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Introduction to Superconductivity
What is it?

How do we describe it?



What is Superconductivity?

– Electric transport without resistance

– Meissner effect

Magnet

Superconductor



Superconductors

Conventional

Cuprates High 
pressure

PJRay, CC BY-SA 4.0

Iron-
based



How?
• But how do electrons move without resistance?

– All electrons in coherent quantum state with fixed 
phase (condensate)

• Bardeen-Cooper-Schrieffer (BCS) theory
– Condensation of electron (Cooper) pairs                

(with fermionic wave function)

– Many-body state, but possible to describe within 
mean-field theory
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BCS Hamiltonian
Pairing Hamiltonian:

Mean-field theory with                       (pair amplitude at k)

Set order parameter

à

Kinetic (band) energy
Electron pairing

See e.g. Tinkham: Introduction to superconductivity
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Matrix Formulation (BdG)

Define the Nambu spinor

à

à

constant
TRS: ek= e-k

Bogliubov-de Gennes (BdG) formulation 
2x2 matrix problem

à Solve by finding eigenvalues and vectors 



Eigenstates = Quasiparticles
QP energies (eigenvalues):

QP operators (eigenvectors):
Bogoliubov

tranformation

P. Coleman: Introduction to Many Body Physics

Band structure
Density of  states (DOS)



Superconducting Order

Generalized order: fermionic, odd under particle exchange: 

à h even function in k

 ↵�(k) = �ei'⌘(k)�↵�

 ↵�(k) = � �↵(�k)

orbital spin

à h odd function in k

Fermi-Dirac 
distribution

Additional formulas

January 8, 2015
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Uc⇢(EF ) = 1

Vpot = V �(r)

Eres /
1

V

V ! 1

2

Self-consistent order parameter:

�
�



x

Spatial Symmetries
• Conventional superconductors:

– Spin-singlet, s-wave (h k-independent)

• Cuprate (high-Tc) superconductors:
– Spin-singlet, d-wave (h = kx

2 - ky
2)

• p-wave superconductors:
– Spin-triplet, p-wave (3He, Sr2RuO4?)
– Topological “spinless” superconductors                                 

with Majorana fermions

i

i

kx + ik y

x

y

y

UNCONVENTIONAL



Superconducting Pairing
Vk,k’ (and the band structure) determine the pairing symmetry, but 
often very hard to determine
• Lattice fluctations (phonon): spin-singlet s-wave  CONVENTIONAL

• Antiferromagnetic spin fluctuations: spin-singlet d-wave (extended s-wave)

• Ferromagnetic spin fluctuations: spin-triplet p-wave

• Strong on-site repulsion (Heisenberg interaction): spin-singlet d-wave

• …

Can we determine the possible pairing symmetries in a material 
without knowing Vk,k’?

Yes, by a general group theory analysis
See e.g. Sigrist and Ueda, RMP 63, 239 (1991)



General Hamiltonian
General Hamiltonian:

Mean-field order :

à



Matrix Formulation
4-component notation (Nambu):

à

Spin-singlet pairing:

Spin-triplet pairing:

mz = 0:

mz = 1:
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H = ~vF (� ⇥ k) · ẑ
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General Solution
QP energy (eigenvalue):

Self-consistency equation, linear close to Tc:
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Finite q = non-unitary

àPossible SC symmetries belong to irreps of  symmetry group of  H

à SC state always breaks U(1), can also break
– Crystal lattice, spin-rotation, time-reversal, … symmetries

• Largest eigenvalue gives Tc
• Eigenfunction (D) belongs to irreducible 

representation (irrep) of  symmetry group



Basis Gap Functions: D4h

• D4h = tetragonal symmetry (cuprates with kz = 0)

Spin-singlet

Spin-triplet

s-wave, extended s-wave

d(xy)-wave
d(x2-y2)-wave

p(x)- and p(y)-wave degenerate

Sigrist and Ueda, RMP 63, 239 (1991)



Basis Gap Functions: D6h

• D6h = hexagonal symmetry (graphene, Bi2Se3 TIs with kz = 0,)

Spin-singlet

Spin-triplet

s-wave, extended s-wave

d(x2-y2)-wave and d(xy)-wave degenerate

Sigrist and Ueda, RMP 63, 239 (1991)



Multiple Order Parameters
Superconducting state highly unconventional if multiple 
components at Tc

• Two-dimensional irreps often gives D1+iD2 at T < Tc

– Only combination with fully gap à Highest energy gain
– Singlet d(x2-y2)+id(xy)-wave for hexagonal lattices (graphene?)
– Triplet (mz = 0) p(x)+ip(y)-wave for square lattices

Topological (chiral) superconductors
Break time-reversal symmetry (TRS)
Fully gapped bulk energy spectrum



Introduction to Superconductivity
What is it?

A charged superfluid of  Cooper pairs (2 electrons) with fermionic character

Cooper pairs formed by effective attractive interaction

How do we describe it?
BCS theory (mean-field theory of  condensation)

BdG matrix formalism

Symmetry of  order parameter (group theory)



Topological Superconductivity
Chiral superconductors

Spin-singlet d+id’-wave (spin-triplet p+ip’-wave) superconductors

Spinless superconductors
Majorana fermions
Engineered systems



Topology

Topologically speaking: coffee cup = donut ≠ bun
1 hole 1 hole 0 hole



Classification
• All forms of matter can be classified according 

to the symmetry they break (translation, spin, gauge, time-
reversal, …)

• Except topological matter 
Topological insulators: 2005 (quantum Hall effect: 1980)

– Ordered but no symmetry breaking
– Topology of the wave function

Trivial Non-trivial



Electrons in Crystals



Metals:

Insulators: 

ß Semiconductors

Electrons in Crystals



Topological Band Theory
Anything else than metals and insulators? 

+  spin-orbit coupling

à Band inversion

Normal band structure Topological (inverted) band structure

Without spin-orbit coupling With spin-orbit coupling



HgTe & CdTe Semiconductors

NormalInverted

Bernevig et al., Science 314, 1757 (2006)



Topological Insulators

Topological insulator 
inside

Vacuum = trivial insulator

Topologically protected 
zero-energy edge states



Topological Matter
Topological states of matter have

• Bulk topological invariant
– Number classifying the topological class
– Only changes with bulk gap closing

• Protected boundary states
– At any boundary to other topological region        

(vacuum, normal metal, s-wave SC = trivial topological order)

Bulk-boundary correspondence
# of  boundary states = change in topological invariant at boundary



Topological Superconductors

Same band theory in insulators and superconductors

Topological insulators             Topological superconductors

Same low-energy excitation spectrum

Condensate of  
Cooper pairs

+



Topological Classification
Non-interacting (single-particle) insulators and superconductors: 10-fold way

Schnyder et al., PRB 78, 195125 (2008)

time-reversal
particle-hole

sublattice (chiral) Topological invariants



Superconductors

Schnyder et al., PRB 78, 195125 (2008)

Spinless p+ip’-wave in 1D à BDI 
because effective TRS



Topological Superconductivity
Chiral superconductors

Spin-singlet d+id-wave (spin-triplet p+ip-wave) superconductors

Spinless superconductors
Topology and Majorana fermions



d-wave SC from Strong Repulsion
Strong Coulomb repulsion, antiferromagnetic correlations 
(e.g. Hubbard model near half-filling)

à Spin-singlet pairing

à Double electron occupation unfavorable 
à No s-wave pairing

à Spin-singlet d-wave pairing                                                 
(best state = least number of nodes)

2D hexagonal lattice à

Spin-singlet d(x2-y2)+id(xy) pairing
(Only combination with energy gap)

d(x2-y2)+id(xy)
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Bulk and Edge Properties
• Fully gapped bulk

• Two chiral (co-propagating) edge states per edge 

+

+

- -
+

+    -

-
+i

p-p
k

left edge states
right edge states

ABS, PRL 109, 197001 (2012)
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d+id’-wave SC breaks TRS à Chern number invariant 

Skyrmion number

Topological Invariant

Counts unit sphere area spanned by m as k covers the BZ
N

Bottom of  band: m ~ -z
Top of  band: m ~ z
à Non-zero N iff D has finite winding along lines of  constant e

d+id’-wave winds twice around G à |N|  = 2
à 2 chiral edge states

ABS and Honerkamp JPCM 26, 423201 (2014)



Chiral p+ip SC Properties
Spin-triplet p(x)+ip(y)-wave spin-triplet, d = (0, 0, kx+iky)

• Fully gapped in the bulk

• Break TRS à finite Chern number/Skyrmion winding

+
+

-
- +i

p(x)  +i p(y) 

p+ip’-wave winds once around G à |N|  = 1

à One chiral edge state per edge



Doped Graphene, d+id’ SC?
Honeycomb latticeNATURE PHYSICS DOI: 10.1038/NPHYS2208 ARTICLES
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Figure 1 | Chiral superconductivity arises when graphene is doped to the Van Hove singularity at the saddle point (M points of the Brillouin zone).
a, d+ id pairing exhibiting phase winding around the hexagonal Fermi surface, which breaks TRS and parity (⌃ = 2⇡/3). b, Conduction band for monolayer
graphene1. At 5/8 filling of the ⇡ band, the Fermi surface is hexagonal, and the DOS is logarithmically divergent (c) at three inequivalent saddle points of
the dispersion Mi (i= 1,2,3). Their locations are given by ±ei, where 2ei is a reciprocal lattice vector. The singular DOS strongly enhances the effect of
interactions, driving the system into a chiral superconducting state (a). As the Fermi surface is nested, superconductivity competes with density-wave
instabilities, and a full renormalization group treatment is required to establish the dominance of superconductivity. A hexagonal Fermi surface and log
divergent density of states also arise at 3/8 filling, giving rise to analagous physics.

Competing orders
In systemswith near-nested Fermi surface, superconductivity has to
compete with charge-density-wave (CDW) and spin-density-wave
(SDW) instabilities34. At the first glance, it may seem that a system
with repulsive interactions should develop a density-wave order
rather than become a superconductor. However, to analyse this
properly, one needs to know the susceptibilities to the various
orders at a relatively small energy, E0, at which the order actually
develops. The couplings at E0 generally differ from their bare values
because of renormalizations by fermions with energies between E0
andW . At weak coupling, these renormalizations are well captured
by the renormalization group technique.

Interacting fermionswith a nested Fermi surface and logarithmi-
cally divergent DOS have previously been studied on the square lat-
tice using renormalization group methods29–31,34, where SDW fluc-
tuations were argued to stimulate superconductivity. The analysis
also revealed near degeneracy between superconductivity and SDW
orders. The competition between these orders is decided by a subtle
interplay between deviations from perfect nesting, which favour
superconductivity, and subleading terms in the renormalization
group flow, which favour SDW. In contrast, the renormalization
group procedure on the honeycomb lattice unambiguously selects
superconductivity at leading order, allowing us to safely neglect sub-
leading terms. The difference arises because the honeycomb lattice
contains three saddle points, whereas the square lattice has only two,
and the extra saddle point tips the balance seen on the square lattice
between magnetism and superconductivity decisively in favour of
superconductivity. A similar tipping of a balance between supercon-
ductivity and SDWin favour of superconductivity has been found in
renormalization group studies of Fe-pnictide superconductors35,36.

In previous works on graphene at the M point, various instabil-
ities were analysed using the random-phase approximation (RPA)

and mean-field theory. Ref. 4 considered the instability to d-wave
superconductivity, ref. 5 considered a charge ‘Pomeranchuk’ in-
stability to a metallic phase breaking lattice rotation symmetry, and
refs 6–8 considered a SDW instability to an insulating phase.Within
the framework of mean-field theory, used in the above works, all
of these phases are legitimate potential instabilities of the system.
However, clearly graphene at theM point cannot be simultaneously
superconducting, metallic and insulating. The renormalization
group analysis treats all competing orders on an equal footing,
and predicts that the dominant weak coupling instability is to
superconductivity, for any choice of repulsive interactions, even for
perfect nesting. Further, the Ginzburg–Landau theory constructed
near the renormalization group fixed point favours the d+id state.

The model
We follow the procedure developed for the square lattice34 and
construct a patch renormalization group that considers only
fermions near three saddle points, which dominate the DOS. There
are four distinct interactions in the low-energy theory, involving
two-particle scattering between different patches, as shown in Fig. 2.

The system is described by the low-energy theory
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where summation is over patch labels�,⇥=M1,M2,M3.A spin sum
is implicit in the above expression, with the spin structure for each
of the four terms being ⇤ ,⌅,⌅,⇤ , where ⇤ and ⌅ label the spin up
and down states. Here ⇧k is the tight binding dispersion, expanded
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Diverging DOS 
à favorable for SC

Band structure with van Hove singularities

Pairing from repulsive 
interactions
• Strong interactions [1]

• Perturbative RG [2]

• Functional RG [3]
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FIG. 1. (Color online). Schematic phase diagram displaying
the critical instability scale �c � Tc as a function of dop-
ing. At the van Hove singularity (VHS, light shaded (orange)
area), d + id competes with spin density wave (SDW) (left
flow picture: dominant d + id instability for U0 = 10eV and
the band structure in [5]). Away from the VHS (dark shaded
(blue) area), �c drops and whether the d+id or f -wave SC in-
stability is preferred depends on the long-rangedness of inter-
action (right flow picture: U1/U0 = 0.45 and U2/U0 = 0.15).

investigate in detail how di�erent band structure param-
eters a�ect the phase diagram. We find that rather small
variations of the longer range hopping parameters such as
next nearest (t2) and next-next-nearest (t3) hopping can
shift the position of perfect Fermi surface nesting against
the VHS [Fig. 2], which significantly influences the com-
petition between magnetism and SC. Moreover, in par-
ticular away from the exact VHS, the reduced screening
of the Coulomb interaction does not justify the assump-
tion of a local Hubbard model description. For this case,
we find that only a small fraction of longer-ranged Hub-
bard interaction [21] can significantly change the phase
diagram, as CDW fluctuations become more competitive
to SDW fluctuations, and a triplet SC phase can appear.
In particular, we study how the Cooper pairing in the
di�erent SC phases responds to di�erently long-ranged
Hubbard interactions. Our results suggest that in ex-
periment, modifications of the band structure as well as
changing the dielectric environment of the graphene sam-
ple would enable the realization of di�erent many-body
states and possible phase transitions between them.

Model. We consider the ⇥ band structure of graphene
approximated by a tight binding model including up to
3rd nearest neighbors on the hexagonal lattice:

H0 =
⇤
t1

⇥

⇤i,j⌅

⇥

�

c†i,�cj,� + t2
⇥

⇤⇤i,j⌅⌅

⇥

�

c†i,�cj,�

+t3
⇥

⇤⇤⇤i,j⌅⌅⌅

⇥

�

c†i,�cj,� + h.c.
⌅
� µn, (1)

where n =
�

i,� ni,� =
�

i,� c
†
i,�ci,�, and c†i,� denotes the

electron annihilation operator of spin ⇤ =⇥, ⇤ at site i.

FIG. 2. (Color online). (a) Band structure of graphene once
for t1 = 2.8eV (red) and t1 = 2.8, t2 = 0.7, t3 = 0.02eV
(black). (b) Brillouin zone displaying the Fermi surface near
the van Hove point (dashed blue level in (a), 96 patches used
in the FRG and the nesting vector, and the partial nesting
vectors. (c) Density of states for both band structures in (a).
The inset show the position shift of Fermi surface nesting
(dashed vertical lines) versus the VHS peak.

The resulting band structure is a two band model due
to two atoms per unit cell [Fig. 2]. There are certain
uncertainties about the most appropriate tight binding fit
for graphene, in particular as it concerns the longer range
hybridization integrals [1, 22]. For dominant t1, the band
structure features a van Hove singularity (VHS) at x =
3/8, 5/8. Constraining ourselves to the electron-doped
case, the x = 5/8 electron-like Fermi surface is shown
in Fig. 2b. As depicted, this is the regime of largely
enhanced density of states which we investigate in the
following. For t2 = t3 = 0 [red curve in Fig. 2], the VHS
coincides with the partial nesting of di�erent sections of
the Fermi surface for Q = (0, 2⇥/

⌅
3), (⇥,⇥/

⌅
3), and

(⇥,�⇥/
⌅
3). For a realistic band structure estimate with

finite t2 and t3 [5] [black curve in Fig. 2], this gives a
relevant shift of the perfect nesting position versus the
VHS as well as density of states at the VHS, and a�ects
the many-body phase found there.
We assume Coulomb interactions represented by a long

range Hubbard Hamiltonian [21]

Hint = U0

⇥

i

ni,�ni,⇥ +
1

2
U1

⇥

⇤i,j⌅,�,�0

ni,�nj,�0

+
1

2
U2

⇥

⇤⇤i,j⌅⌅,�,�0

ni,�nj,�0 , (2)

where U0...2 parametrizes the Coulomb repulsion scale
from onsite to the second nearest neighbor interaction.
It depends on the density of states how strongly the
Coulomb interaction is screened. At the VHS, we as-
sume perfect screening and consider U0 only, while away
from the VHS, we investigate the phenomenology of tak-

[1]: ABS and Doniach, PRB 75, 134512 (2007), [2]: Nandkishore et al., Nat. Phys. 8, 158 (2012), [3]: Kiesel et al., PRB 86, 020507 (2012)

1st BZ 



Other Chiral  d+id’ SCs?
• SrPtAs

• NaxCoO2 � yH2O

• b-MNCl

• k-(BEDT-TTF)2X

• (111) bilayer SrIrO3

• In3Cu2VO9

• Twisted (~45º) cuprate bilayers
• …

See e.g. review: ABS and Honerkamp JPCM 26, 423201 (2014)



Twisted Bilayer Graphene

Very small “magic” angles 
à low energy flat bands Varying LDOS in 

moiré cell

Bistritzer&MacDonald, PNAS 108, 12233 (2011); Cao et al, Nature 556, 43 (2018); Nature  556, 80 (2018) 

Supercell moiré 
pattern



Why are Flat Bands Interesting?

Locally or regionally flat bands à divergent DOS

Electronic ordering, even with weak interactions

Magnetism (Stoner criterion):

Superconductivity (BCS):

DOS(EF )U > 1

Tc / e�
1

DOS(EF )V



Superconductivity in TBG

Cao et al, Nature 556, 43 (2018); Balents et al, Nat. Phys. 16,  725 (2020)

Superconducting domes throughout moiré flat band

Similarities with cuprates:
• Strong coupling, Mott + SC domes, 

pseudogap state, strange metal phase, …

à d-wave pairing on honeycomb lattice!?



“Cuprate SC” in Graphene?

2
-1

-1

+

+
- -

d(x2-y2)-wave

0
1

-1

+

+    -

-

d(xy)-wave

Order parameter symmetries

1

1
1 +

extended s-wave

Chiral 
d(x2-y2)+id(xy)

�ij = �Jhsiji = �Jhci#cj" � ci"cj#i
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ABS and Doniach PRB 75, 134512 (2007)

Cp. Cuprates: 
d(x2-y2)

on square lattice

Cuprates à order parameter on nearest neighbor bonds



Superconduting State in TBG

• Highest Tc for two-fold degenerate solution
• Very low J for realistic Tc at magic angle

Two-fold solution: �̂x, �̂y
<latexit sha1_base64="KRTo1Bp0ulOI4V47zO7BsQatbDk=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwISWpgl0WdOGygn1AE8JkOmmHTh7M3IghdOvGX3HjQhG3/oE7/8Zpm4W2HrhwOOde7r3HTwRXYFnfRmlldW19o7xZ2dre2d0z9w86Kk4lZW0ai1j2fKKY4BFrAwfBeolkJPQF6/rjq6nfvWdS8Ti6gyxhbkiGEQ84JaAlz8S5MyKAnWsmgEy8h7MFIfPMqlWzZsDLxC5IFRVoeeaXM4hpGrIIqCBK9W0rATcnEjgVbFJxUsUSQsdkyPqaRiRkys1nn0zwiVYGOIilrgjwTP09kZNQqSz0dWdIYKQWvan4n9dPIWi4OY+SFFhE54uCVGCI8TQWPOCSURCZJoRKrm/FdEQkoaDDq+gQ7MWXl0mnXrPPa/Xbi2qzUcRRRkfoGJ0iG12iJrpBLdRGFD2iZ/SK3own48V4Nz7mrSWjmDlEf2B8/gDoqJnO</latexit>

• Peaks in AA regions
• Moiré-scale nematicity 

(breaks C3 rotation)

Tc at magic angle with 
doping at DOS peak

Löthman, Schmidt, Parhizgar, ABS, Commun. Phys. 5,  92 (2022)



Moiré-scale Nematicity
At Tc all linear combinations are solutions: �̂(⇥,') = k�̂k

⇣
cos⇥�̂x + ei' sin⇥�̂y

⌘

<latexit sha1_base64="exr0qltm0zL58Q1VO/u4DQDEbfQ="></latexit>

At T = 0:

Nematic with full gap

Cp. gapped chiral d-wave in graphene & 
nodal d-wave in cuprates

• 3-fold degenerate nematic 
ground state

• Real valued

• Chiral solution worst!                

Löthman, Schmidt, Parhizgar, ABS, Commun. Phys. 5,  92 (2022)



Atomic-scale d-wave Nematicity

�(~xi) = |�(~xi)|
⇣
cos ⌧(~xi)fdx2�y2 + sin ⌧(~xi)fdxy

⌘

<latexit sha1_base64="k2MhiWqA8gSOTCMaqB08riXYjYU="></latexit>

Decompose order on bonds: 

Vector field for d-wave order: 

• Atomic-scale d-wave nematicity
• Aligned with moiré-scale nematicity in 

AA regions

• Vortex structure outside AA regions

Cuprate à Nodal d-wave

Graphene à Gapped chiral d+id’-wave

Twisted bilayer graphene à
Gapped inhomogeneous (nematic) d-wave

d-wave form 
factors

Löthman, Schmidt, Parhizgar, ABS, Commun. Phys. 5,  92 (2022)



Topological Superconductivity
Chiral superconductors

Spin-singlet d+id’-wave (spin-triplet p+ip’-wave) superconductors

Appears often for 2D irreps
Fully gapped bulk
Finite Chern number N, set by phase winding of  D
Chiral edge states crossing bulk gap, # = N
Breaks TRS, preserves at least Sz symmetry



Topological Superconductivity
Chiral superconductors

Spin-singlet d+id’-wave (spin-triplet p+ip’-wave) superconductors

Spinless superconductors
Majorana fermions
Engineered systems



“Spinless” p+ip’ Superconductor
• Spinless superconductor à p-wave pairing
• No known intrinsic “spinless” SC

• Multiple proposals for engineered “spinless” p+ip’
superconductors last ~ 10 years
– 1D spinless D ~ k   (class BDI)
– 2D spinless D ~ kx+iky (class D)

Can be topological superconductors
Topological boundary states are Majorana Fermions (MFs)

1D: Localized zero-energy end states

2D: dispersive edge modes or localized 
zero-energy vortex states



Schrödinger, Dirac, and Majorana
Schrödinger (1925)
� ~2
2m

r2 = i~ @
@t
 

4X

µ=0

i~�̃µ@µ = mc 

Dirac (1928)
relativistically

correct

• Spin-1/2
• Electron & positron (hole)

Majorana (1937)
4x4 complex matrices

4x4 imaginary matrices

• Particle = Antiparticle: 

• Electron “=“ 2 Majorana fermions:

real
 equatio

n

3X

µ=0

i~�µ@µ = mc 

c† 6= c

�† = �

c† = �1 + i�2



Majorana Fermions
New particle ~ ½ electron
• Emergent particle 

• Appears in pairs

Non-Abelian statistics in 2D 

à Robust quantum computation by braiding

Condensed 
matter systems 

MF in vortex coreMF on sample edge

Quantum gate operation 
= particle braiding

Sci. Am. 294, 56 (2013)



Quasiparticles in a superconductor:
• Part electron and part hole

• Mixed spin-up and spin-down

à E = 0 states are Majorana fermions:               (if we ignore spin)

But …
• Superconductors often have an energy gap

– Topological SCs have E = 0 boundary states

• E = 0 states are often spin-degenerate (2 Majorana à 1 electron)

à “Spinless” topological superconductor

Excitations in Superconductors

Additional formulas

January 9, 2015
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Kitaev’s 1D Toy Model
1D chain of spinless electrons with superconducting pairing

i =  1          2           3       ….         i-1         i i+1      …           N

Nearest neighbor 
hopping

Spinless p-wave pairingChemical potential

Kitaev, arXiv:cond-mat/0010440 (2001) 



Majorana Basis

Change basis
Majorana fermions

i =  1          2           3       ….          i-1        i i+1      …          N

A:

B:



Trivial Phase

i =  1          2           3       ….         i-1         i i+1      …           N

A:

B:

Topological trivial phase: D = t = 0, µ < 0 

Unique ground state
• Vacuum state for electrons
• Bulk gap (|µ| lowest excitation energy)



Non-Trivial Phase

i =  1          2           3       ….         i-1         i i+1      …           N

A:

B:

Topological non-trivial phase: µ = 0, D = t ≠ 0 Free MF

Free MF

Degenerate ground state
• Bulk gap (t)
• Zero-energy MFs at end points



How can we get “½ electron” in the BdG formalism?

Never if

à Not in spindegenerate (e.g. chiral p+ip’ or d+id’) superconductors

But if

1 electron represented by 2 vector components

à MF if E=0 eigenstate has no spatial overlap with other states

Majorana Fermions in BdG
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SOC Semiconductors
Spin-orbit coupled (SOC) semiconductor + magnetic field

4x4 BdG description needed due to SOC + Zeeman field
Spinless p+ip’ superconductor with MFs if|Vz|>|D|

Semiconductor, 
spin degenerate

Spin-orbit (Rashba) 
coupling (e.g. InAs)

Zeeman split bands

Conventional s-wave pairing

2D: Sau et al. PRL 104, 040502 (2010). 1D: Lutchyn et al. PRL 105, 077001 (2010), Oreg et al. PRL 104, 077002 (2010)



Experimental Hunt in Nanowires

1D InSb nanowire          
(Semiconductor with strong SOC)

+   s-wave superconductor

+   Magnetic field

Mourik et al., Science 336, 1003 (2012)

MFs (?)

MFs?

Conductance through wire



Nanowires with Hard Gaps
1D InAs nanowire          

+   Al superconductor

+   Magnetic field

Hard 
SC gap

Deng et al., Science 354, 1557 (2016)

Topological phase with MF (?)

Conductance at different gate biases 

Only Andreev bound states

Excited states



Hunt with Magnetic Atoms

Pb substrate
(SC with strong SOC)

+  Fe ad-atoms

Nadj-Perge et al., Science 346, 602 (2014), Jeon et al., Science 358, 772 (2017)

MFs (?)

Also: MFs with predicted spin-polarization



Magnetic Atoms on Superconductors
Magnetic atoms on a SOC superconductor

Nadj-Perge et al., Science 346, 6209 (2014), Li et al., Nat. Commun. 7, 12297 (2016)

SOC superconductor

Magnetic atoms on sites a 
(to 1st approximation) 

HVz = �

X

a,�,�0

(Vz(a)n̂ · �)��0 c†a�ca�0



Flexible Setup

Single magnetic impurity

1D ferromagnetic wire 2D ferromagnetic island

MF wire 
end state

MF vortex 
core state

Circulating 
currents

PRL 115, 116602 
(2015) 

Self-consistent solution for the superconducting order parameter
�i = �Vschci#ci"i

SOC superconductor



Magnetic Impurity Wire Networks
Are there simple, but unique, signals of  MFs?
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Ferromagnetic Atom Wire Networks

Björnson and ABS, PRB 94, 100501(R) (2016) 
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Zero-energy MFs at odd-wire junctions (black)   

No subgap states at even-wire junctions (red)

Wire network of ferromagnetic atoms on SOC superconductor
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Odd- and Even-Wire Junctions
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Only clear subgap 
states are MFs at 

odd-wire junctions 
MF wire end states

Björnson and ABS, PRB 94, 100501(R) (2016) 

LDOS along upper wire segment



Parameter Dependencies
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Chemical potential

SC order parameter: increased gap

Magnetic moment: TPT

Large LDOS difference between even- and 
odd-wire junctions for all parameters
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Björnson and ABS, PRB 94, 100501(R) (2016) 



Majorana Oscillations and Localization
How are MFs interacting with other states?



YSR Subgap States
Magnetic impurity (classical spin S = Vz) in s-wave SC
• Yu-Shiba-Rusinov (YSR) subgap states

Balatsky et al., RMP 78, 373 (2006)

No change in energy 
levels with SOC

Quantum phase 
transition (QPT) 

E±
YSR = 0
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Spectrum for Impurity Chain

Self-consistency:             
(                           )

• D suppressed on chain sites
• Phase transition at lower Vz
• Energy oscillations
• YSR states lower energies

Self-
consistent 

Non-self-
consistent

D on chain

�i = �Vschci#ci"i

MFs?

Theiler, Björnson, and ABS, PRB 100, 214504 (2019)



Lowest Energy State

Topological boundary mode 
= “MF”

Theiler, Björnson, and ABS, PRB 100, 214504 (2019)



Lowest Energy State at High Vz

Heavily oscillating lowest 
energy state = MF ?      

Theiler, Björnson, and ABS, PRB 100, 214504 (2019)



YSR state also oscillates

Oscillations from MF or YSR?

Higher Energy State at High Vz

Theiler, Björnson, and ABS, PRB 100, 214504 (2019)



Clean MF and YSR States at TPT

At TPT, well-behaved states à Basis states

MF = topological 
boundary mode

YSR states ~
Particle-in-a-box states 

along chain

Theiler, Björnson, and ABS, PRB 100, 214504 (2019)



Basis Decomposition

"=" "+"

Vz at TPT Vz at TPT

Using states at TPT as a basis:

Theiler, Björnson, and ABS, PRB 100, 214504 (2019)



MF-YSR Hybridization

Basis 
completeness 

MF component

Lowest energy state is 
NOT just the MF

Large YSR components

Components in lowest energy state

YSR 
components

Theiler, Björnson, and ABS, PRB 100, 214504 (2019)
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MF-YSR Hybridization

1098

Components in lowest energy state Energy spectrum

Lowest energy state = MF + lowest YSR
à Energy oscillations
à Amplitude oscillations in wave functions

Theiler, Björnson, and ABS, PRB 100, 214504 (2019)



Extracting the MF

How to extract the MF = topo. boundary mode ?
• FWHM of  first peak

• Corrected MF state (subtract YSR states):

• Topological boundary mode: 
– Effective mass gap: 

Lowest state = 
MF + YSRs

MF YSRsLowest state

Lowest state
2nd lowest state

Topo. boundary mode

Theiler, Björnson, and ABS, PRB 100, 214504 (2019)



MF Localization Length

FWHM (first peak)
Topo. boundary mode
Corrected MF

Topological boundary mode = MF ~ first peak in lowest state

Localization increases with Vz (opposite to SC coherence length)

Theiler, Björnson, and ABS, PRB 100, 214504 (2019)



Lowest energy state = MF (topo. boundary mode) + YSRs
– Energy and amplitude oscillations due to YSR contributions  
– MF ~ first peak in lowest state                                 
– Enhanced effects by self-consistent treatment of superconductivity

Summary

Theiler, Björnson, and ABS, PRB 100, 214504 (2019)



Nanowire SNS Junctions
When do false MFs appear and how to detect them?



Are zero-Energy states MFs?

Interfaces/edges/impurities often host trivial zero-energy 
Andreev bound states (ABS)

How to distinguish MFs?
– Stable zero-energy peak
– Quantized conductance 
– Bulk gap closing
– …

Zhang et al., arXiv:2101.11456, see also Prada et al., Nat. Rev. Phys. 2, 575 (2020)

Not unique 
to MBS

MFs (?)



Nanowire + Superconductor

s-wave SC

NW

MBS beyond topological 
phase transition (TPT) at Bc

MFs

MFMF



Nanowire + Superconductor

Heavily modified effective 
chemical potential (and SOC) 

in NW

Awoga, Cayao, and ABS, PRL 123, 117001 (2019), see also Reeg et al. PRB 97, 165425 (2018)

s-wave SC

NW



Short SNS Junction

(b)(a)

+

Quantum dot (QD) or barrier emerges 
spontaneously in short NW junctions

Awoga, Cayao, and ABS, PRL 123, 117001 (2019)

QD

Barrier

Ideal

S SN



False MFs in QD Regime

Energy spectrum of  junction

Ideal Barrier QD

Zero-energy QD states before TPT 
à false MFs

MFs

TPT

MFs

Awoga, Cayao, and ABS, PRL 123, 117001 (2019)



False MFs in QD Regime

Zero-energy (trivial) QD states 
always in strong coupling regime

Awoga, Cayao, and ABS, PRL 123, 117001 (2019)



Phase Dependent Spectrum

AB C D

Outer MFs

Junction MFs

p-shifted phase energy spectrum in QD regime
(due to spin flip in occupied state)

Awoga, Cayao, and ABS, PRL 123, 117001 (2019)



p-Shifted Supercurrent

False MFs ßà p-shifted supercurrent

TPT

Zero-energy 
states appears

Awoga, Cayao, and ABS, PRL 123, 117001 (2019)



Nanowire SNS junctions

• False MFs common in short junctions 
– Due to spontaneous QD formation
– Distinguishable by p-shifted supercurrent

Summary

Awoga, Cayao, and ABS, PRL 123, 117001 (2019)



Topological Superconductivity
Spinless superconductors

Majorana fermions
Engineered systems

Prototype: Kitaev model for 1D spinless SC
Materials: SOC + magnetism + s-wave SC
Majorana fermion: 
• Non-local, “½ electron”
• Topological boundary state in spinless SCs
• Topological quantum computation



Summary
• Introduction to superconductivity

– BCS, BdG, group theory

• Topological superconductivity
– Chiral superconductors: p+ip’ and d+id’ superconductors

• Appears often in 2D irreps
• Topology set by Chern/winding number of order parameter
• Chiral edge states

– “Spinless” superconductors à Majorana fermions
• SOC + magnetism + s-wave superconductivity
• Topological edge state = Majorana fermion ~ non-local “½ electron”



Acknowledgements

Kristofer Björnson, Tomas Löthman, Johann Schmidt, Ola Awoga, Suhas Nahas, 
Andreas Theiler, Lucas Casa, Adrien Bouhon, Dushko Kuzmanovski, Lucia 
Komendova, Mahdi Mashkoori, Jorge Cayao, Fariborz Parhizgar, Christopher 
Triola, Paramita Dutta, Debmalya Chakraborty, Iman Mahyaeh, Patric Holmvall, 
Rodrigo Arouca, Tanay Nag, Umberto Borla, Thanos Tsintzis, Raphael Teixeira

Collaborators:
A. Balatsky (Nordita), J. Linder (NTNU), J. Fransson (UU), K. Le Hur
(Ecole Polytechnique), C. Honerkamp (Aachen), R. Aguado (Madrid), L. 
da Silva (Sao Paulo), M. Fogelström (Chalmers), S. Doniach (Stanford), C. 
Ast (MPI-FKF), F. Lombardi (Chalmers), A. Kantian (Heriot-Watt), Y. 
Tanaka (Nagoya), B. Sanyal (UU), H. Suderow, P. Burset (UA Madrid)

The Carl Trygger
Foundation

Funding:



Summary
• Introduction to superconductivity

– BCS, BdG, group theory

• Topological superconductivity
– Chiral superconductors: p+ip and d+id superconductors

• Appears generally in 2D irreps
• Topology set by Chern/winding number of order parameter
• Chiral edge states

– “Spinless” superconductors à Majorana fermions
• SOC + magnetism + s-wave superconductivity
• Topological edge state = Majorana fermion ~ non-local “½ electron”




