

New Insights on the Chemistry of Organic Peroxy Radicals from Speciated Monitoring with Chemical Ionization Mass **Spectrometry:** Application to RO₂ + Alkene Reactions **under Atmospheric Conditions**

<u>B. Nozière</u>,^{1*} O. Durif,¹ E. Dubus,¹ S. Kylington,¹ Å. Emmer¹ and F. Fache² ¹Department of Chemistry, KTH, Royal Institute of Technology, Stockholm, Sweden ²Université Lyon 1, CNRS, UMR 5246, ICBMS, Villeurbanne, France *noziere@kth.se

Speciated Monitoring of gas-phase Organic Peroxy Radicals by proton-transfer Mass Spectrometry

- Numerous (RO₂) in Earth's atmosphere from Volatile Organic Compound oxidation
- Many reactions of RO₂ identified but unknowns remain
- A major limit to understanding their chemistry is the inability to differentiate between different RO₂
- \Rightarrow Develop/apply proton-transfer ionization mass spectrometry for the detection of individual RO₂ under atmospheric conditions ("speciated detection"):

 $H_3O^+ + RO_2 \longrightarrow RO_2H^+ + H_2O$

Proof-of-concept with quadrupole Chemical Ionization Mass Spectrometer (CIMS) I)

RO₂ produced in flow rector from Cl + RH (UV-b) or R-I (UV-c) Add NO periodically to distinguish RO₂ from stable compounds

II) High-resolution detection with PTR-ToF-MS

<u>표</u> 4000

- Start from FUSION PTR-TOF 10k (Ionicon Analytik, Gmbh)
- **On-going development** of ionization & sampling conditions
- High sensitivity (< ppt) + high resolution (10000)

Kinetics of autoxidation Nozière & Vereecken, Angew. Chem. Int. Ed, 2019, **58**, 13976

 \Rightarrow separate RO₂ signal from isotopic ions for RC(O)OH

Application to RO₂ + alkene reactions under atmospheric conditions

- Until recently RO₂ + alkene reactions only studied at $T \ge 360$ K, expected slow at room temperature \Rightarrow ignored in atmospheric chemistry
- Only one reaction channel identified (step 1 + 2), step 2 limiting
- Recent kinetic study at 298 K monitoring RO₂ reports rate coefficients larger than

Product study with PTr-ToF-MS FUSION at 298 K shows epoxide channel negligible and reveals alternate peroxy radical channel

 \Rightarrow under atmospheric conditions peroxy radical channel dominates, step 1 limiting (\Rightarrow rates x 10 - x100)

 \Rightarrow RO₂+alkene possibly significant for some RO₂ in atmosphere

 \Rightarrow Monitoring RO₂ important even in

expected (x10 - x100).

Nozière & Fache, *Chem. Sci.*, 2021, **12**, 11676

laboratory studies

erc

Nozière, Durif, Dubus, Kylington, Emmer, Fache, Piel & Wisthaler, J. Phys. Chem. A, 2022, submitted.

ACKNOWLEDGMENTS. This work is part of the ERC Advanced Grant Project EPHEMERAL (grant agreement No 884532) and has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme.