

Vibrational energy levels and predissociation lifetimes of the A²Σ⁺ State of SH/SD radicals by photodissociation spectroscopy

Introduction

Mercapto radical (SH):

- The SH radical plays an important role in atmospheric sulfur cycle, fossil fuel combustion, and interstellar medium.
- The A²Σ⁺ state undergoes predissociation via the spin-orbit couplings with three repulsive states (⁴Σ⁻, ²Σ⁻, and ⁴Π), leading to the H(²S) + S(³P_J) products.
- Photo-predissociation of the SH A²Σ⁺ state competes with fluorescence, thus hinders the experimental characterization.

All vibrational levels of the $A^2\Sigma^+$ state (v' = 0.6 for SH and v' = 0.8 for SD) are probed by the high-*n* Rydberg atom time-of-flight (HRTOF) technique. By measuring the H/D + S(³P_J) product translational energy distributions from photodissociation of SH and SD via the A-X transition, the photofragment yield (PFY) spectra from specific rovibrational levels of the $A^2\Sigma^+$ state are obtained. From the PFY spectra the predissociation lifetimes and the vibrational origins of the A state are determined.

 H_2S + 193 nm \rightarrow SH + H

 $\rightarrow \theta = 90^{\circ}$ (perpendicular)

Skimmer

Molecular beam

K. Welge and coworkers, J. Chem. Phys. 92, 7027 (1990)

Pulsed Valve

SH radical production:

Yuan Qin, Xianfeng Zheng, Yu Song, Ge Sun, Jingsong Zhang*, Department of Chemistry, University of California at Riverside, Riverside, CA 92521

Results

Center-of-mass H + S product translational energy distribution, $P(E_T, \theta)$'s, from photodissociation of SH at 31622.14 cm⁻¹, which is the resonance position of the A²\Sigma⁺-X²\Pi (2,1) Q₁(1.5), ^QP₂₁(1.5) transition. The $P(E_T)$ distributions are converted from the TOF spectra, and the products from different pathways are labeled.

PFY spectra and simulations of the SH A²Σ⁺–X²Π absorption bands (a) (3,0), (b) (4,2), (c) (5,2), and (d) (6,2). The experimental signals are the integration of the H(²S) + S(³P_J) peaks from predissociation of SH (A²Σ⁺, ν' = 3-6) in the $P(E_T, \theta)$'s. The intensity at perpendicular polarization is obtained by weighing the simulated total absorption spectrum (equivalent to PFY at magic angle) from *PGOPHER* with an angular factor of $(1 - \frac{1}{2} \times \beta)$, where the anisotropy parameter β is simulated by the program *Betaofnu*. In the simulations, T = 30 K in (a), and T = 45 K in (b)-(d); the Gaussian FWHM (laser linewidth) = 0.3 cm⁻¹, the Lorentzian FWHM (natural linewidth) is (a) 10.0 cm⁻¹, (b) 11.0 cm⁻¹, (c) 4.8 cm⁻¹, and (d) 4.4 cm⁻¹.

Pred	issociative lifetime	8	Vibrational levels (cm ⁻¹)		
his work	Expt	Calc ^{]3]}	This work	Expt ^[4]	Calc ^{]3]}
	3.37±0.13 ns ^[1]	6.3 ns	0	0	0.0
	5.45 ps ^[2]	10.6 ps	1784.42 ± 0.4	1784.5 ± 1.0	1783.56
		2.3 ps	3374.01±0.3	3373.7±1.0	3368.88
3±0.05 ps		0.95 ps	4742.19±0.8	4742.8±5.0	4745.23
8±0.14ps		0.24 ps	5871.88±2	5880.1±10.0	5913.23
1±0.4 ps		5.9 ps	6724.10±0.7		6847.40
~1.0 ps		0.95 ps	7270.91±1.2		7513.93

[1] A. Fast and S. A. Meek, 2021. [2] M. D. Wheeler. et al., 1997.

SH

SD

v' N'

0 0

0-3

8 0-3

[3] S.Y. Lee and H.S. Seon, 2001.[4] L. Schnieder, et al., 1990.

Predissociative lifetimes			Vibrational levels (cm ⁻¹)		
This work	Expt ^[1]	Calc ^{]2]}	This work	Expt ^[3]	Calc ^{]4]}
	247±10 ns	43.65 ns	0	0	0
339±100 ns					
218±100 ns	230 <u>+</u> 5 ns				
	35 ps	46.63 ps	1319.18±0.1	$1319.30{\pm}0.05$	1319.28
1.8±0.3 ps	2.31 ps	2.27 ps	2540.23±0.3	2540.9 ± 0.2	2540.54
3.5±0.9 ps		7.02 ps	3659.85±0.3		3659.85
0.9±0.2 ps		0.91 ps	4662.23±0.4		4672.33
1.5±0.3 ps		0.47 ps	5536.88±2		5572.38
1.2±0.2 ps		1.69 ps	6306.33±0.3		6353.56
		1.03 ps	~6889.38		
2.4±0.4 ps		2.33 ps	7345.95±0.8		

This work: assume $\tau_{rad}(SD, v'=0)=910$ ns.

[1] M. D. Wheeler, et al., 1997. [2] at N'= 0 level. V. Brites. et al., 2008. [3] J. Johns and D.A. Ramsay, 1961 [4] M. N. Gorman, et al., 2019.

Summary

The $A^2\Sigma^+-X^2\Pi$ (v', v'') bands for SH v' = 0-6 and SD v' = 0-8 are characterized by photodissociation spectroscopy in this study using the high-*n* Rydberg atom time-of-flight (HRTOF) technique.

The predissociation times for SH v' = 3-6, as well as SD v'= 0 (N = 1 and 2) and v' = 2-6 and 8 are determined from the H/D atom PFY spectra and pump probe delay profiles. The lifetime measurements indicate predissociation rates for the $A^2\Sigma^+$ state depend markedly on the vibrational level, in agreement with the previous theoretical studies.

This work also provides the vibrational state energy for the $A^2\Sigma^+$ state, in which the lower energy levels v' = 0.4 for SH and v' = 0.2 for SD agree well with previous studies, and the higher levels v' = 5.6 for SH and v' = 3.8 for SD are determined for the first time. The derived vibrational origins of the $A^2\Sigma^+$ state suggest further theoretical investigation at high vibrational levels is needed.

Acknowledgement

UC RUNIVERSITY OF CALIFORNIA