Searching for Wavelike Dark Matter: The Theory

Dark Matter

- Most (~85%) of the matter in the Universe is non-Baryonic
- Lacks electromagnetic or colour charges (probably)
- Modifications to gravity don't tend to work

Why Is Dark Matter So Hard to Solve?

Why Is Dark Matter So Hard to Find?

arXiv:2104.07634

Old Favourite: WIMP

The Problem With WIMPs

- No one has ever seen one!
- WIMP "miracle" relies on Weak force couplings... mostly ruled out
- SUSY not discovered at LHC

Wavelike Dark Matter

- Two classical limits of QFT: point particles and classical fields
- Wimps are an example of the first: heavy (~100 GeV) and low in number direct detection looks for scatterings
- What about light dark matter, say below eV?
- Much higher occupation numbers (can be more than 10²⁵): usually treated as a classical field
- Totally different phenomenology

The U(1) Axial Problem

- The hadrons are arranged by symmetry structure
- Approximate symmetry due to low quark masses: independent rotations on the quarks

 $U(3)_R \times U(3)_L = U(3)_V \times U(3)_A$

• The axial symmetries would be broken spontaneously by the quark condensate: 9 light peusdo-**Goldstone Modes**

 $q = -1 \qquad q = 0$

The U(1) Axial Problem

- But we only see 8 light mesons!
- A nice argument by Weinberg says $m_{\eta'} < \sqrt{3}m_{\pi}$
- But $m_{\eta'} \sim 10 m_{\pi}$
- How can it be so heavy if its protected by a symmetry?

Meson	Mass
π^0	134 MeV
π^{\pm}	140 MeV
K^{\pm}	493 MeV
K^0, \bar{K}^0	498 MeV
η	549 MeV
η'	958 MeV

U(1) Axial Problem

- $U(3)_A$ is not a symmetry, $SU(3)_A$ is
- $U(1)_A$ is only a symmetry of the classical Lagrangian: the axial current isn't conserved

$$J^{\mu 5} = \bar{\psi} \gamma^{\mu} \gamma^{5} \psi$$

• Anomalously broken by a term proportional to a total derivative

$$\partial_{\mu}J^{\mu5} \propto G \tilde{G}$$

The Strong CP Problem

- Problem: now we can't just get rid of total derivatives
- What about the theta term?

- θ
- θ comes from some topological winding number
- This is like $E \cdot B$ for colour... violates P, CP (T)
- In principle can be $\theta \in [0, 2\pi]$

The Strong CP Problem

- Just go and measure it?
- Neutron electric dipole moment super sensitive
- $d_n = 2.4\theta \times 10^{-3}$ e fm
- Limit is $\theta \lesssim 10^{-10}$
- Why so small?

12

 θ =0 minimizes the vacuum energy, but θ is not a dynamical term \bullet

Solutions?

- Massless quark?
- Gives a new (chiral) axial symmetry, rephrasing the up quark θ unphysical
- $u_L \to e^{i\alpha/2}, u_R \to e^{-i\alpha/2}$ also makes $\theta \to \theta + \alpha$
- Mass ruins this, doesn't respect chiral rotations

High Energy Picture

- What if we introduce new fields to make a U(1) chiral symmetry which is anomalous under QCD?
- Rotations under this new symmetry would similarly make θ unphysical
- Proposed by Peccei and Quinn, so called a PQ symmetry
- Needs new scalars (and maybe fermions) to make the symmetry

15

Low Energy Picture

- The PQ symmetry is spontaneously broken at some scale f_a
- The "axion" is the angular degree of freedom: goldstone mode!
- This aspect was pointed out by Weinberg and Wilczek
- The radial part is very heavy, $m \sim f_a$
- Like all goldstone modes the couplings of the axion are all suppressed by f_a

16

Axions

- The shift symmetry is exact above the QCD scale (massless axion)
- At the QCD scale the potential tilts as the axion acquires a mass – axion rolls down to a CP conserving minimum
- Can be produced by misalignment or topological defects

 $\Theta = 0$

17

- Introduce a second Higgs and a SM scalar (which will make the axion)
- SM fermions have PQ charges
- 3 generations gives domain wall number 3
- Tree level axion-fermion couplings after symmetry breaking

18

- Similar singlet scalar, but no new Higgs
- Instead introduce new (heavy) coloured fermions
- Usually one, usually neutrally charged
- Domain wall number one
- No tree level couplings
- ("Hadronic" model)

KSVZ

19

Axion DM: scenario 1

- Scenario 1: PQ broken after inflation
- θ_i has random values in every casual region, with the dark matter density determined by the average
- Topological defects such as strings and domain walls exist in the early universe

Axion DM: scenario 2

- Scenario 2: PQ broken
 before inflation
- θ_i has a single random
 value which determines
 the dark matter density
- No topological defects

Axion production mechanisms

Vacuum Misalignment

Alex Millar

Decay of topological defects

22

Axion production mechanisms

Vacuum Misalignment

Alex Millar

Decay of topological defects

arXiv:1809.09241

Axion-Like Particles

- General pseudo-scalar with a shift symmetry
- Does NOT solve Strong CP
- No fixed mass relation
- More general couplings
- Often comes from high energy theories

25

Axion-Like Particles

- Not just a cheap knockoff
- Can have stronger couplings!
- Can have lighter/heavier masses!
- Very useful in cosmology, for ULDM or CMB effects

26

Hidden/Dark Photons

- What about new vector particles?
- Introduce a new U(1) gauge boson

$$\begin{split} \mathcal{L} &= -\frac{1}{4} \tilde{F}_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{4} \tilde{F}'_{\mu\nu} \tilde{F}'^{\mu\nu} + \frac{\chi}{2} \tilde{F}_{\mu\nu} \tilde{F}'^{\mu\nu} \\ &+ \frac{m_X^2}{2} \tilde{X}_\mu \tilde{X}^\mu + e J^\mu \tilde{A}_\mu \,, \end{split}$$

• Can have some small kinetic mixing with the photon (written here to lowest order)

Hidden/Dark Photons

Easier to write it in the "interaction" basis

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} X_{\mu
u} X^{\mu
u} + e J^{\mu}_{\mathrm{EM}} A_{\mu}
onumber \ + rac{m_X^2}{2} \left(X^{\mu} X_{\mu} + 2 \chi X_{\mu} A^{\mu}
ight) ,$$

• Some differences if the mass comes from a Stueckelberg or Higgs mechanism

28

Hidden Photon Production

- Misalignment (can be before/after inflation)
- Quantum fluctuations during inflation
- Tachyonic instabilities
- Decay of topological defects like cosmic strings
- Rough estimates indicate polarisation should be unchanged over galactic timescales

$$\frac{\delta S}{S} \sim 4 \times 10^{-3} \left(\frac{v}{2 \times 10^{-3}}\right)^3 \frac{T}{13 \times 10^9}$$

Alex Millar

8 kpc yr R

arXiv:1809.09241

29

Hidden Photons vs ALPs

- Key difference: HP mixes in vacuum
- Key difference: HP has a polarisation!
- May be randomised or fixed depending on the production mechanism (or somewhere in-between)
- Structure formation may change this, but no detailed studies

30

Why Hidden Photons?

- Can appear in BSM theories
- Often axion searches are sensitive to HP
- "Easier" than axions
- Lots of other interesting ULDM!
- Scalars, B-L vectors...

31

Next time: Interactions

32