Direct, Time-Resolved Kinetic Experiments to Understand Chemistry of Unimolecular and Bimolecular Reactions of Criegee Intermediates

Arkke Eskola, Jari Peltola, Petri Heinonen, Timo Pekkanen

Department of Chemistry, University of Helsinki, PO. BOX 55 (A.I. Virtasen aukio 1), FIN-00014, Finland

arkke.eskola@helsinki.fi

Recently, we introduced a new time-resolved, broadband cavity-enhanced absorption spectrometer (TR-BB-CEAS) apparatus operating in the UV-range, which we have desinged, constructed, and utilized to measure uni- and bimolecular kinetics of stabilized Criegee Intermediates (sCIs) over wide range of temperature and pressure conditions [1]. In our first experiments we utilized a new method for the smallest sCI production, that is, 213 nm photolysis of CH₂IBr to produce CH₂I, which reaction with O₂ then led to formaldehyde oxide, CH₂OO. We showed that this new method is more resistant to secondary reaction chemistry that may be a problem, especially, in unimolecular reaction kinetic measurements of sCIs. Indeed, significant differences in unimolecular reaction kinetics of CH₂OO were observed between the results of our new measurements and the results of a previous investigation using 266 nm photolysis of CH₂I₂ to produce CH₂I. On the other hand, results of CH₂OO + HCOOH were the same within experimental uncertainty with both photolytic precursors.

In our more recent study [2], we have investigated unimolecular reaction kinetics of acetone oxide $(CH_3)_2COO$ using the same method (i.e. $R_1R_2CIBr + 213$ nm), that is, in this case 213 nm photolysis of $(CH_3)_2CIBr$ to produce $(CH_3)_2CI$ radical that in presence of O₂ produces $(CH_3)_2COO$. Very interestingly, our new direct measurements using the new method to produce $(CH_3)_2COO$ are in excellent agreement with a previous indirect measurement, but not with a previous direct measurement where 248 nm photolysis of $(CH_3)_2CI_2$ was used to produce $(CH_3)_2COO$. Also, our new measurements strongly suggest that unimolecular decomposition is much more important main atmospheric loss process of $(CH_3)_2COO$ than was previously suggested.

Very recently we have also started unimolecular reaction kinetics measurements of $(CH_3CH_2)_2COO$ using the same $R_1R_2CIBr + 213$ nm method and the new results are slightly faster then those of $(CH_3)_2COO$ under the same conditions, which is in agreement with calculations [3].

We have also used 193 nm photolysis of CH_2ICl to produce CH_2I and subsequently formaldehyde oxide in kinetic measurements of $CH_2OO + RCN$ (R = H, CH₃, C₂H₅).

In addition to above atmospherically-relevant results of sCIs kinetics, we will also discuss our most recent measurements using laser photolysis – photoionization mass-spectrometry apparatus to understand a potential secondary reaction chemistry problem associated with $R_1R_2CI_2$ gem-diiodide photolytic precursors.

- [1] J. Peltola, et al., Phys. Chem. Chem. Phys. 22, 11797 (2020).
- [2] J. Peltola, et al., Phys. Chem. Chem. Phys. 24, 5211 (2022).
- [3] L. Vereecken, et al., Phys. Chem. Chem. Phys. 19, 31599 (2017).