Radiative Cooling of Polyyne Anions: C4H− and C6H−

Boxing Zhu1, James N. Bull2, José Navarro Navarrete1, Alice Schmidt-May1, Henrik Cederquist1, Henning T. Schmidt1, Henning Zettergren1, and Mark H. Stockett1

1Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden

2School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom

Contact email: zhu.boxing@fysik.su.se

The time-dependent photodetachment action spectra of the linear hydrocarbon anions C4H− and C6H− are investigated using the cryogenic electrostatic ion storage ring DESIREE. Radiative cooling characteristics of the ions on the millisecond to second timescale are probed by monitoring changes in the spectra as the ions cool by spontaneous infrared (IR) emission. A simple harmonic cascade (SHC) model is used to model the cooling processes. The cooling rates, extracted using Non-negative Matrix Factorization (NMF), are fit with 1/e lifetimes of 19 ± 2 s and 3.0 ± 0.2 s for C4H− and C6H−, respectively. For C4H−, the adiabatic detachment energy is determined from the cold ions’ photodetachment spectra to be 3.45 ± 0.02 eV. The photodetachment spectrum and the ultraslow radiative cooling dynamics interpreted in the present work provide important data for understanding the thermal cooling properties of linear hydrocarbon anions and for refining the formation and destruction processes of these anions in astrochemical models.

FIG. 1: Schematic drawing of the DESIREE ion storage ring. The OPO laser beam interacts perpendicularly with the ion beam on the RAES detector side. Neutral products formed through photodetachment along the straight section are detected by the microchannel plate (MCP) detector.
