudes of paths 
belonging to topologically distinct sectors when particles are interchanged.

In 2D, we can define a winding number.
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Topologically distinct windings of 2 particles (with and without interchanges):

In 3D, the only topologically inequivalent choices are paths which interchange the particles
           or do not interchange them.
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Figure 2: Illustration of the defining algebra of the braid group BN : Ti Ti+1Ti = Ti+1Ti Ti+1.

The relevant group in 2D, therefore, is not permutation group SN , but the braid group
BN . This is the group of all possible ways to interchange N particles through windings, and is
generated by the N �1 counterclockwise interchanges Ti of particles labeled by consecutive
indices i and i + 1. The algebra of the group is given by5

Ti Tj = Tj Ti for |i � j|> 1,

Ti Tj Ti = Tj Ti Tj for |i � j|= 1,
(2)

as illustrated in Figure 2. Note that the braid group differs from the permutation group as
T�1

i 6= Ti . The one dimensional representations of BN on R2 are given by

⌧(Ti) = ei✓ , (3)

and hence labeled by a continuous U(1) phase parameter ✓ 2 ]�⇡,⇡].
For fermions, ✓ = ⇡, and we assign a minus sign to each interchange. For bosons,

✓ = 0, and we assign no phase. For all other values of the statistical parameter ✓ , we assign
a fractional phase factor ei✓ for each counterclockwise interchange of consecutively indexed
particles in the relative amplitude in the many particle path integral. We say the particles
obey fractional statistics, and call them anyons. Non-Abelian anyons, which we will discuss
below, realize higher dimensional representations of the braid group BN .

The most direct physical manifestation of the fractional statistics is the quantization of
the kinetic (or dynamic) relative angular momentum of the anyons. In 3D, the relative
angular momentum is quantized as ~hl, where l is an odd integer for fermions, and an even
integer for bosons. In 2D, the amplitude acquires a statistical phase ei✓'/⇡ as two anyons
wind counterclockwise around each other with winding angle ' in the xy-plane, and with
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⌧(Ti) = ei✓ , (3)

and hence labeled by a continuous U(1) phase parameter ✓ 2 ]�⇡,⇡].
For fermions, ✓ = ⇡, and we assign a minus sign to each interchange. For bosons,

✓ = 0, and we assign no phase. For all other values of the statistical parameter ✓ , we assign
a fractional phase factor ei✓ for each counterclockwise interchange of consecutively indexed
particles in the relative amplitude in the many particle path integral. We say the particles
obey fractional statistics, and call them anyons. Non-Abelian anyons, which we will discuss
below, realize higher dimensional representations of the braid group BN .

The most direct physical manifestation of the fractional statistics is the quantization of
the kinetic (or dynamic) relative angular momentum of the anyons. In 3D, the relative
angular momentum is quantized as ~hl, where l is an odd integer for fermions, and an even
integer for bosons. In 2D, the amplitude acquires a statistical phase ei✓'/⇡ as two anyons
wind counterclockwise around each other with winding angle ' in the xy-plane, and with

4

relative angular momentum:  3D, quantized as              odd for fermions, even for bosons

Ti

Ti+1

Ti

�i �i+1 �i+2

=

Ti+1

Ti

Ti+1

�i �i+1 �i+2

Figure 2: Illustration of the defining algebra of the braid group BN : Ti Ti+1Ti = Ti+1Ti Ti+1.

The relevant group in 2D, therefore, is not permutation group SN , but the braid group
BN . This is the group of all possible ways to interchange N particles through windings, and is
generated by the N �1 counterclockwise interchanges Ti of particles labeled by consecutive
indices i and i + 1. The algebra of the group is given by5

Ti Tj = Tj Ti for |i � j|> 1,

Ti Tj Ti = Tj Ti Tj for |i � j|= 1,
(2)

as illustrated in Figure 2. Note that the braid group differs from the permutation group as
T�1

i 6= Ti . The one dimensional representations of BN on R2 are given by

⌧(Ti) = ei✓ , (3)

and hence labeled by a continuous U(1) phase parameter ✓ 2 ]�⇡,⇡].
For fermions, ✓ = ⇡, and we assign a minus sign to each interchange. For bosons,

✓ = 0, and we assign no phase. For all other values of the statistical parameter ✓ , we assign
a fractional phase factor ei✓ for each counterclockwise interchange of consecutively indexed
particles in the relative amplitude in the many particle path integral. We say the particles
obey fractional statistics, and call them anyons. Non-Abelian anyons, which we will discuss
below, realize higher dimensional representations of the braid group BN .

The most direct physical manifestation of the fractional statistics is the quantization of
the kinetic (or dynamic) relative angular momentum of the anyons. In 3D, the relative
angular momentum is quantized as ~hl, where l is an odd integer for fermions, and an even
integer for bosons. In 2D, the amplitude acquires a statistical phase ei✓'/⇡ as two anyons
wind counterclockwise around each other with winding angle ' in the xy-plane, and with

4

Ti

Ti+1

Ti

�i �i+1 �i+2

=

Ti+1

Ti

Ti+1

�i �i+1 �i+2

Figure 2: Illustration of the defining algebra of the braid group BN : Ti Ti+1Ti = Ti+1Ti Ti+1.

The relevant group in 2D, therefore, is not permutation group SN , but the braid group
BN . This is the group of all possible ways to interchange N particles through windings, and is
generated by the N �1 counterclockwise interchanges Ti of particles labeled by consecutive
indices i and i + 1. The algebra of the group is given by5

Ti Tj = Tj Ti for |i � j|> 1,

Ti Tj Ti = Tj Ti Tj for |i � j|= 1,
(2)

as illustrated in Figure 2. Note that the braid group differs from the permutation group as
T�1

i 6= Ti . The one dimensional representations of BN on R2 are given by

⌧(Ti) = ei✓ , (3)

and hence labeled by a continuous U(1) phase parameter ✓ 2 ]�⇡,⇡].
For fermions, ✓ = ⇡, and we assign a minus sign to each interchange. For bosons,

✓ = 0, and we assign no phase. For all other values of the statistical parameter ✓ , we assign
a fractional phase factor ei✓ for each counterclockwise interchange of consecutively indexed
particles in the relative amplitude in the many particle path integral. We say the particles
obey fractional statistics, and call them anyons. Non-Abelian anyons, which we will discuss
below, realize higher dimensional representations of the braid group BN .

The most direct physical manifestation of the fractional statistics is the quantization of
the kinetic (or dynamic) relative angular momentum of the anyons. In 3D, the relative
angular momentum is quantized as ~hl, where l is an odd integer for fermions, and an even
integer for bosons. In 2D, the amplitude acquires a statistical phase ei✓'/⇡ as two anyons
wind counterclockwise around each other with winding angle ' in the xy-plane, and with

4

the canonical relative angular momentum given by Lz = �i~h@', the kinetic relative angular
momentum is quantized as1

lz = ~h
Å

even integer� ✓
⇡

ã
. (4)

In other words, the relative angular momenta assumes odd multiples of ~h for fermions, even
multiples of ~h for bosons, and fractionally shifted values for anyons.

Note that the possibility of fractional statistics exists only for particles which are strictly
two dimensional in the sense that the third dimension is not just strongly suppressed, but
inaccessible as a matter of principle. An example of strictly two dimensional “particles” are
vortices in an (approximately) two-dimensional quantum fluid.

3. Charge-flux tube composites

So far, our discussion of anyons was rather academic. We have shown that the (path in-
tegral) formalism of quantum theory does allow for the possibility of fractional statistics,
but have not given any context how nature would realize anyons. When one of us6,7 un-
knowingly rediscovered the possibility of fractional statistics in 1982, it was in the context
of composites of charged particles with infinitesimally thin magnetic flux tubes. These do
not only provide a formal realization of anyons in 2D, but epitomize them.

To see this, consider first an otherwise free particle of charge q confined to the xy-plane
pierced by a magnetic flux tube of strength � = ✓

⇡�0, where �0 =
2⇡~hc

q is the Dirac quantum,
at the origin. In symmetric gauge, the vector potential is given by

a(r) =
�

2⇡
ez ⇥ r

r2
=
�

2⇡r
e'. (5)

The magnetic field b(r) = r⇥ a = ��(r) ez is confined to the interior of the infinitesimal
flux tube. The Hamiltonian of the charged particle is

H =
1

2m

⇣
p � q

c
a(r)
⌘2
= � ~h

2

2m
1
r
@r r@r +

1
2mr2

L2
z (✓ ), (6)

where

Lz(✓ ) = e+i✓'/⇡
�
�i~h@'
�

e�i✓'/⇡ = ~h
Å
�i@' �

✓

⇡

ã
(7)

is the kinetic angular momentum around the origin. We see that the flux tube induces
a fractional shift in accordance with (4). When we move the charge q counterclockwise

1For a derivation of the sign of the second term, see Eqs. (5) to (7) below.

5

2D: only one generator of canonical relative angular momentum:

→  kinematic relative angular momentum quantized as:

the canonical relative angular momentum given by Lz = �i~h@', the kinetic relative angular
momentum is quantized as1

lz = ~h
Å

even integer� ✓
⇡

ã
. (4)

In other words, the relative angular momenta assumes odd multiples of ~h for fermions, even
multiples of ~h for bosons, and fractionally shifted values for anyons.

Note that the possibility of fractional statistics exists only for particles which are strictly
two dimensional in the sense that the third dimension is not just strongly suppressed, but
inaccessible as a matter of principle. An example of strictly two dimensional “particles” are
vortices in an (approximately) two-dimensional quantum fluid.

3. Charge-flux tube composites

So far, our discussion of anyons was rather academic. We have shown that the (path in-
tegral) formalism of quantum theory does allow for the possibility of fractional statistics,
but have not given any context how nature would realize anyons. When one of us6,7 un-
knowingly rediscovered the possibility of fractional statistics in 1982, it was in the context
of composites of charged particles with infinitesimally thin magnetic flux tubes. These do
not only provide a formal realization of anyons in 2D, but epitomize them.

To see this, consider first an otherwise free particle of charge q confined to the xy-plane
pierced by a magnetic flux tube of strength � = ✓

⇡�0, where �0 =
2⇡~hc

q is the Dirac quantum,
at the origin. In symmetric gauge, the vector potential is given by

a(r) =
�

2⇡
ez ⇥ r

r2
=
�

2⇡r
e'. (5)

The magnetic field b(r) = r⇥ a = ��(r) ez is confined to the interior of the infinitesimal
flux tube. The Hamiltonian of the charged particle is

H =
1

2m

⇣
p � q

c
a(r)
⌘2
= � ~h

2

2m
1
r
@r r@r +

1
2mr2

L2
z (✓ ), (6)

where

Lz(✓ ) = e+i✓'/⇡
�
�i~h@'
�

e�i✓'/⇡ = ~h
Å
�i@' �

✓

⇡

ã
(7)

is the kinetic angular momentum around the origin. We see that the flux tube induces
a fractional shift in accordance with (4). When we move the charge q counterclockwise

1For a derivation of the sign of the second term, see Eqs. (5) to (7) below.

5



corresponding to statistical parameter      for a counterclockwise interchange. 

3. Charge flux-tube composites 
epitomize anyons, due to Wilczek 1982:

move charge q counterclockwise around the flux tube  →   get Aharonov-Bohm phase

Hamiltonian:

consider particle w/ charge q and flux tube                       where                      ,  in the xy-plane:

the canonical relative angular momentum given by Lz = �i~h@', the kinetic relative angular
momentum is quantized as1

lz = ~h
Å

even integer� ✓
⇡

ã
. (4)

In other words, the relative angular momenta assumes odd multiples of ~h for fermions, even
multiples of ~h for bosons, and fractionally shifted values for anyons.

Note that the possibility of fractional statistics exists only for particles which are strictly
two dimensional in the sense that the third dimension is not just strongly suppressed, but
inaccessible as a matter of principle. An example of strictly two dimensional “particles” are
vortices in an (approximately) two-dimensional quantum fluid.

3. Charge-flux tube composites

So far, our discussion of anyons was rather academic. We have shown that the (path in-
tegral) formalism of quantum theory does allow for the possibility of fractional statistics,
but have not given any context how nature would realize anyons. When one of us6,7 un-
knowingly rediscovered the possibility of fractional statistics in 1982, it was in the context
of composites of charged particles with infinitesimally thin magnetic flux tubes. These do
not only provide a formal realization of anyons in 2D, but epitomize them.

To see this, consider first an otherwise free particle of charge q confined to the xy-plane
pierced by a magnetic flux tube of strength � = ✓

⇡�0, where �0 =
2⇡~hc

q is the Dirac quantum,
at the origin. In symmetric gauge, the vector potential is given by

a(r) =
�

2⇡
ez ⇥ r

r2
=
�

2⇡r
e'. (5)

The magnetic field b(r) = r⇥ a = ��(r) ez is confined to the interior of the infinitesimal
flux tube. The Hamiltonian of the charged particle is

H =
1

2m

⇣
p � q

c
a(r)
⌘2
= � ~h

2

2m
1
r
@r r@r +

1
2mr2

L2
z (✓ ), (6)

where

Lz(✓ ) = e+i✓'/⇡
�
�i~h@'
�

e�i✓'/⇡ = ~h
Å
�i@' �

✓

⇡

ã
(7)

is the kinetic angular momentum around the origin. We see that the flux tube induces
a fractional shift in accordance with (4). When we move the charge q counterclockwise

1For a derivation of the sign of the second term, see Eqs. (5) to (7) below.

5

the canonical relative angular momentum given by Lz = �i~h@', the kinetic relative angular
momentum is quantized as1

lz = ~h
Å

even integer� ✓
⇡

ã
. (4)

In other words, the relative angular momenta assumes odd multiples of ~h for fermions, even
multiples of ~h for bosons, and fractionally shifted values for anyons.

Note that the possibility of fractional statistics exists only for particles which are strictly
two dimensional in the sense that the third dimension is not just strongly suppressed, but
inaccessible as a matter of principle. An example of strictly two dimensional “particles” are
vortices in an (approximately) two-dimensional quantum fluid.

3. Charge-flux tube composites

So far, our discussion of anyons was rather academic. We have shown that the (path in-
tegral) formalism of quantum theory does allow for the possibility of fractional statistics,
but have not given any context how nature would realize anyons. When one of us6,7 un-
knowingly rediscovered the possibility of fractional statistics in 1982, it was in the context
of composites of charged particles with infinitesimally thin magnetic flux tubes. These do
not only provide a formal realization of anyons in 2D, but epitomize them.

To see this, consider first an otherwise free particle of charge q confined to the xy-plane
pierced by a magnetic flux tube of strength � = ✓

⇡�0, where �0 =
2⇡~hc

q is the Dirac quantum,
at the origin. In symmetric gauge, the vector potential is given by

a(r) =
�

2⇡
ez ⇥ r

r2
=
�

2⇡r
e'. (5)

The magnetic field b(r) = r⇥ a = ��(r) ez is confined to the interior of the infinitesimal
flux tube. The Hamiltonian of the charged particle is

H =
1

2m

⇣
p � q

c
a(r)
⌘2
= � ~h

2

2m
1
r
@r r@r +

1
2mr2

L2
z (✓ ), (6)

where

Lz(✓ ) = e+i✓'/⇡
�
�i~h@'
�

e�i✓'/⇡ = ~h
Å
�i@' �

✓

⇡

ã
(7)

is the kinetic angular momentum around the origin. We see that the flux tube induces
a fractional shift in accordance with (4). When we move the charge q counterclockwise

1For a derivation of the sign of the second term, see Eqs. (5) to (7) below.

5

→

with kinetic relative angular momentum:

the canonical relative angular momentum given by Lz = �i~h@', the kinetic relative angular
momentum is quantized as1

lz = ~h
Å

even integer� ✓
⇡

ã
. (4)

In other words, the relative angular momenta assumes odd multiples of ~h for fermions, even
multiples of ~h for bosons, and fractionally shifted values for anyons.

Note that the possibility of fractional statistics exists only for particles which are strictly
two dimensional in the sense that the third dimension is not just strongly suppressed, but
inaccessible as a matter of principle. An example of strictly two dimensional “particles” are
vortices in an (approximately) two-dimensional quantum fluid.

3. Charge-flux tube composites

So far, our discussion of anyons was rather academic. We have shown that the (path in-
tegral) formalism of quantum theory does allow for the possibility of fractional statistics,
but have not given any context how nature would realize anyons. When one of us6,7 un-
knowingly rediscovered the possibility of fractional statistics in 1982, it was in the context
of composites of charged particles with infinitesimally thin magnetic flux tubes. These do
not only provide a formal realization of anyons in 2D, but epitomize them.

To see this, consider first an otherwise free particle of charge q confined to the xy-plane
pierced by a magnetic flux tube of strength � = ✓

⇡�0, where �0 =
2⇡~hc

q is the Dirac quantum,
at the origin. In symmetric gauge, the vector potential is given by

a(r) =
�

2⇡
ez ⇥ r

r2
=
�

2⇡r
e'. (5)

The magnetic field b(r) = r⇥ a = ��(r) ez is confined to the interior of the infinitesimal
flux tube. The Hamiltonian of the charged particle is

H =
1

2m

⇣
p � q

c
a(r)
⌘2
= � ~h

2

2m
1
r
@r r@r +

1
2mr2

L2
z (✓ ), (6)

where

Lz(✓ ) = e+i✓'/⇡
�
�i~h@'
�

e�i✓'/⇡ = ~h
Å
�i@' �

✓

⇡

ã
(7)

is the kinetic angular momentum around the origin. We see that the flux tube induces
a fractional shift in accordance with (4). When we move the charge q counterclockwise

1For a derivation of the sign of the second term, see Eqs. (5) to (7) below.

5

the canonical relative angular momentum given by Lz = �i~h@', the kinetic relative angular
momentum is quantized as1

lz = ~h
Å

even integer� ✓
⇡

ã
. (4)

In other words, the relative angular momenta assumes odd multiples of ~h for fermions, even
multiples of ~h for bosons, and fractionally shifted values for anyons.

Note that the possibility of fractional statistics exists only for particles which are strictly
two dimensional in the sense that the third dimension is not just strongly suppressed, but
inaccessible as a matter of principle. An example of strictly two dimensional “particles” are
vortices in an (approximately) two-dimensional quantum fluid.

3. Charge-flux tube composites

So far, our discussion of anyons was rather academic. We have shown that the (path in-
tegral) formalism of quantum theory does allow for the possibility of fractional statistics,
but have not given any context how nature would realize anyons. When one of us6,7 un-
knowingly rediscovered the possibility of fractional statistics in 1982, it was in the context
of composites of charged particles with infinitesimally thin magnetic flux tubes. These do
not only provide a formal realization of anyons in 2D, but epitomize them.

To see this, consider first an otherwise free particle of charge q confined to the xy-plane
pierced by a magnetic flux tube of strength � = ✓

⇡�0, where �0 =
2⇡~hc

q is the Dirac quantum,
at the origin. In symmetric gauge, the vector potential is given by

a(r) =
�

2⇡
ez ⇥ r

r2
=
�

2⇡r
e'. (5)

The magnetic field b(r) = r⇥ a = ��(r) ez is confined to the interior of the infinitesimal
flux tube. The Hamiltonian of the charged particle is

H =
1

2m

⇣
p � q

c
a(r)
⌘2
= � ~h

2

2m
1
r
@r r@r +

1
2mr2

L2
z (✓ ), (6)

where

Lz(✓ ) = e+i✓'/⇡
�
�i~h@'
�

e�i✓'/⇡ = ~h
Å
�i@' �

✓

⇡

ã
(7)

is the kinetic angular momentum around the origin. We see that the flux tube induces
a fractional shift in accordance with (4). When we move the charge q counterclockwise

1For a derivation of the sign of the second term, see Eqs. (5) to (7) below.

5

the canonical relative angular momentum given by Lz = �i~h@', the kinetic relative angular
momentum is quantized as1

lz = ~h
Å

even integer� ✓
⇡

ã
. (4)

In other words, the relative angular momenta assumes odd multiples of ~h for fermions, even
multiples of ~h for bosons, and fractionally shifted values for anyons.

Note that the possibility of fractional statistics exists only for particles which are strictly
two dimensional in the sense that the third dimension is not just strongly suppressed, but
inaccessible as a matter of principle. An example of strictly two dimensional “particles” are
vortices in an (approximately) two-dimensional quantum fluid.

3. Charge-flux tube composites

So far, our discussion of anyons was rather academic. We have shown that the (path in-
tegral) formalism of quantum theory does allow for the possibility of fractional statistics,
but have not given any context how nature would realize anyons. When one of us6,7 un-
knowingly rediscovered the possibility of fractional statistics in 1982, it was in the context
of composites of charged particles with infinitesimally thin magnetic flux tubes. These do
not only provide a formal realization of anyons in 2D, but epitomize them.

To see this, consider first an otherwise free particle of charge q confined to the xy-plane
pierced by a magnetic flux tube of strength � = ✓

⇡�0, where �0 =
2⇡~hc

q is the Dirac quantum,
at the origin. In symmetric gauge, the vector potential is given by

a(r) =
�

2⇡
ez ⇥ r

r2
=
�

2⇡r
e'. (5)

The magnetic field b(r) = r⇥ a = ��(r) ez is confined to the interior of the infinitesimal
flux tube. The Hamiltonian of the charged particle is

H =
1

2m

⇣
p � q

c
a(r)
⌘2
= � ~h

2

2m
1
r
@r r@r +

1
2mr2

L2
z (✓ ), (6)

where

Lz(✓ ) = e+i✓'/⇡
�
�i~h@'
�

e�i✓'/⇡ = ~h
Å
�i@' �

✓

⇡

ã
(7)

is the kinetic angular momentum around the origin. We see that the flux tube induces
a fractional shift in accordance with (4). When we move the charge q counterclockwise

1For a derivation of the sign of the second term, see Eqs. (5) to (7) below.

5

the canonical relative angular momentum given by Lz = �i~h@', the kinetic relative angular
momentum is quantized as1

lz = ~h
Å

even integer� ✓
⇡

ã
. (4)

In other words, the relative angular momenta assumes odd multiples of ~h for fermions, even
multiples of ~h for bosons, and fractionally shifted values for anyons.

Note that the possibility of fractional statistics exists only for particles which are strictly
two dimensional in the sense that the third dimension is not just strongly suppressed, but
inaccessible as a matter of principle. An example of strictly two dimensional “particles” are
vortices in an (approximately) two-dimensional quantum fluid.

3. Charge-flux tube composites

So far, our discussion of anyons was rather academic. We have shown that the (path in-
tegral) formalism of quantum theory does allow for the possibility of fractional statistics,
but have not given any context how nature would realize anyons. When one of us6,7 un-
knowingly rediscovered the possibility of fractional statistics in 1982, it was in the context
of composites of charged particles with infinitesimally thin magnetic flux tubes. These do
not only provide a formal realization of anyons in 2D, but epitomize them.

To see this, consider first an otherwise free particle of charge q confined to the xy-plane
pierced by a magnetic flux tube of strength � = ✓

⇡�0, where �0 =
2⇡~hc

q is the Dirac quantum,
at the origin. In symmetric gauge, the vector potential is given by

a(r) =
�

2⇡
ez ⇥ r

r2
=
�

2⇡r
e'. (5)

The magnetic field b(r) = r⇥ a = ��(r) ez is confined to the interior of the infinitesimal
flux tube. The Hamiltonian of the charged particle is

H =
1

2m

⇣
p � q

c
a(r)
⌘2
= � ~h

2

2m
1
r
@r r@r +

1
2mr2

L2
z (✓ ), (6)

where

Lz(✓ ) = e+i✓'/⇡
�
�i~h@'
�

e�i✓'/⇡ = ~h
Å
�i@' �

✓

⇡

ã
(7)

is the kinetic angular momentum around the origin. We see that the flux tube induces
a fractional shift in accordance with (4). When we move the charge q counterclockwise

1For a derivation of the sign of the second term, see Eqs. (5) to (7) below.

5

around the flux tube, the wave function picks up an Aharonov–Bohm phase

q
~hc

I
a(r)dr =

q�
~hc
= 2✓ , (8)

as required by (3) for a full counterclockwise winding of one anyon with statistical para-
meter ✓ around another.

This simple exercise suggests that we can transmute the statistics of a many particle
system in 2D by attaching both charges q and flux tubes of strength � = ✓

⇡�0 to the particles.
Formally, we introduce a fictitious vector potential

a(ri) =
✓

⇡

~hc
q

X

j
( j 6=i)

ez ⇥ (r i � r j)
|r i � r j |2

, (9)

which effects that particle i sees fictitious flux tubes at the positions of all other particles j.
The many anyon Hamiltonian is then given by

H =
1

2m

X

i

⇣
pi �

q
c

a(r i) +
e
c
A(r i)
⌘2

, (10)

where we have included a coupling to an external, electromagnetic vector potential A(r ),
with electron charge �e.

Strictly speaking, as we interchange two anyons consisting of charge-flux tube compos-
ites, we obtain a phase for each charge as it moves in the vector potential of the other flux
tube. The usual view assumed when we consider the model described by (10) with (9),
however, is that each particle moves in the vector potential of all the other flux tubes, while
we ignore the effect of the flux attached to the moving particle on all the other particles. The
profound reason is that when we attach the fluxes to the charges in Chern–Simons theory,
we find winding phases and kinetic relative angular momenta according to this “simple”
counting, due to a field correction to the induced statistics.8 On a more mundane level,
this counting is consistent with both the statistics we obtain for the quasiparticles in the
fractional quantum Hall effect9,10 (see (37) below), and an exact model of charge-flux tube
composites which connects integer and fractional quantum Hall states through an adiabatic
process of attaching flux tubes to the charges.11

The connection between anyons and charge-flux tube composites becomes even more
apparent on closed surfaces, such as spheres and tori.12,11 There, the allowed values for the
number of anyons N and the statistical parameter ✓ are restricted such that the total flux—
that is the sum of the fictitious and the electromagnetic flux—through the surface seen by
each particle is a multiple of the Dirac flux quantum �0.
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we ignore the effect of the flux attached to the moving particle on all the other particles. The
profound reason is that when we attach the fluxes to the charges in Chern–Simons theory,
we find winding phases and kinetic relative angular momenta according to this “simple”
counting, due to a field correction to the induced statistics.8 On a more mundane level,
this counting is consistent with both the statistics we obtain for the quasiparticles in the
fractional quantum Hall effect9,10 (see (37) below), and an exact model of charge-flux tube
composites which connects integer and fractional quantum Hall states through an adiabatic
process of attaching flux tubes to the charges.11

The connection between anyons and charge-flux tube composites becomes even more
apparent on closed surfaces, such as spheres and tori.12,11 There, the allowed values for the
number of anyons N and the statistical parameter ✓ are restricted such that the total flux—
that is the sum of the fictitious and the electromagnetic flux—through the surface seen by
each particle is a multiple of the Dirac flux quantum �0.
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More on this subtle issue below.

strictly speaking, we get the winding phases twice 
(from each charge moving in the vector field from each flux tube)

Dirac monopole condition applies to the sum of statistical and electromagnetic flux!

(This underlies how fundamental the connection between anyons and charge-flux tube 
compensates is.)



4. Chern-Simons construction

in 2+1 D:  
couple U(1) conserved particle current                           to a fictitious gauge field                      

4. Chern–Simons construction and field correction

A very elegant way to implement the previous construction in a local field theory is through a
Chern–Simons (CS) term in a local field theory.13,8,14 Consider a theory in 2+1 dimensions
with a U(1) conserved particle current Jµ = (⇢, J), where ⇢ is the particle density and J
the particle current. Now introduce a CS term in a fictitious gauge field aµ(a0, a) coupled
with charge q to this current by adding the following terms to the Lagrangian density,

�L= �q
c

Jµaµ +
µ

2c
✏µ⌫⇢aµ@⌫a⇢. (11)

Then the Euler–Lagrange equation of motion for the field aµ is

qJµ = µ✏µ⌫⇢@⌫a⇢. (12)

The µ= 0 component couples the fictitious magnetic field to the charge,

bz(r ) = @x ay � @y ax = � q
µ
⇢(r ), (13)

and hence attaches a flux tube with � = � q
µ to each point particle. In other words, adding

(11) to the Lagrangian turns the particles into charge-flux tube composites.
Let us now evaluate the phase generated by �L in the path integral as we adiabatically

wind one particle counterclockwise around another. By definition, we obtain a phase factor

exp
Å

i
~h�S
ã
= exp

✓
i
~h

Z
dtdr�L
◆

. (14)

We again use a symmetrical gauge, a0 = 0, a = �
2⇡r e'. With J(r) = ⇢v = ⇢r@t' e', the

first term in (11) yields the familiar Aharonov–Bohm phase for the motion of each charge
in the vector potential of the other flux tube,

q
~hc
�

2⇡

Z
dr⇢
Z

dt @t' =
q
~hc
�

2⇡
'. (15)

For an interchange with winding angle ' = ⇡, counting the phases from both charges, we
obtain a total phase factor

exp
Å

iq�
~hc

ã
= exp (2i✓ ) . (16)

A more subtle contribution comes from the second term in (11), the CS term. Substituting
(12) and evaluating it along the same lines, we see immediately that its contribution is
minus one half of the Aharonov–Bohm phase (16). So the total phase we obtain when we
adiabatically interchange two anyons via counterclockwise winding is exp (i✓ ), and hence
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Substituting        into        , we see that the second term gives just -1/2 times this contribution!
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(= field correction; due to Goldhaber, MacKenzie, Wilczek 1989)



We will see below that this is precisely the situation we have in the FQHE!

Physical interpretation of the field correction:

consider adiabatic attachment of flux, and hence also charge. 

recall that the flux in the CS construction is proportional to the charge, 

exactly what we obtain when we just count the phase of one particle in the fictitious vector
potential of the other in (10) with (9).

There is a simple physical reason for the field correction obtained here.8 Recall that the
flux induced by the CS term is proportional to the charge, � = � q

µ . Now consider attaching
the fictitious flux to it, and hence also the charge, adiabatically. Each flux tube will generate
a fictitious electric field
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where we have substituted � = ✓
⇡�0 in the last step. As compared to (7), the shift induced

by the flux is halved. The reason is that during the process, the charge is proportional to the
flux, and even for @t� = const., the torque applied increases linearly with the flux. Taking
the effect of both fluxes on both charges into account, we multiply (18) by 2, and recover
(7).

5. Abelian anyons in fractionally quantized Hall states

While Abelian and non-Abelian anyons also appear in models of 2D spin liquids,15,16,17

the most fully realized examples are the fractionally charged quasiparticle excitations of
fractionally quantized Hall states. In these systems, anyons have been observed in recent,
groundbreaking experiments, as we will detail in the penultimate section. Here, we give
a brief account of the fractional statistics9,10,18 of the quasiholes of Laughlin states,19,20

which describe quantized Hall liquids at Landau level filling fractions ⌫= 1/m, where m is
an odd integer. We begin with a brief introduction to Landau levels (LLs) and the Laughlin
wave function.

Landau levels

Consider an electron of charge �e and mass M confined to the xy-plane, and subject to a
homogenous, perpendicular magnetic field B = �Bez. It is convenient to introduce the
complex coordinates z = x + iy and z̄ = x � iy , their associated derivative operators
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is 1/2 of what we had when we considered flux-charge composites naively in Section 3!

change in the kinematical angular momentum:

Reason:                torque increases linearly even for 
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where !c =
eB
Mc is the cyclotron frequency and the ladder operators
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, (20)

obey
⇥
a, a†

⇤
= 1. It is readily seen that a complete (but unnormalized) basis of the eigen-

states in the lowest Landau level (LLL, i.e., with energy 1
2~h!c) is given by

 m(z) = zm e�
1

4l2
|z|2 , (21)

where n is a non-negative integer. These states describe narrow rings centered around the
origin, with radius rm =

p
2m l. The areal density of states in each LL is given by

number of states
area

=
m
⇡r2

m
=

1
2⇡l2

, (22)

and the magnetic flux required for each state, 2⇡l2B = 2⇡~hc
e = �0, is hence given by the

Dirac flux quantum. In the following, we set the magnetic length l = 1. The wave function
for a circular droplet of N electrons in the LLL is given by

 (z1, . . . , zN ) =A
�
z0

1z1
2 . . . zN�1

N

 
·

NY

i=1

e�
1
4 |zi |2 =

NY

i< j

(zi � zj)
NY

i=1

e�
1
4 |zi |2 , (23)

where A denotes antisymmetrization.
The most general N particle state in the LLL is given by

 (z1, . . . , zN ) = f (z1, . . . , zN )
NY

i=1

e�
1
4 |zi |2 , (24)

where f (z1, . . . , zN ) is analytic in all the z’s, and symmetric or antisymmetric for bosons or
fermions, respectively. If we impose periodic boundary conditions,21 we find that
 (z1, z2, . . . , zN ), when viewed as a function of z1 while z2, . . . , zN are parameters, has ex-
actly as many zeros as there are states in the LLL, i.e., as there are Dirac flux quanta going
through the principal region. If  (z1, . . . , zN ) describes fermions and is hence antisymmet-
ric, there will be at least one zero seen by z1 at each of the other particle positions. The
most general wave function is hence

 (z1, . . . , zN ) = P(z1, . . . , zN )
NY

i< j

(zi � zj)
NY

i=1

e�
1
4 |zi |2 , (25)

where P is a symmetric polynomial in the zi ’s. In the case of a completely filled Landau
level, there are only as many zeros as there are particles, which implies that all except one
of the zeros in z1 will be located at the other particle positions z2, . . . , zN . This yields (23)
as the unique state for open boundary conditions.
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Dirac flux quantum. In the following, we set the magnetic length l = 1. The wave function
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as the unique state for open boundary conditions.
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as the unique state for open boundary conditions.

9

where !c =
eB
Mc is the cyclotron frequency and the ladder operators

a =
lp
2

⇣
2@̄ +

z
2l2

⌘
, a† =

lp
2

Å
�2@ +

1
2l2

z̄
ã

, (20)

obey
⇥
a, a†

⇤
= 1. It is readily seen that a complete (but unnormalized) basis of the eigen-

states in the lowest Landau level (LLL, i.e., with energy 1
2~h!c) is given by

 m(z) = zm e�
1

4l2
|z|2 , (21)

where n is a non-negative integer. These states describe narrow rings centered around the
origin, with radius rm =

p
2m l. The areal density of states in each LL is given by

number of states
area

=
m
⇡r2

m
=

1
2⇡l2

, (22)

and the magnetic flux required for each state, 2⇡l2B = 2⇡~hc
e = �0, is hence given by the

Dirac flux quantum. In the following, we set the magnetic length l = 1. The wave function
for a circular droplet of N electrons in the LLL is given by

 (z1, . . . , zN ) =A
�
z0

1z1
2 . . . zN�1

N

 
·

NY

i=1

e�
1
4 |zi |2 =

NY

i< j

(zi � zj)
NY

i=1

e�
1
4 |zi |2 , (23)

where A denotes antisymmetrization.
The most general N particle state in the LLL is given by

 (z1, . . . , zN ) = f (z1, . . . , zN )
NY

i=1

e�
1
4 |zi |2 , (24)

where f (z1, . . . , zN ) is analytic in all the z’s, and symmetric or antisymmetric for bosons or
fermions, respectively. If we impose periodic boundary conditions,21 we find that
 (z1, z2, . . . , zN ), when viewed as a function of z1 while z2, . . . , zN are parameters, has ex-
actly as many zeros as there are states in the LLL, i.e., as there are Dirac flux quanta going
through the principal region. If  (z1, . . . , zN ) describes fermions and is hence antisymmet-
ric, there will be at least one zero seen by z1 at each of the other particle positions. The
most general wave function is hence

 (z1, . . . , zN ) = P(z1, . . . , zN )
NY

i< j

(zi � zj)
NY

i=1

e�
1
4 |zi |2 , (25)

where P is a symmetric polynomial in the zi ’s. In the case of a completely filled Landau
level, there are only as many zeros as there are particles, which implies that all except one
of the zeros in z1 will be located at the other particle positions z2, . . . , zN . This yields (23)
as the unique state for open boundary conditions.

9

Most general N fermion wave function in the LLL:

where !c =
eB
Mc is the cyclotron frequency and the ladder operators

a =
lp
2

⇣
2@̄ +

z
2l2

⌘
, a† =

lp
2

Å
�2@ +

1
2l2

z̄
ã

, (20)

obey
⇥
a, a†

⇤
= 1. It is readily seen that a complete (but unnormalized) basis of the eigen-

states in the lowest Landau level (LLL, i.e., with energy 1
2~h!c) is given by

 m(z) = zm e�
1

4l2
|z|2 , (21)

where n is a non-negative integer. These states describe narrow rings centered around the
origin, with radius rm =

p
2m l. The areal density of states in each LL is given by

number of states
area

=
m
⇡r2

m
=

1
2⇡l2

, (22)

and the magnetic flux required for each state, 2⇡l2B = 2⇡~hc
e = �0, is hence given by the

Dirac flux quantum. In the following, we set the magnetic length l = 1. The wave function
for a circular droplet of N electrons in the LLL is given by

 (z1, . . . , zN ) =A
�
z0

1z1
2 . . . zN�1

N

 
·

NY

i=1

e�
1
4 |zi |2 =

NY

i< j

(zi � zj)
NY

i=1

e�
1
4 |zi |2 , (23)

where A denotes antisymmetrization.
The most general N particle state in the LLL is given by

 (z1, . . . , zN ) = f (z1, . . . , zN )
NY

i=1

e�
1
4 |zi |2 , (24)

where f (z1, . . . , zN ) is analytic in all the z’s, and symmetric or antisymmetric for bosons or
fermions, respectively. If we impose periodic boundary conditions,21 we find that
 (z1, z2, . . . , zN ), when viewed as a function of z1 while z2, . . . , zN are parameters, has ex-
actly as many zeros as there are states in the LLL, i.e., as there are Dirac flux quanta going
through the principal region. If  (z1, . . . , zN ) describes fermions and is hence antisymmet-
ric, there will be at least one zero seen by z1 at each of the other particle positions. The
most general wave function is hence

 (z1, . . . , zN ) = P(z1, . . . , zN )
NY

i< j

(zi � zj)
NY

i=1

e�
1
4 |zi |2 , (25)

where P is a symmetric polynomial in the zi ’s. In the case of a completely filled Landau
level, there are only as many zeros as there are particles, which implies that all except one
of the zeros in z1 will be located at the other particle positions z2, . . . , zN . This yields (23)
as the unique state for open boundary conditions.

9

where                            is a completely symmetric polynomial.

where !c =
eB
Mc is the cyclotron frequency and the ladder operators

a =
lp
2

⇣
2@̄ +

z
2l2

⌘
, a† =

lp
2

Å
�2@ +

1
2l2

z̄
ã

, (20)

obey
⇥
a, a†

⇤
= 1. It is readily seen that a complete (but unnormalized) basis of the eigen-

states in the lowest Landau level (LLL, i.e., with energy 1
2~h!c) is given by

 m(z) = zm e�
1

4l2
|z|2 , (21)

where n is a non-negative integer. These states describe narrow rings centered around the
origin, with radius rm =

p
2m l. The areal density of states in each LL is given by

number of states
area

=
m
⇡r2

m
=

1
2⇡l2

, (22)

and the magnetic flux required for each state, 2⇡l2B = 2⇡~hc
e = �0, is hence given by the

Dirac flux quantum. In the following, we set the magnetic length l = 1. The wave function
for a circular droplet of N electrons in the LLL is given by

 (z1, . . . , zN ) =A
�
z0

1z1
2 . . . zN�1

N

 
·

NY

i=1

e�
1
4 |zi |2 =

NY

i< j

(zi � zj)
NY

i=1

e�
1
4 |zi |2 , (23)

where A denotes antisymmetrization.
The most general N particle state in the LLL is given by

 (z1, . . . , zN ) = f (z1, . . . , zN )
NY

i=1

e�
1
4 |zi |2 , (24)

where f (z1, . . . , zN ) is analytic in all the z’s, and symmetric or antisymmetric for bosons or
fermions, respectively. If we impose periodic boundary conditions,21 we find that
 (z1, z2, . . . , zN ), when viewed as a function of z1 while z2, . . . , zN are parameters, has ex-
actly as many zeros as there are states in the LLL, i.e., as there are Dirac flux quanta going
through the principal region. If  (z1, . . . , zN ) describes fermions and is hence antisymmet-
ric, there will be at least one zero seen by z1 at each of the other particle positions. The
most general wave function is hence

 (z1, . . . , zN ) = P(z1, . . . , zN )
NY

i< j

(zi � zj)
NY

i=1

e�
1
4 |zi |2 , (25)

where P is a symmetric polynomial in the zi ’s. In the case of a completely filled Landau
level, there are only as many zeros as there are particles, which implies that all except one
of the zeros in z1 will be located at the other particle positions z2, . . . , zN . This yields (23)
as the unique state for open boundary conditions.

9



→  has the correlations of a liquid

5.2. The Laughlin wave function
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generacy" is seen in the appearance of these
features at odd-integer values of v. As observed
earlier, "the plateaus in p „„aswell as the van-
ishing of p „„become increasingly pronounced as
T is decreased.
In the extreme quantum limit, v & 1, only the

lower spin state of the lowest Landau level, i.e.,
the (0, &) level, remains partially occupied. In
this regime (i.e., B)50 kG in Fig. I), the sys-
tem is complete1. y spin polarized. For T& 4.2 K,
p„,=B/ne, and p„„shows also nearly linear de-
pendence on B, as expected from the free-elec-
tron theory of Ando and Uemura. '" At lower T,
p„, deviates from p„,=B/ne at v - —,'. This devia-
tion becomes more pronounced as T decreases
and approaches a plateau of p„,= 3h/e2, within an
accuracy better than 1%% at 0.42 K. The appear-
ance of this plateau is accompanied by a minimum
in p„„, as apparent in the lower panel of Fig. 1.
The development of these features is similar to
that of the quantized Hall resistance and the con-
comitant vanishing of p„„, observed at integral

TEMPERATURE T (K)
FIG. 2. T dependence of (a) the slope of p„~ at v=3,

normalized to the slope at -30 K, |,'b) p„„at v=3, and
(c) p„„at v=0.24.

values of v at higher T. Moreover, for v & —,
'

and away from the plateau region, p„„shows
strong increase with decreasing T, while p„,
shows very weak decrease or essentially inde-
pendence of T. This behavior has been seen to
v=0. 21, the smallest v attained in this experi-
ment.
Figure 2 illustrates the development of p„„and
p„, at fixed B as a function of T. Figure 2(a)
shows the slope of p„, at v = —,', normalized to the
slope at high T (-30 K), for three samples with
slightly different n. Figure 2(b) shows the ac-
companying p„„minimum (at v = —,'), and Fig. 2(c)
shows p„„at v =0.24 to illustrate its T dependence
for v & —,', away from the Hall plateau. Several
points should be noted. First, the slope of p„at
v = —,
' approaches zero at T -0.4 K, indicative of a.

true quantized Hall plateau. Second, replotting
the data in Fig. 2(a) on logarithmic slope versus
inverse T scale shows a linear portion for data
taken at T ~1.1 K. This fact allows us to extrapo-
la,te the normalized slope to 1 at To= 5 K, which
we identify as the temperature for the onset of
this phenomenon. Third, p„at v= —,

' is -6 kQ/
1560

explains plateau in the Hall resistivity
of a 2D electron gas, i.e., at Landau level filling

The Laughlin wave function

The experimental observation22,23 which Laughlin’s theory19,20 explains is a plateau in the
Hall resistivity of a two-dimensional electron gas at ⇢xy = 3h/e2, i.e., at a Landau level
filling fraction ⌫ = 1/3. The filling fraction denotes the number of particles divided by the
number of number of states in each Landau level in the thermodynamic limit, and is defined
through

1
⌫
=
@ N�
@ N

, (26)

where N� is the number of Dirac flux quanta through the sample and N is the number
of particles. For a wave function at ⌫ = 1/3, we consequently have three times as many
zeros seen by z1 as there are particles, and the polynomial P(z1, . . . , zN ) in (25) has two
zeros per particle. The experimental findings, as well as early numerical work by Yoshioka,
Halperin, and Lee,24 are consistent with, if not indicative of, a quantum liquid state at a
preferred filling fraction ⌫ = 1/3. Since the kinetic energy is degenerate in each Landau
level, such a liquid has to be stabilized by the repulsive Coulomb interactions between the
electrons. This implies that the wave function should be highly effective in suppressing
configurations in which particles approach each other, as there is a significant potential
energy cost associated with it. We may hence ask ourselves whether there is any particular
way of efficiently distributing the zeros of P(z1, . . . , zN ) in this regard.

Laughlin’s wave function amounts to attaching the additional zeros onto the particles,
such that each particle coordinate z2, . . . , zN becomes a triple zero of z1 when  (z1 . . . , zN )
is viewed as a function of z1 with parameter z2, . . . , zN . For filling fraction ⌫ = 1/m, where
m is an odd integer if the particles are fermions and an even integer if they are bosons,
Laughlin proposed the ground state wave function

 m(z1, . . . , zN ) =
NY

i< j

(zi � zj)m
NY

i=1

e�
1
4 |zi |2 . (27)

There are hence no zeros wasted—all of them contribute in keeping the particles away from
each other effectively, as  m vanishes as the m-th power of the distance when two particles
approach each other. This is the uniquely defining property of the Laughlin state, and also
the property which enabled Haldane25 to identify a parent Hamiltonian, which singles out
the state as its unique and exact ground state. It describes an incompressible quantum
liquid, as the construction is only possible at filling fractions ⌫= 1/m.

Even within the LLL limit, which we assume to hold in our discussion, the Laughlin state
(27) is not the exact ground state for electrons with (screened) Coulomb interactions at fill-
ing fraction ⌫= 1/3. It is, however, reasonably close in energy and has a significant overlap
with the exact ground state for finite systems. The difference between the exact ground
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electrons. This implies that the wave function should be highly effective in suppressing
configurations in which particles approach each other, as there is a significant potential
energy cost associated with it. We may hence ask ourselves whether there is any particular
way of efficiently distributing the zeros of P(z1, . . . , zN ) in this regard.

Laughlin’s wave function amounts to attaching the additional zeros onto the particles,
such that each particle coordinate z2, . . . , zN becomes a triple zero of z1 when  (z1 . . . , zN )
is viewed as a function of z1 with parameter z2, . . . , zN . For filling fraction ⌫ = 1/m, where
m is an odd integer if the particles are fermions and an even integer if they are bosons,
Laughlin proposed the ground state wave function
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There are hence no zeros wasted—all of them contribute in keeping the particles away from
each other effectively, as  m vanishes as the m-th power of the distance when two particles
approach each other. This is the uniquely defining property of the Laughlin state, and also
the property which enabled Haldane25 to identify a parent Hamiltonian, which singles out
the state as its unique and exact ground state. It describes an incompressible quantum
liquid, as the construction is only possible at filling fractions ⌫= 1/m.

Even within the LLL limit, which we assume to hold in our discussion, the Laughlin state
(27) is not the exact ground state for electrons with (screened) Coulomb interactions at fill-
ing fraction ⌫= 1/3. It is, however, reasonably close in energy and has a significant overlap
with the exact ground state for finite systems. The difference between the exact ground
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approach each other. This is the uniquely defining property of the Laughlin state, and also
the property which enabled Haldane25 to identify a parent Hamiltonian, which singles out
the state as its unique and exact ground state. It describes an incompressible quantum
liquid, as the construction is only possible at filling fractions ⌫= 1/m.

Even within the LLL limit, which we assume to hold in our discussion, the Laughlin state
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adiabatically insert one flux quantum                   in       direction,

state and Laughlin’s state is that in the exact ground state, the zeros of P(z1, z2, . . . , zN ) are
attached to the particle coordinates, but do not coincide with them.26 At long distances, the
physics described by both states is identical. In particular, the topological quantum numbers
of both states, such as the charge and the statistics of the (fractionally) charged excitations,
or the degeneracies on closed surfaces of genus one and higher, are identical.

Fractionally charged quasiparticle excitations

Laughlin19 created the elementary, charged excitations of the fractionally quantized Hall
state (27) through a Gedankenexperiment. If one adiabatically inserts one Dirac quantum
�0 =

hc
e of magnetic flux in the ez direction through an infinitesimally thin solenoid at a

position ⇠, and then removes this flux quanta via a singular gauge transformation, the final
Hamiltonian will be identical to the initial one. The final state will hence be an eigenstate
of the initial Hamiltonian as well. The adiabatic insertion of the flux will induce an electric
field

I
E ds = E' · 2⇡r = �1

c
@�

@ t
. (28)

Since the electrons are confined to the LLL, this will not lead to an increase in the kinetic an-
gular momentum as in (18), but to a perpendicular current Jr = �xyE', where �xy =

1
m

e2

h .2

The charge transported away from the center of the flux tube is

�Q = 2⇡r
Z

Jr dt = � 1
m

e2

hc

Z
d� = � e

m
(29)

Since the Landau level filling fraction is ⌫= 1/m, a fractional charge of �e/m occupies one
state in the LLL. If we choose a basis of eigenstates of angular momentum around ⇠, the
basis states evolve according to

(z � ⇠)m e�
1
4 |z|2 ! |z � ⇠| · (z � ⇠)m e�

1
4 |z|2 ! (z � ⇠)m+1 e�

1
4 |z|2 , (30)

where the last step is due to the singular gauge transformation. The process increases the
canonical relative angular momentum around ⇠ by ~h.

The Laughlin ground state (27) evolves in the process into

 QH

⇠
(z1, . . . , zN ) =

NY

i=1

(zi � ⇠)
NY

i< j

(zi � zj)m
NY

i=1

e�
1
4 |zi |2 , (31)

2Since the magnetic field is oriented in the �ez direction, ⇢xy < 0 and �xy > 0.
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exactly what we obtain when we just count the phase of one particle in the fictitious vector
potential of the other in (10) with (9).

There is a simple physical reason for the field correction obtained here.8 Recall that the
flux induced by the CS term is proportional to the charge, � = � q

µ . Now consider attaching
the fictitious flux to it, and hence also the charge, adiabatically. Each flux tube will generate
a fictitious electric field

I
E ds = E' · 2⇡r = �1

c
@�

@ t
, (17)

which in turn will change the kinematic angular momentum lz by

�lz =
Z

F' r dt = � 1
2⇡c

Z
q(�)

@�

@ t
dt =

µ

2⇡c

Z
�d� = � 1

2⇡c
q�
2
= �~h

2
✓

⇡
, (18)

where we have substituted � = ✓
⇡�0 in the last step. As compared to (7), the shift induced

by the flux is halved. The reason is that during the process, the charge is proportional to the
flux, and even for @t� = const., the torque applied increases linearly with the flux. Taking
the effect of both fluxes on both charges into account, we multiply (18) by 2, and recover
(7).

5. Abelian anyons in fractionally quantized Hall states

While Abelian and non-Abelian anyons also appear in models of 2D spin liquids,15,16,17

the most fully realized examples are the fractionally charged quasiparticle excitations of
fractionally quantized Hall states. In these systems, anyons have been observed in recent,
groundbreaking experiments, as we will detail in the penultimate section. Here, we give
a brief account of the fractional statistics9,10,18 of the quasiholes of Laughlin states,19,20

which describe quantized Hall liquids at Landau level filling fractions ⌫= 1/m, where m is
an odd integer. We begin with a brief introduction to Landau levels (LLs) and the Laughlin
wave function.

Landau levels

Consider an electron of charge �e and mass M confined to the xy-plane, and subject to a
homogenous, perpendicular magnetic field B = �Bez. It is convenient to introduce the
complex coordinates z = x + iy and z̄ = x � iy , their associated derivative operators
@ = 1

2

�
@x � i@y
�
, @̄ = 1

2

�
@x + i@y
�
, and the magnetic length l =

q
~hc
eB . In symmetric gauge,

we may express the kinetic Hamiltonian in terms of ladder operators,

H =
1

2M

⇣
p +

e
c
A(r)
⌘2
= ~h!c

Å
a†a+

1
2

ã
, (19)
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state and Laughlin’s state is that in the exact ground state, the zeros of P(z1, z2, . . . , zN ) are
attached to the particle coordinates, but do not coincide with them.26 At long distances, the
physics described by both states is identical. In particular, the topological quantum numbers
of both states, such as the charge and the statistics of the (fractionally) charged excitations,
or the degeneracies on closed surfaces of genus one and higher, are identical.

Fractionally charged quasiparticle excitations

Laughlin19 created the elementary, charged excitations of the fractionally quantized Hall
state (27) through a Gedankenexperiment. If one adiabatically inserts one Dirac quantum
�0 =

hc
e of magnetic flux in the ez direction through an infinitesimally thin solenoid at a

position ⇠, and then removes this flux quanta via a singular gauge transformation, the final
Hamiltonian will be identical to the initial one. The final state will hence be an eigenstate
of the initial Hamiltonian as well. The adiabatic insertion of the flux will induce an electric
field

I
E ds = E' · 2⇡r = �1

c
@�

@ t
. (28)

Since the electrons are confined to the LLL, this will not lead to an increase in the kinetic an-
gular momentum as in (18), but to a perpendicular current Jr = �xyE', where �xy =

1
m

e2

h .2

The charge transported away from the center of the flux tube is

�Q = 2⇡r
Z

Jr dt = � 1
m

e2

hc

Z
d� = � e

m
(29)

Since the Landau level filling fraction is ⌫= 1/m, a fractional charge of �e/m occupies one
state in the LLL. If we choose a basis of eigenstates of angular momentum around ⇠, the
basis states evolve according to

(z � ⇠)m e�
1
4 |z|2 ! |z � ⇠| · (z � ⇠)m e�

1
4 |z|2 ! (z � ⇠)m+1 e�

1
4 |z|2 , (30)

where the last step is due to the singular gauge transformation. The process increases the
canonical relative angular momentum around ⇠ by ~h.

The Laughlin ground state (27) evolves in the process into

 QH

⇠
(z1, . . . , zN ) =

NY

i=1

(zi � ⇠)
NY

i< j

(zi � zj)m
NY

i=1

e�
1
4 |zi |2 , (31)

2Since the magnetic field is oriented in the �ez direction, ⇢xy < 0 and �xy > 0.
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Charge transported away from the flux tube:

state and Laughlin’s state is that in the exact ground state, the zeros of P(z1, z2, . . . , zN ) are
attached to the particle coordinates, but do not coincide with them.26 At long distances, the
physics described by both states is identical. In particular, the topological quantum numbers
of both states, such as the charge and the statistics of the (fractionally) charged excitations,
or the degeneracies on closed surfaces of genus one and higher, are identical.

Fractionally charged quasiparticle excitations

Laughlin19 created the elementary, charged excitations of the fractionally quantized Hall
state (27) through a Gedankenexperiment. If one adiabatically inserts one Dirac quantum
�0 =

hc
e of magnetic flux in the ez direction through an infinitesimally thin solenoid at a

position ⇠, and then removes this flux quanta via a singular gauge transformation, the final
Hamiltonian will be identical to the initial one. The final state will hence be an eigenstate
of the initial Hamiltonian as well. The adiabatic insertion of the flux will induce an electric
field

I
E ds = E' · 2⇡r = �1

c
@�

@ t
. (28)

Since the electrons are confined to the LLL, this will not lead to an increase in the kinetic an-
gular momentum as in (18), but to a perpendicular current Jr = �xyE', where �xy =

1
m

e2

h .2

The charge transported away from the center of the flux tube is

�Q = 2⇡r
Z

Jr dt = � 1
m

e2

hc

Z
d� = � e

m
(29)

Since the Landau level filling fraction is ⌫= 1/m, a fractional charge of �e/m occupies one
state in the LLL. If we choose a basis of eigenstates of angular momentum around ⇠, the
basis states evolve according to

(z � ⇠)m e�
1
4 |z|2 ! |z � ⇠| · (z � ⇠)m e�

1
4 |z|2 ! (z � ⇠)m+1 e�

1
4 |z|2 , (30)

where the last step is due to the singular gauge transformation. The process increases the
canonical relative angular momentum around ⇠ by ~h.

The Laughlin ground state (27) evolves in the process into

 QH

⇠
(z1, . . . , zN ) =
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(zi � ⇠)
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i< j

(zi � zj)m
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4 |zi |2 , (31)

2Since the magnetic field is oriented in the �ez direction, ⇢xy < 0 and �xy > 0.
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since                 , charge           occupies 1 state in the LLL. 

state and Laughlin’s state is that in the exact ground state, the zeros of P(z1, z2, . . . , zN ) are
attached to the particle coordinates, but do not coincide with them.26 At long distances, the
physics described by both states is identical. In particular, the topological quantum numbers
of both states, such as the charge and the statistics of the (fractionally) charged excitations,
or the degeneracies on closed surfaces of genus one and higher, are identical.

Fractionally charged quasiparticle excitations

Laughlin19 created the elementary, charged excitations of the fractionally quantized Hall
state (27) through a Gedankenexperiment. If one adiabatically inserts one Dirac quantum
�0 =

hc
e of magnetic flux in the ez direction through an infinitesimally thin solenoid at a

position ⇠, and then removes this flux quanta via a singular gauge transformation, the final
Hamiltonian will be identical to the initial one. The final state will hence be an eigenstate
of the initial Hamiltonian as well. The adiabatic insertion of the flux will induce an electric
field

I
E ds = E' · 2⇡r = �1

c
@�

@ t
. (28)

Since the electrons are confined to the LLL, this will not lead to an increase in the kinetic an-
gular momentum as in (18), but to a perpendicular current Jr = �xyE', where �xy =

1
m

e2

h .2

The charge transported away from the center of the flux tube is

�Q = 2⇡r
Z

Jr dt = � 1
m

e2

hc

Z
d� = � e

m
(29)

Since the Landau level filling fraction is ⌫= 1/m, a fractional charge of �e/m occupies one
state in the LLL. If we choose a basis of eigenstates of angular momentum around ⇠, the
basis states evolve according to

(z � ⇠)m e�
1
4 |z|2 ! |z � ⇠| · (z � ⇠)m e�

1
4 |z|2 ! (z � ⇠)m+1 e�

1
4 |z|2 , (30)

where the last step is due to the singular gauge transformation. The process increases the
canonical relative angular momentum around ⇠ by ~h.

The Laughlin ground state (27) evolves in the process into

 QH

⇠
(z1, . . . , zN ) =
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i< j
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4 |zi |2 , (31)

2Since the magnetic field is oriented in the �ez direction, ⇢xy < 0 and �xy > 0.
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state and Laughlin’s state is that in the exact ground state, the zeros of P(z1, z2, . . . , zN ) are
attached to the particle coordinates, but do not coincide with them.26 At long distances, the
physics described by both states is identical. In particular, the topological quantum numbers
of both states, such as the charge and the statistics of the (fractionally) charged excitations,
or the degeneracies on closed surfaces of genus one and higher, are identical.

Fractionally charged quasiparticle excitations

Laughlin19 created the elementary, charged excitations of the fractionally quantized Hall
state (27) through a Gedankenexperiment. If one adiabatically inserts one Dirac quantum
�0 =

hc
e of magnetic flux in the ez direction through an infinitesimally thin solenoid at a

position ⇠, and then removes this flux quanta via a singular gauge transformation, the final
Hamiltonian will be identical to the initial one. The final state will hence be an eigenstate
of the initial Hamiltonian as well. The adiabatic insertion of the flux will induce an electric
field

I
E ds = E' · 2⇡r = �1

c
@�

@ t
. (28)

Since the electrons are confined to the LLL, this will not lead to an increase in the kinetic an-
gular momentum as in (18), but to a perpendicular current Jr = �xyE', where �xy =

1
m

e2

h .2

The charge transported away from the center of the flux tube is

�Q = 2⇡r
Z

Jr dt = � 1
m

e2

hc

Z
d� = � e

m
(29)

Since the Landau level filling fraction is ⌫= 1/m, a fractional charge of �e/m occupies one
state in the LLL. If we choose a basis of eigenstates of angular momentum around ⇠, the
basis states evolve according to

(z � ⇠)m e�
1
4 |z|2 ! |z � ⇠| · (z � ⇠)m e�

1
4 |z|2 ! (z � ⇠)m+1 e�

1
4 |z|2 , (30)

where the last step is due to the singular gauge transformation. The process increases the
canonical relative angular momentum around ⇠ by ~h.

The Laughlin ground state (27) evolves in the process into

 QH

⇠
(z1, . . . , zN ) =
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i=1

(zi � ⇠)
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i< j

(zi � zj)m
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e�
1
4 |zi |2 , (31)

2Since the magnetic field is oriented in the �ez direction, ⇢xy < 0 and �xy > 0.
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Laughlin wave fct. evolves into:

state and Laughlin’s state is that in the exact ground state, the zeros of P(z1, z2, . . . , zN ) are
attached to the particle coordinates, but do not coincide with them.26 At long distances, the
physics described by both states is identical. In particular, the topological quantum numbers
of both states, such as the charge and the statistics of the (fractionally) charged excitations,
or the degeneracies on closed surfaces of genus one and higher, are identical.

Fractionally charged quasiparticle excitations

Laughlin19 created the elementary, charged excitations of the fractionally quantized Hall
state (27) through a Gedankenexperiment. If one adiabatically inserts one Dirac quantum
�0 =

hc
e of magnetic flux in the ez direction through an infinitesimally thin solenoid at a

position ⇠, and then removes this flux quanta via a singular gauge transformation, the final
Hamiltonian will be identical to the initial one. The final state will hence be an eigenstate
of the initial Hamiltonian as well. The adiabatic insertion of the flux will induce an electric
field

I
E ds = E' · 2⇡r = �1

c
@�

@ t
. (28)

Since the electrons are confined to the LLL, this will not lead to an increase in the kinetic an-
gular momentum as in (18), but to a perpendicular current Jr = �xyE', where �xy =

1
m

e2

h .2

The charge transported away from the center of the flux tube is

�Q = 2⇡r
Z

Jr dt = � 1
m

e2

hc

Z
d� = � e

m
(29)

Since the Landau level filling fraction is ⌫= 1/m, a fractional charge of �e/m occupies one
state in the LLL. If we choose a basis of eigenstates of angular momentum around ⇠, the
basis states evolve according to

(z � ⇠)m e�
1
4 |z|2 ! |z � ⇠| · (z � ⇠)m e�

1
4 |z|2 ! (z � ⇠)m+1 e�

1
4 |z|2 , (30)

where the last step is due to the singular gauge transformation. The process increases the
canonical relative angular momentum around ⇠ by ~h.

The Laughlin ground state (27) evolves in the process into

 QH

⇠
(z1, . . . , zN ) =
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i=1
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NY
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4 |zi |2 , (31)

2Since the magnetic field is oriented in the �ez direction, ⇢xy < 0 and �xy > 0.
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state and Laughlin’s state is that in the exact ground state, the zeros of P(z1, z2, . . . , zN ) are
attached to the particle coordinates, but do not coincide with them.26 At long distances, the
physics described by both states is identical. In particular, the topological quantum numbers
of both states, such as the charge and the statistics of the (fractionally) charged excitations,
or the degeneracies on closed surfaces of genus one and higher, are identical.

Fractionally charged quasiparticle excitations

Laughlin19 created the elementary, charged excitations of the fractionally quantized Hall
state (27) through a Gedankenexperiment. If one adiabatically inserts one Dirac quantum
�0 =

hc
e of magnetic flux in the ez direction through an infinitesimally thin solenoid at a

position ⇠, and then removes this flux quanta via a singular gauge transformation, the final
Hamiltonian will be identical to the initial one. The final state will hence be an eigenstate
of the initial Hamiltonian as well. The adiabatic insertion of the flux will induce an electric
field

I
E ds = E' · 2⇡r = �1

c
@�

@ t
. (28)

Since the electrons are confined to the LLL, this will not lead to an increase in the kinetic an-
gular momentum as in (18), but to a perpendicular current Jr = �xyE', where �xy =

1
m

e2

h .2

The charge transported away from the center of the flux tube is

�Q = 2⇡r
Z

Jr dt = � 1
m

e2

hc

Z
d� = � e

m
(29)

Since the Landau level filling fraction is ⌫= 1/m, a fractional charge of �e/m occupies one
state in the LLL. If we choose a basis of eigenstates of angular momentum around ⇠, the
basis states evolve according to

(z � ⇠)m e�
1
4 |z|2 ! |z � ⇠| · (z � ⇠)m e�

1
4 |z|2 ! (z � ⇠)m+1 e�

1
4 |z|2 , (30)

where the last step is due to the singular gauge transformation. The process increases the
canonical relative angular momentum around ⇠ by ~h.

The Laughlin ground state (27) evolves in the process into

 QH

⇠
(z1, . . . , zN ) =
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2Since the magnetic field is oriented in the �ez direction, ⇢xy < 0 and �xy > 0.
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 →  quasihole of charge           at      

which describes a quasihole excitation at ⇠. It is easy to confirm that if the electron charge
is �e, the charge of the quasihole is +e/m, as obtained in (29). If we were to create m
quasiholes at ⇠ by inserting m Dirac quanta, the final wave function would be

 m QH’s

⇠
(z1, . . . , zN ) =

NY

i=1

(zi � ⇠)m
NY

i< j

(zi � zj)m
NY

i=1

e�
1
4 |zi |2 , (32)

i.e., we would have created a true hole in the liquid, which is screened as all the other
electrons. Since the hole has charge +e, the quasihole has charge +e/m. One may view the
quasihole as a zero in the wave function which is not attached to any of the electrons.

The quasielectron, i.e., the antiparticle of the quasihole, has charge �e/m and is created
by inserting the flux adiabatically in the opposite direction, thus lowering the angular mo-
mentum around some position ⇠ by ~h, or alternatively, by removing one of the zeros from
the wave function. For ease in presentation, we will limit our discussion here to quasihole
excitations.

Fractional statistics of quasihole excitations

When Laughlin introduced the quasiparticle excitations of quantized Hall states, he intro-
duced them as localized defects or more precisely, vortices in an otherwise uniform quantum
liquid. To address the question of their statistics, however, it is necessary to view them as
particles, with a Hilbert space spanned by the parent wave function for the electrons. We
consider here a Laughlin state with two quasiholes in an eigenstate of relative angular mo-
mentum in an “orbit” centered at the origin. Since the quasiholes have charge e⇤ = +e/m,
the effective flux quantum seen by them is �⇤0 =

2⇡~hc
e⇤ = m�0, and the effective magnetic

length is l⇤ =
q
~hc
e⇤B = l

p
m. We expect the single quasihole wave function to describe a

particle of charge e⇤ in the LLL, and hence be of the general form

�(⇠̄) = f (⇠̄) e�
1

4m |⇠|2 . (33)

The complex conjugation reflects that the sign of the quasihole charge is reversed relative
to the electron charge �e.

The electron wave function for the state with two quasiholes in an eigenstate of relative
angular momentum is given by

 (z1, . . . , zN ) =
Z

D[⇠1,⇠2]�p,m(⇠̄1, ⇠̄2) 
QHs

⇠1,⇠2
(z1, . . . , zN ) (34)

with

�p,m(⇠̄1, ⇠̄2) = (⇠̄1 � ⇠̄2)p+
1
m

Y

k=1,2

e�
1

4m |⇠k|2 , (35)
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view the quasiholes as “particles”, w/ Hilbert space spanned by the parent wave fcts.

with                                                                                         p even integer, and  

5.4. Fractional statistics of the quasihole excitation

electron wave fct. w/ 2 quasiholes:

(complex conjugation because charge now > 0)

charge                    , effective flux quanta                                     , length

which describes a quasihole excitation at ⇠. It is easy to confirm that if the electron charge
is �e, the charge of the quasihole is +e/m, as obtained in (29). If we were to create m
quasiholes at ⇠ by inserting m Dirac quanta, the final wave function would be
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i.e., we would have created a true hole in the liquid, which is screened as all the other
electrons. Since the hole has charge +e, the quasihole has charge +e/m. One may view the
quasihole as a zero in the wave function which is not attached to any of the electrons.

The quasielectron, i.e., the antiparticle of the quasihole, has charge �e/m and is created
by inserting the flux adiabatically in the opposite direction, thus lowering the angular mo-
mentum around some position ⇠ by ~h, or alternatively, by removing one of the zeros from
the wave function. For ease in presentation, we will limit our discussion here to quasihole
excitations.

Fractional statistics of quasihole excitations

When Laughlin introduced the quasiparticle excitations of quantized Hall states, he intro-
duced them as localized defects or more precisely, vortices in an otherwise uniform quantum
liquid. To address the question of their statistics, however, it is necessary to view them as
particles, with a Hilbert space spanned by the parent wave function for the electrons. We
consider here a Laughlin state with two quasiholes in an eigenstate of relative angular mo-
mentum in an “orbit” centered at the origin. Since the quasiholes have charge e⇤ = +e/m,
the effective flux quantum seen by them is �⇤0 =

2⇡~hc
e⇤ = m�0, and the effective magnetic

length is l⇤ =
q
~hc
e⇤B = l

p
m. We expect the single quasihole wave function to describe a

particle of charge e⇤ in the LLL, and hence be of the general form

�(⇠̄) = f (⇠̄) e�
1

4m |⇠|2 . (33)

The complex conjugation reflects that the sign of the quasihole charge is reversed relative
to the electron charge �e.

The electron wave function for the state with two quasiholes in an eigenstate of relative
angular momentum is given by

 (z1, . . . , zN ) =
Z

D[⇠1,⇠2]�p,m(⇠̄1, ⇠̄2) 
QHs

⇠1,⇠2
(z1, . . . , zN ) (34)

with
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which describes a quasihole excitation at ⇠. It is easy to confirm that if the electron charge
is �e, the charge of the quasihole is +e/m, as obtained in (29). If we were to create m
quasiholes at ⇠ by inserting m Dirac quanta, the final wave function would be
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i.e., we would have created a true hole in the liquid, which is screened as all the other
electrons. Since the hole has charge +e, the quasihole has charge +e/m. One may view the
quasihole as a zero in the wave function which is not attached to any of the electrons.

The quasielectron, i.e., the antiparticle of the quasihole, has charge �e/m and is created
by inserting the flux adiabatically in the opposite direction, thus lowering the angular mo-
mentum around some position ⇠ by ~h, or alternatively, by removing one of the zeros from
the wave function. For ease in presentation, we will limit our discussion here to quasihole
excitations.

Fractional statistics of quasihole excitations

When Laughlin introduced the quasiparticle excitations of quantized Hall states, he intro-
duced them as localized defects or more precisely, vortices in an otherwise uniform quantum
liquid. To address the question of their statistics, however, it is necessary to view them as
particles, with a Hilbert space spanned by the parent wave function for the electrons. We
consider here a Laughlin state with two quasiholes in an eigenstate of relative angular mo-
mentum in an “orbit” centered at the origin. Since the quasiholes have charge e⇤ = +e/m,
the effective flux quantum seen by them is �⇤0 =

2⇡~hc
e⇤ = m�0, and the effective magnetic

length is l⇤ =
q
~hc
e⇤B = l

p
m. We expect the single quasihole wave function to describe a

particle of charge e⇤ in the LLL, and hence be of the general form

�(⇠̄) = f (⇠̄) e�
1

4m |⇠|2 . (33)

The complex conjugation reflects that the sign of the quasihole charge is reversed relative
to the electron charge �e.

The electron wave function for the state with two quasiholes in an eigenstate of relative
angular momentum is given by

 (z1, . . . , zN ) =
Z

D[⇠1,⇠2]�p,m(⇠̄1, ⇠̄2) 
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with
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e⇤ = + e
m

→  expect single quasihole wave fct. to describe charge      particle in the LLL:

which describes a quasihole excitation at ⇠. It is easy to confirm that if the electron charge
is �e, the charge of the quasihole is +e/m, as obtained in (29). If we were to create m
quasiholes at ⇠ by inserting m Dirac quanta, the final wave function would be

 m QH’s
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i.e., we would have created a true hole in the liquid, which is screened as all the other
electrons. Since the hole has charge +e, the quasihole has charge +e/m. One may view the
quasihole as a zero in the wave function which is not attached to any of the electrons.

The quasielectron, i.e., the antiparticle of the quasihole, has charge �e/m and is created
by inserting the flux adiabatically in the opposite direction, thus lowering the angular mo-
mentum around some position ⇠ by ~h, or alternatively, by removing one of the zeros from
the wave function. For ease in presentation, we will limit our discussion here to quasihole
excitations.

Fractional statistics of quasihole excitations

When Laughlin introduced the quasiparticle excitations of quantized Hall states, he intro-
duced them as localized defects or more precisely, vortices in an otherwise uniform quantum
liquid. To address the question of their statistics, however, it is necessary to view them as
particles, with a Hilbert space spanned by the parent wave function for the electrons. We
consider here a Laughlin state with two quasiholes in an eigenstate of relative angular mo-
mentum in an “orbit” centered at the origin. Since the quasiholes have charge e⇤ = +e/m,
the effective flux quantum seen by them is �⇤0 =
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particle of charge e⇤ in the LLL, and hence be of the general form
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The complex conjugation reflects that the sign of the quasihole charge is reversed relative
to the electron charge �e.

The electron wave function for the state with two quasiholes in an eigenstate of relative
angular momentum is given by
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which describes a quasihole excitation at ⇠. It is easy to confirm that if the electron charge
is �e, the charge of the quasihole is +e/m, as obtained in (29). If we were to create m
quasiholes at ⇠ by inserting m Dirac quanta, the final wave function would be
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i.e., we would have created a true hole in the liquid, which is screened as all the other
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where p is an even integer, and
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The quasihole coordinate integration extends over the complex plane,
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where ⇠1 = x1 + iy1 and ⇠2 = x2 + iy2.
This requires some explanation. We see that both �p,m(⇠̄1, ⇠̄2) and  QHs
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(z1, . . . , zN )

contain multiple valued functions of ⇠̄1 � ⇠̄2 and ⇠1 � ⇠2, respectively, while the product
of them is understood to be single valued. The reason is that the Hilbert space for the
quasiholes at ⇠1 and ⇠2 spanned by  QHs

⇠1,⇠2
(z1, . . . , zN ) has to be normalized and is, apart

from the exponential, supposed to be analytic in ⇠1 and ⇠2. At the same time, we expect
�p,m(⇠̄1, ⇠̄2) to be of the general form (33), i.e., to be an analytic function of ⇠̄1, ⇠̄2 times
the exponential.

The form (35) of the quasihole wave function including its branch cut, is indicative of
fractional statistics with statistical parameter ✓ = ⇡/m, as the canonical relative angular
momentum3 of the quasiholes is given by
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. (37)

This result agrees with the results of Halperin9 and of Arovas, Schrieffer, and one of us,10

who calculated the statistical parameter directly using the adiabatic theorem.27,28

Note that if we view the quasiholes as charge-flux tube composites with charge e/m and
flux �0 =

2⇡~hc
e , the value ✓ = ⇡/m accounts only for the phase one charge would acquire

in the presence of the other flux tube, without a factor of 2, and as obtained with the field
correction in CS theory.8 To see why this is correct and consistent, imagine the simultaneous
creation of two quasiholes by the insertion of magnetic fluxes at positions ⇠1 and ⇠2. During
the process, both the charge of the quasiholes and the flux in the tubes will be ramped up
simultaneously, from 0 to e/m and from 0 to �0, respectively. We hence have exactly the
situation we had in CS-theory, and obtain a statistical phase in accordance with it.

3Particles in the LLs are special in that their kinetic angular momentum is given by ~h times the LL index, and
zero in the LLL. Therefore, fractional statistics manifests itself only in the canonical relative angular momentum.
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This result agrees with the results of Halperin9 and of Arovas, Schrieffer, and one of us,10

who calculated the statistical parameter directly using the adiabatic theorem.27,28

Note that if we view the quasiholes as charge-flux tube composites with charge e/m and
flux �0 =

2⇡~hc
e , the value ✓ = ⇡/m accounts only for the phase one charge would acquire

in the presence of the other flux tube, without a factor of 2, and as obtained with the field
correction in CS theory.8 To see why this is correct and consistent, imagine the simultaneous
creation of two quasiholes by the insertion of magnetic fluxes at positions ⇠1 and ⇠2. During
the process, both the charge of the quasiholes and the flux in the tubes will be ramped up
simultaneously, from 0 to e/m and from 0 to �0, respectively. We hence have exactly the
situation we had in CS-theory, and obtain a statistical phase in accordance with it.

3Particles in the LLs are special in that their kinetic angular momentum is given by ~h times the LL index, and
zero in the LLL. Therefore, fractional statistics manifests itself only in the canonical relative angular momentum.
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This result agrees with the results of Halperin9 and of Arovas, Schrieffer, and one of us,10

who calculated the statistical parameter directly using the adiabatic theorem.27,28

Note that if we view the quasiholes as charge-flux tube composites with charge e/m and
flux �0 =

2⇡~hc
e , the value ✓ = ⇡/m accounts only for the phase one charge would acquire

in the presence of the other flux tube, without a factor of 2, and as obtained with the field
correction in CS theory.8 To see why this is correct and consistent, imagine the simultaneous
creation of two quasiholes by the insertion of magnetic fluxes at positions ⇠1 and ⇠2. During
the process, both the charge of the quasiholes and the flux in the tubes will be ramped up
simultaneously, from 0 to e/m and from 0 to �0, respectively. We hence have exactly the
situation we had in CS-theory, and obtain a statistical phase in accordance with it.

3Particles in the LLs are special in that their kinetic angular momentum is given by ~h times the LL index, and
zero in the LLL. Therefore, fractional statistics manifests itself only in the canonical relative angular momentum.
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which describes a quasihole excitation at ⇠. It is easy to confirm that if the electron charge
is �e, the charge of the quasihole is +e/m, as obtained in (29). If we were to create m
quasiholes at ⇠ by inserting m Dirac quanta, the final wave function would be
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i.e., we would have created a true hole in the liquid, which is screened as all the other
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quasihole as a zero in the wave function which is not attached to any of the electrons.

The quasielectron, i.e., the antiparticle of the quasihole, has charge �e/m and is created
by inserting the flux adiabatically in the opposite direction, thus lowering the angular mo-
mentum around some position ⇠ by ~h, or alternatively, by removing one of the zeros from
the wave function. For ease in presentation, we will limit our discussion here to quasihole
excitations.

Fractional statistics of quasihole excitations

When Laughlin introduced the quasiparticle excitations of quantized Hall states, he intro-
duced them as localized defects or more precisely, vortices in an otherwise uniform quantum
liquid. To address the question of their statistics, however, it is necessary to view them as
particles, with a Hilbert space spanned by the parent wave function for the electrons. We
consider here a Laughlin state with two quasiholes in an eigenstate of relative angular mo-
mentum in an “orbit” centered at the origin. Since the quasiholes have charge e⇤ = +e/m,
the effective flux quantum seen by them is �⇤0 =
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e⇤ = m�0, and the effective magnetic

length is l⇤ =
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e⇤B = l
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m. We expect the single quasihole wave function to describe a

particle of charge e⇤ in the LLL, and hence be of the general form
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The complex conjugation reflects that the sign of the quasihole charge is reversed relative
to the electron charge �e.

The electron wave function for the state with two quasiholes in an eigenstate of relative
angular momentum is given by
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⇠1,⇠2
(z1, . . . , zN )
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from the exponential, supposed to be analytic in ⇠1 and ⇠2. At the same time, we expect
�p,m(⇠̄1, ⇠̄2) to be of the general form (33), i.e., to be an analytic function of ⇠̄1, ⇠̄2 times
the exponential.

The form (35) of the quasihole wave function including its branch cut, is indicative of
fractional statistics with statistical parameter ✓ = ⇡/m, as the canonical relative angular
momentum3 of the quasiholes is given by
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This result agrees with the results of Halperin9 and of Arovas, Schrieffer, and one of us,10

who calculated the statistical parameter directly using the adiabatic theorem.27,28

Note that if we view the quasiholes as charge-flux tube composites with charge e/m and
flux �0 =

2⇡~hc
e , the value ✓ = ⇡/m accounts only for the phase one charge would acquire

in the presence of the other flux tube, without a factor of 2, and as obtained with the field
correction in CS theory.8 To see why this is correct and consistent, imagine the simultaneous
creation of two quasiholes by the insertion of magnetic fluxes at positions ⇠1 and ⇠2. During
the process, both the charge of the quasiholes and the flux in the tubes will be ramped up
simultaneously, from 0 to e/m and from 0 to �0, respectively. We hence have exactly the
situation we had in CS-theory, and obtain a statistical phase in accordance with it.

3Particles in the LLs are special in that their kinetic angular momentum is given by ~h times the LL index, and
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