Ultrafast photoelectron spectroscopy of photoisomerization reaction of ethylene

OS. Karashima1, A. Humeniuk2,3, W. J. Glover2,3,4 and T. Suzuki1

1Department of Chemistry, Graduate School of Science, Kyoto University, Japan
2NYU Shanghai, China, 3NYU-ECNU Center for Computational Chemistry at NYU Shanghai, China
4Department of Chemistry, New York University, USA

1. Introduction

The ultrafast internal conversion of ethylene from the $\pi\pi^*$ state is the paradigm for cis-trans photoisomerization of olefines.

However, the isomerization dynamics have not been observed entirely from the Franck-Condon region in the $\pi\pi^*$ state up to ground state products.

We performed time-resolved photoelectron spectroscopy using extreme UV pulses (21.7 eV), and real-time observations of the entire relaxation process.

2. Experiment

![Experimental setup](Image)

- Filamentation Four wave mixing
 - Generation of a ultrashort vacuum UV pump pulse (160 nm)
- High Harmonic Generation
 - Generation of a ultrashort extreme UV probe pulse (57.1 nm; 21.7 eV)

Cross-correlation time = 31 fs

3. Results and Discussion

- The photoelectron signal of the $\pi\pi^*$ state appears from 3 eV and exhibits a very rapid energy shift. → Due to the C=C motion
- The photoelectron intensity increases around 6.5 eV. → Sing of conical intersection (CI)
- Vibrationally hot ground state spectra appear between 8 and 10 eV after a little delay time of ca. 50 fs.

9 fs

3-6 eV

6-7.5 eV

8.5-10.2 eV

C2H4 + hv → C2H2 + H + H (52%)

C2H2 + H + H (52%)

C2H4 + hv → C2H3 + H (2%) [4]

How long?

Ethylidene (CH2=CH) ... I.E. = ~ 9 eV

Vinyl radical (CH=CH) ... I.E. = > 8.3 eV

Acetylene (CHCH) ... I.E. = 11.4 eV

Hydrogen (H, H2) ... I.E. = 13.6, 15.4 eV

Clear observations of the formation of reaction products (C2H2, H and H2) and ground-state bleach recovery are desired in future experiments.

4. Conclusion

- We have succeeded in the clear real-time observation of the entire reaction dynamics from the Franck-Condon region in $\pi\pi^*$ to S_0^*.
- The nuclear wave packet accesses the conical intersections within 10 fs, and the population transfer from the excited to the ground state occurs in ca. 50 fs.
- Short-lived products are ascribed to vibrationally excited ethylene and possibly a small amount of ethylidene, and a long-lived products are presumably of metastable ethylene and vinyl radical.

Reference: