Vibrational energy levels and predissociation lifetimes of the $\mathbf{A}^{2} \Sigma^{+}$State

 of SH/SD radicals by photodissociation spectroscopyYuan Qin, Xianfeng Zheng, Yu Song, Ge Sun, Jingsong Zhang*,
Department of Chemistry, University of California at Riverside, Riverside, CA 92521

Introduction

Method and Experimental Setup

SH radical production:
$\mathrm{H}_{2} \mathrm{~S}+193 \mathrm{~nm} \rightarrow \mathrm{SH}+\mathrm{H}$

This work: assume $\mathrm{T}_{\text {rad }}(S D, V=0)=910 \mathrm{~ns}$.

Summary

The $A^{2} \Sigma^{+-X^{2}} \Pi\left(\nu, v^{\prime \prime}\right)$ bands for $S H \quad V=0-6$ and $S D \quad V=0-8$ ar characterized by photodissociation spectroscopy in this study using the high- n Ryadberg atom time-of-flight (HRTOF) technique.

The predissociation times for SH $V=3-6$, as well as SD $V=0(N=1$ and 2) and $V=2-6$ and 8 are determined from the H / D atom $P F Y$ spectra and predissociation rates for the $A^{2} \Sigma^{+}$state depend markedly on the predissociation revel, in agreement with the previous theoretical studies.
vibrational lever
This work also provides the vibrational state energy for the $\mathrm{A}^{2} \Sigma^{+}$state, in which the lower energy levels $V=0-4$ for SH and $V=0-2$ for SD agree 8 for SD are determined for the first time. The derived vibrational origins of the $A^{2} \Sigma^{+}$state suggest further theoretical investigation at high vibrational levels is needed.

Acknowledgement

ucRIVERSIDE

