Searching for Wavelike Dark Matter: The Experiments

Axion Electrodynamics

- Axions and ALPs interact with photons through an anomaly term
- This coupling is tiny, but still important
- Mixes with the photon in an external magnetic field

$$^{\mu}A_{\mu}+rac{1}{2}\partial_{\mu}a\partial^{\mu}a-rac{1}{2}m_{a}^{2}a^{2}-rac{g_{a\gamma}}{4}F_{\mu
u}\widetilde{F}^{\mu
u}a,$$

$$\begin{split} &= 5.70(7) \,\mu\text{eV} \, \frac{10^{12} \text{GeV}}{f_a} \,, \\ &= \frac{\alpha}{2\pi f_a} \, C_{a\gamma} = 2.04(3) \times 10^{-16} \,\,\text{GeV}^{-1} \, \frac{m_a}{\mu\text{eV}} \, C_{a\gamma} \,, \\ &= \frac{E}{N} - 1.92(4) \,, \end{split}$$

https://github.com/cajohare

How do you find a wave?

- Can't just look for scatterings
- Exploit the coherence of the field to increase the signal
- Analogue: finding the right radio station
- Currently in an experimental boom: lots of new ideas and experiments

Axion Photon Conversion

- Inhomogeneous Maxwell equations get a new "current"-like term
 - $\epsilon \mathbf{\nabla} \cdot \mathbf{E}$ = $\mathbf{\nabla} \times \mathbf{H} - \dot{\mathbf{E}} =$ $\ddot{a} - \nabla^2 a + m_a^2 a =$
- Strong external B-field creates a small E-field

$$\mathbf{E}_a = -rac{g_{a\gamma}\mathbf{B}_e a_0}{\epsilon}e^{-im_at} =$$

Alex Millar

$$egin{aligned} &=
ho - g_{a\gamma} \mathbf{B}_{\mathrm{e}} \cdot \mathbf{
abla} \,, \ &= \mathbf{J} + g_{a\gamma} \mathbf{B}_{\mathrm{e}} \dot{a} \,, \ &= g_{a\gamma} \mathbf{E} \cdot \mathbf{B}_{\mathrm{e}} \,, \end{aligned}$$

 $1.3 \times 10^{-12} \ {\rm V/m} \ {B_{\rm e} \over 10 \ {\rm T}} \ {C_{a\gamma} f_{\rm DM}^{1/2} \over \epsilon} \,.$

Axion-Photon Conversion

- Lowest order QFT gives Fermi's Golden Rule $\Gamma_{a \to \gamma} = 2\pi \sum |\mathcal{M}|^2$
- Matrix element given by the overlap of the wave functions

$$\mathcal{M} = \frac{g_{a\gamma}}{2\omega V} \int$$

• Experimental goal: how do we make this non-zero?

Alex Millar

$$\sum_{\mathbf{k}} |\mathcal{M}|^2 \,\delta(\omega_a - \omega_{\mathbf{k}}) \,.$$

 $d^3 \mathbf{r} \, e^{i \mathbf{p} \cdot \mathbf{r}} \, \mathbf{B}_{\mathrm{e}}(\mathbf{r}) \cdot \mathbf{E}_{\mathbf{k}}^*(\mathbf{r})$

Axion-Photon Conversion

• In vacuum and constant B-field this vanishes

• Modify the free-photon wave function!

- *** Be

Cavity Haloscopes

• Inside a cavity the photon wavefunction matches the cavity modes

Be a E_k

• Normalisation given by the quality factor

Cavity Haloscopes

- Originally introduced to search for the axion
- Oldest and most established method (proposed by Sikivie)
- Build a cavity matching the Compton wavelength of DM to resonantly break translation invariance
- Requires large volume hard to do for large axions masses (small wavelengths)
- Examples include ADMX, HAYSTAC, CULTASK, RADES...

Cavity Extensions

- Multiple cavities (ADMX, CULTASK)
- Coupled cavities (RADES, CULTASK, ORGAN)
- Non-traditional cavities (ADMX, HAYSTAC, CULTASK)
- Bigger Magnets
- Better detectors (Beyond the SQL)

ORGAN) STAC, CULTASK)

RADES (arXiv:1803.01243)

10

Cavity Extensions

- General theme: increase the volume using multiple cavities/cavity sections
- Not strictly new, but much revitalised

Alex Millar

arXiv:1710.06969

Beyond Cavities

- Dish Antennas (BREAD, BRASS)
- Dielectric haloscopes (MADMAX, MuDHI LAMPOST)
- Plasma haloscopes (ALPHA)
- Resonators with LC circuits (ABRACADABRA, DM Radio, SHAFT)
- NMR (CASPER)
- 5th force (ARIADNE, QUAX)
- Atomic transitions (AXIOMA)
- Topological insulators (TOORAD)

12

Dish Antenna

- E-field depends on medium!
- Breaks translation invariance with a mirror (arXiv:1212.2970)
- No resonance!
- Completely broadband response

- Focus a large area onto a detector to increase S/N
- Experiments like FUNK, Tokyo, SHUKET, BREAD, BRASS...
- Tends to be best for HP

arXiv:2003.13144

Alex Millar

BREAD

15

Dielectric Haloscopes

• Introduce a series of dielectric layers

• Shape the wavefunction to get a non-zero overlap

Alex Millar

Be

16

Multiple layers: dielectric haloscope

Alex Millar

EM waves from each interface + internal reflections

Adjusting disc distances →coherent sum

Both transparent and resonant modes important

Define boost factor β , gain in Efield over that of a mirror

17

Dielectric Haloscopes

- Dish antenna on steroids (arXiv:1611.05865)
- Tune frequencies by controlling disk spacings
- Lots of freedom over frequency response!
- Very large volumes
- Being pursued by MADMAX, MuDHI and LAMPOST

Example Solution: 80 disks

Alex Millar

 $50 \mathrm{~MHz}$

19

Dielectric Haloscopes

- Two versions being pursued: movable disks, GHz version (MADMAX, DALI)
- Thin film optical version (MuDHI, LAMPOST)

Alex Millar

disks, GHz version (MADMAX, DALI)

20

LC Circuits

- Rather than measure E, create a circuit that measures B (1310.8545, 1602.01086)
- Can create geometries that generate B (but not E) in the presence of DM
- Can be made broadband or resonant
- Works sub-wavelength: good for low frequencies!
- ABRACADABRA and DM Radio are typical examples (recently they have combined forces)

21

Superconducting Cavities For Low Mass Axions

- Superconductive cavities have very high Q
- Tend to break in strong B-fields
- Pump in one cavity mode, read out an overlapping mode
- If the two modes are close, works for low axion masses
- Old idea recently revitalised: arXiv:1009.0762,1806.07141, 1902.01418, 1912.11056, 1912.11048, 2007.15656

arXiv:1912.11056

arXiv:1912.11048

Haloscopes for HP DM

- For an example, take a cavity haloscope

$$P_{\text{cav}}^{\text{DP}} = \kappa \mathcal{G}^{\text{DP}} V Q \rho_{\text{DM}} \chi^2 m_X, \quad \text{dark photo}$$
$$P_{\text{cav}}^{\text{axion}} = \kappa \mathcal{G}^{\text{axion}} V \frac{Q}{m_a} \rho_{\text{DM}} g_{a\gamma}^2 B^2, \quad \text{axion}$$

$$\mathcal{G}^{\mathrm{DP}} = \frac{\left(\int dV \,\mathbf{E}_{\alpha} \cdot \hat{\mathbf{X}}\right)^{2}}{V_{\frac{1}{2}}^{1} \int dV \,\epsilon(\mathbf{x}) \mathbf{E}_{\alpha}^{2} + \mathbf{B}_{\alpha}^{2}},$$
$$\mathcal{G}^{\mathrm{axion}} = \frac{\left(\int dV \,\mathbf{E}_{\alpha} \cdot \mathbf{B}\right)^{2}}{VB^{2}\frac{1}{2} \int dV \,\epsilon(\mathbf{x}) \mathbf{E}_{\alpha}^{2} + \mathbf{B}_{\alpha}^{2}}.$$

Alex Millar

• In principle, most axion haloscopes using axion-photon mixing are sensitive to HPs

on

C. BOUTAN/PACIFIC NORTHWEST NATIONAL LABORATORY; ADAPTED BY APS/ALAN STONEBRAKER

Haloscopes for HP DM

- Two key differences
- HP does not need a B-field
- The polarisation direction of the HP matters
- (Usually) easy to convert between the two sensitivities

$$\chi = g_{a\gamma} \frac{B}{m_X |\cos \theta|} \,, \qquad \cos \theta \,=\, \mathbf{\hat{X}}$$

· Â.

C. BOUTAN/PACIFIC NORTHWEST NATIONAL LABORATORY; ADAPTED BY APS/ALAN STONEBRAKER

Reinterpreting axion experiments

- Actually need to be very careful: many experiments use B-field vetos (arXiv:2006.06836)
- Polarisations can give a highly non-trivial time varying signal
- Timing and directional data rarely given
- Discovery potential can be improved by up to an order of magnitude with better search strategies (arXiv:2105.04565)

Cavities

LC-circuits

Plasmas

Dielectrics

Dish antenr Topological insulators

Alex Millar

Experiment		Magnetic field [T]	Latitude [°]	Measurement time, T	Directionality	$\langle \cos^2 \theta \rangle_T^{ m exc}$
ADMX-1	[107]	7.6	47.66	$\mathcal{O}(\min)$	$\hat{\mathcal{Z}}$ -pointing	~ 0.025
ADMX-2	[108]	6.8	47.66	$\mathcal{O}({\sf min})$	$\hat{\mathcal{Z}}$ -pointing	~ 0.025
ADMX-3	[110]	7.6	47.66	$\mathcal{O}({\sf min})$	$\hat{\mathcal{Z}}$ -pointing	~ 0.025
ADMX Sidecar	[109]	3.11 ^a	47.66	$\mathcal{O}({ m min})$	$\hat{\mathcal{Z}}$ -pointing	~ 0.025
HAYSTAC-1	[111]	9	41.32	$\mathcal{O}(\min)$	$\hat{\mathcal{Z}}$ -pointing	~ 0.025
HAYSTAC-2	[112]	9	41.32	$\mathcal{O}(\min)$	$\hat{\mathcal{Z}}$ -pointing	~ 0.025
CAPP-1	[113]	7.3	36.35	$\mathcal{O}(\min)$	$\hat{\mathcal{Z}}$ -pointing	~ 0.025
CAPP-2	[154]	7.8	36.35	$\mathcal{O}({ m min})$	$\hat{\mathcal{Z}}$ -pointing	~ 0.025
CAPP-3	[155]	7.2 and 7.9	36.35	90 s	$\hat{\mathcal{Z}}$ -pointing	~ 0.025
CAPP-3 [KSVZ]	[155]	7.2	36.35	15 hr	$\hat{\mathcal{Z}}$ -pointing	0.26
QUAX- $\alpha\gamma$	[114]	8.1	45.35	4203 s	$\hat{\mathcal{Z}}$ -pointing	0.03
[†] KLASH	[156]	0.6	41.80	$\mathcal{O}(\min)$	$\hat{\mathcal{Z}}$ -pointing	~ 0.025
RBF	[115]	Magnetic field veto				
UF	[116]	Magnetic field veto				
ORGAN	[117]	Magnetic field veto				
RADES	[157]	Magnetic field veto				
ADMX SLIC-1	[158]	4.5	29.64	$\mathcal{O}(\min)$	$\hat{\mathcal{N}}/\hat{\mathcal{W}}$ -facing	~ 0.37
ADMX SLIC-2	[158]	5	29.64	$\mathcal{O}(\min)$	$\hat{\mathcal{N}}/\hat{\mathcal{W}}$ -facing	~ 0.37
ADMX SLIC-3	[158]	7	29.64	$\mathcal{O}({\sf min})$	$\hat{\mathcal{N}}/\hat{\mathcal{W}}$ -facing	~ 0.37
ABRACADABRA	[118]	Magnetic field veto				
SHAFT	[119]	Magnetic field veto				
⁺ ALPHA	[159]	10	Unknown	$\mathcal{O}(\text{week})$	$\hat{\mathcal{Z}}$ -pointing	0.28-0.33
[†] MADMAX	[160]	10	53.57	$\mathcal{O}(\text{week})$	$\hat{\mathcal{Z}}$ -pointing or $\hat{\mathcal{N}}/\hat{\mathcal{W}}$ -facing	0.26 or 0.62–0.66 ^k
[†] LAMPOST	[36]	10	Unknown	$\mathcal{O}(\text{week})$	Any-facing	0.61–0.66
[†] DALI	[161]	9	28.49	$\mathcal{O}(month)$	Any-facing ^c	0.61–0.66
na [†] BRASS	[110]	1	53.57	$\mathcal{O}(100 \text{ days})$	Any-facing	0.61–0.66
[†] TOORAD	[1 <mark>62</mark>]	10 ^d	Unknown	$\mathcal{O}(\mathrm{day})$	Any-pointing	0.18–0.33

.

25

Current HP Limits

• Rescaled for fixed polarisation (conservative case)

arXiv:2105.04565

26

Nuclear Magnetic Resonance

- Many other couplings to probe!
- NMR techniques have exquisite sensitivity
- Prepare atoms into a specific spin state and look for precession
- Resonance with the Larmor frequency

Example: Axion Wind

• Axions also couple to fermions

$$\mathscr{L} = \bar{\psi}(i\gamma^{\mu}D_{\mu} - m_e)\psi - ag_{a}$$

• Electrons are heavy, axions are slow...

$$H_{\text{int}} = \frac{g_{ae}^2 a^2}{2m_e} - \frac{ig_{ae}}{2m_e} a\mathbf{p}_e \cdot \sigma + \frac{g_{ae}}{2m_e} d\mathbf{p}_e \cdot$$

 $_{\mu e}i\bar{\psi}\gamma^{5}\psi+\mathscr{L}_{kin}$

 $\frac{g_{ae}}{\sigma} \nabla a \cdot \sigma$ $2m_e$

28

CASPEr-wind

- Polarise a lot of spins in the same direction (like Xenon)
- Apply some magnetic field to give a Larmor frequency $\Omega = \gamma_N B_0$
- Axion wind causes precession if $m_a = \Omega$
- Measure for spins not aligned with B
- Great for low frequencies!

arXiv:1711.08999

29

CASPEr

arXiv:1711.08999

30

Conclusions

- Many new ideas that will be capable of searching a large fraction of the well motivated parameter space
- Still early days! Need to be shown practical
- Needs some standardisation about assumptions
- Axion experiments should do dedicated DP analysis, not just leave them for people to try to reinterpret them

 10^{-7} 10^{-8} 10^{-9} · 10^{-10} - 10^{-11} , 10⁻¹² - 10^{-13} -10⁻¹⁴ - 10^{-15} - 10^{-16} - 10^{-17} $10^{-18} =$

[GeV

 $Sa\gamma\gamma|$

 10^{-6}

Teaser for next time

• What if you could match energy and momentum at the same time?

32