

Gas-phase Reactivity of OH Radicals Towards NH₃: A Considerable Enhancement of the Rate Coefficients at Interstellar Temperatures

∲UCLM

ICCA

i fotøair

D. González ^(a), S. Espinosa ^(a), J. Albaladejo ^(a,b) and E. Jiménez ^(a,b)

^a Universidad de Castilla-La Mancha, Facultad de Ciencias y Tecnologías Químicas, Departamento de Química Física, Avda Camilo José Cela 1B, 13071, Ciudad Real (Spain).
 ^b Universidad de Castilla-La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica (ICCA), Camino de Moledores s/n, 13071, Ciudad Real (Spain).

Daniel.GPerezMadrid@uclm.es

1. INTRODUCTION

1st detection: 1963 by Weinreb et al. [1]

Hydroxyl radical (OH) is a crucial intermediate in combustion, atmospheric and interstellar chemistry. Although, it is known that these radicals are ubiquitous in the Interstellar Medium (ISM), kinetic data for gas-phase OH-reactions with IS species are still scarce at ultra-low temperatures (10-100 K). Particularly for nitrogen-bearing species, which could form amino acids in the ISM, the literature is very limited.

1st detection: 1968 Cheung et al. [2]

In this work, the kinetics of the reaction between OH and NH_3 have been studied experimentally at ultra-low temperatures (11.7-177.5 K).

2. EXPERIMENTAL SET-UP AND CRESU TECHNIQUE

The **CRESU** (French acronym for *Cinétique de Réaction en Ecoulement Supersonique Uniforme* or *Reaction Kinetics in a Uniform Supersonic Flow*) technique was used to achieve ultra-low temperatures. It is based on an isentropic expansion of a gas mixture from a relative high-pressure reservoir to a low-pressure chamber through a perfectly designed Laval Nozzle (the heart of this technique) which creates a supersonic and cold gas jet uniform in temperature and gas density. This gas mixture is pulsed by a rotary disk which is placed in the divergent part of the Laval nozzle. The pulsed CRESU apparatus developed in our group has been described in detail elsewhere. [3]

A ²	2Σ+	E		~	v'=1 v'=0			
>		λ≈282n		≈309nm	-			
Xź	² Π			/	- v''=0 🔍			
Laser Induced Fluorescence Detection:								
OH(A² Σ⁺) → OH(X²Π) + hν _{LIF} (λ ≈ 309 nm)								

Pulsed laser photolysis/laser induced fluorescence (PLP-LIF) technique was used to generate OH radicals and to monitor their temporal profile. In this work, the PLP of gaseous H_2O_2 at 248 nm was the source of OH radicals. The LIF from excited OH radicals was detected at ca. 309 nm by a photomultiplier tube as a function of reaction time.

3. KINETIC ANALYSIS

Under pseudo-first order conditions $([NH_3]_0, [H_2O_2] >> [OH]_0)$, the LIF signal from OH radicals decay due to the

*k*_{diff}

 $OH \rightarrow Other$ losses

4. EXPERIMENTAL RESULTS OF K(T=11.7-177.5 K)

The results of k(T) determined in the present study are the first experimental determination of k(T) for this reaction in the T<22 K and T=23-177.5 K ranges. These results are shown in a k(T) vs T plot along with previous works (T=230-500 K).

following reactions:

Figure 2. Temporal evolution of the laser induced fluorescence of OH radicals.

Figure 3. \mathcal{K} - k_0 versus [NH₃] in the jet for 3 different temperatures.

20

5. PRESSURE DEPENDENCE OF *K***(T)**

The pressure dependence of k(T) has been studied at some temperatures. No pressure dependence of k(T) was observed in the density range investigated.

3.0			
5.0	\bigcirc T \approx 50 K	1.4	\bigcirc T \approx 76 K
	T $\approx 64 \text{ K}$	1.4	T \approx 106 K
2.5 -		- 12	

Figure 4. Comparison of the T-dependence of *k*(T) observed in our work with previous studies.

We observe a fast increase of k(T) between 177.5 K and 29.2 K, while k(T) is almost constant in the range 11.7-29.2 K,

Figure 5a. Pressure dependence of *k*(T) at 50 and 64 K.

REFERENCES

- (1) Weinreb *et al.*, *Nature*, 200 (1963) 829.
- (2) Cheung et al., Physical Review Letters, 21 (1968) 1701-1705.
- (3) Jiménez et al., Review of Scientic Instruments, 86:045108 (2015) 1.
- (4) González et al., Frontiers in Astronomy and Space Sciences, 8 (2022) 80229.
- (5) Atkinson *et al.*, *Atmospheric Chemistry and Physics*, 4 (2004) 1461-1738.
- (6) Espinosa-García and Corchado, The Journal of Chemical Physics, 101 (1994) 8700-8708
- (7) Corchado et al., The Journal of Physical Chemistry, 99 (1995) 687-694.
- (8) Monge-Palacios *et al.*, *The Journal of Chemical Physics*, 138 (2013) 084305.
- (9) Nguyen and Stanton, *The Journal of Chemical Physics*, 147 (2017) 152704.
 (10) Vahedpour *et al.*, *Chemical Physics*, 507 (2018) 51-69.

- Although, there is a huge increas
 - Although, there is a huge increase of *k*(T) in the range 29.2-177.5 K, in general, is continuously increasing when temperature decreases in the explored temperature range (11.7-177.5 K), reaching a maximum around 22 K [4].
 - No pressure dependence of k(T) has been observed at the selected temperatures reachable with our current CRESU apparatus.

ACKNOWLEDGMENTS

Ar/N₂

15

Figure 5b. Pressure dependence of *k*(T) at 76 and 106 K.

20

This work has been supported by the Spanish Ministry of Science and Innovation (MICINN) through the CHEMLIFE project (PID2020-113936GB-I00), the regional government of Castilla-La Mancha (UCLM) through CINEMOL project (SBPLY/19/180501/000052) and UCLM (Ayudas para la financiación de actividades de investigación dirigidas a grupos (2019-GRIN-27175). D. González and S. Espinosa acknowledge UCLM (Plan Propio de Investigación) and CHEMLIFE project, respectively, for funding their contracts during the performance of this investigation.

However, theoretical calculations predict a decrease in the OH-rate coefficient with temperature. As shown in Figure 4, there is a huge difference between the experimental k(20K) and the calculated one by Nguyen and Staton [9].