Looking forward to Naturalness

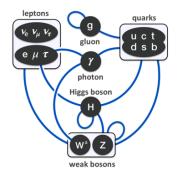
Results and prospects for low-mass searches in the forward region at the LHC

Is There Still Room for Naturalness? NORDITA 2022

Carlos Vázquez Sierra

European Organization for Nuclear Research (CERN)

April 25, 2022



The Standard Model (SM) of elementary particles:

- Most successful theory describing subatomic particles and their interactions.
- Accommodates strong, weak and electromagnetic interactions:

$$\mathsf{G}_{\mathrm{SM}} = \mathsf{G}_{\mathrm{QCD}} \times \mathsf{G}_{\mathrm{EW}} = \mathsf{SU}(3)_\mathsf{C} \times \mathsf{SU}(2)_\mathsf{L} \times \mathsf{U}(1)_\mathsf{Y}$$

SM is strongly predictive and precise:

- t predicted (observed) on 1973 (95),
- W/Z predicted (observed) on 1962 (83),
- g predicted (observed) on 1962 (78),
- H predicted (observed) on 1964 (2012),
- Good agreement with experimental results.

The Standard Model (SM) of elementary particles:

- Most successful theory describing subatomic particles and their interactions.
- Accommodates strong, weak and electromagnetic interactions:

$$\mathsf{G}_{\mathrm{SM}} = \mathsf{G}_{\mathrm{QCD}} \times \mathsf{G}_{\mathrm{EW}} = \mathsf{SU}(3)_\mathsf{C} \times \mathsf{SU}(2)_\mathsf{L} \times \mathsf{U}(1)_\mathsf{Y}$$

But also an incomplete theory:

- Inability to explain gravity.
- Dark matter and dark energy.
- Baryogenesis problem (BNV, CPV).
- Towards a GUT (gauge unification).
- Neutrino masses.
- Hierarchy problem and fine-tuning.

The Standard Model (SM) of elementary particles:

- Most successful theory describing subatomic particles and their interactions.
- Accommodates strong, weak and electromagnetic interactions:

$$\mathsf{G}_{\mathrm{SM}} = \mathsf{G}_{\mathrm{QCD}} \times \mathsf{G}_{\mathrm{EW}} = \mathsf{SU}(3)_\mathsf{C} \times \mathsf{SU}(2)_\mathsf{L} \times \mathsf{U}(1)_\mathsf{Y}$$

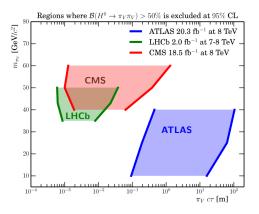
But also an incomplete theory:

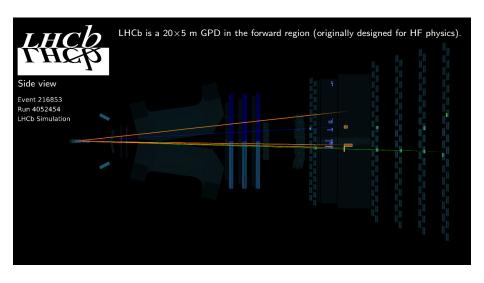
- Inability to explain gravity.
- Dark matter and dark energy.
- Baryogenesis problem (BNV, CPV).
- Towards a GUT (gauge unification).
- Neutrino masses.
- Is there still room for Naturalness?

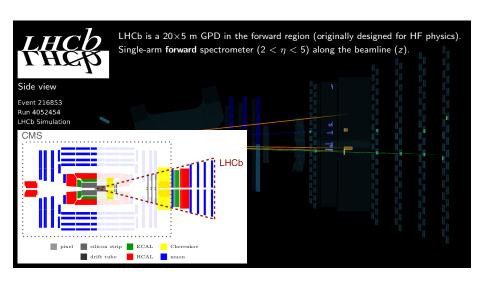
NP is "collider-phobic": we need dedicated experiments (axions, dark photons, sub-GeV DM, sterile neutrinos), e.g. FASER, CODEX-b, MATHUSLA, LZ, DUNE, ADMX, etc.

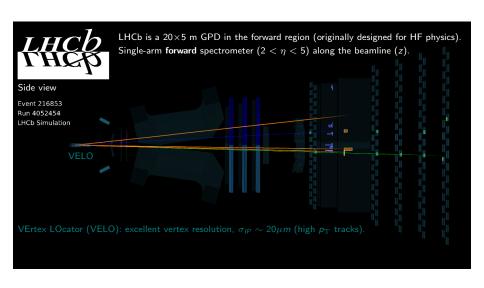
- NP is "collider-phobic": we need dedicated experiments (axions, dark photons, sub-GeV DM, sterile neutrinos), e.g. FASER, CODEX-b, MATHUSLA, LZ, DUNE, ADMX, etc.
- The NP scale is higher than expected: we need a new collider working at higher energies with higher precision (HE/HL-LHC).

- NP is "collider-phobic": we need dedicated experiments (axions, dark photons, sub-GeV DM, sterile neutrinos), e.g. FASER, CODEX-b, MATHUSLA, LZ, DUNE, ADMX, etc.
- The NP scale is higher than expected: we need a new collider working at higher energies with higher precision (HE/HL-LHC).
- The NP scale is ∼ EW scale but operating in "stealth mode": heavy mediators, tiny couplings, compressed spectra, large backgrounds...

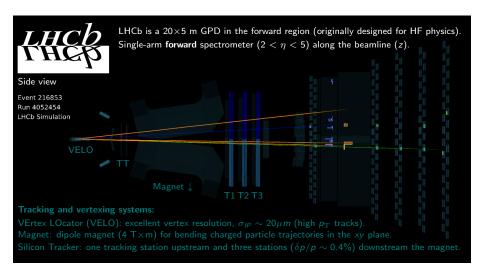


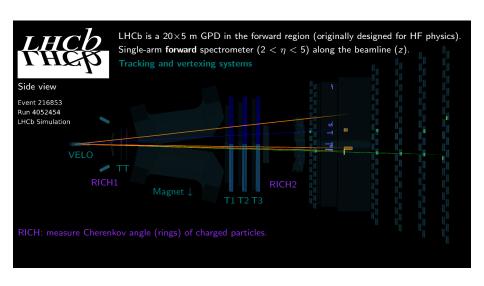

- NP is "collider-phobic": we need dedicated experiments (axions, dark photons, sub-GeV DM, sterile neutrinos), e.g. FASER, CODEX-b, MATHUSLA, LZ, DUNE, ADMX, etc.
- The NP scale is higher than expected: we need a new collider working at higher energies with higher precision (HE/HL-LHC).
- The NP scale is ~ EW scale but operating in "stealth mode": heavy mediators, tiny couplings, compressed spectra, large backgrounds → ideal for LHCb to explore!

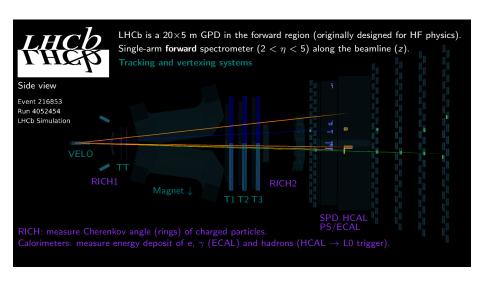


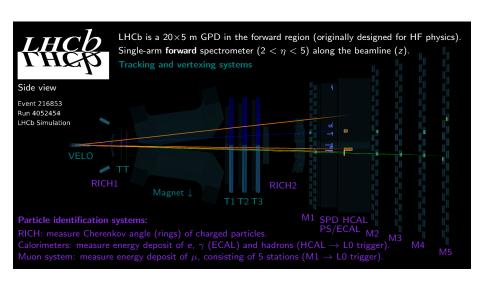

Hunting for Stealth New Physics

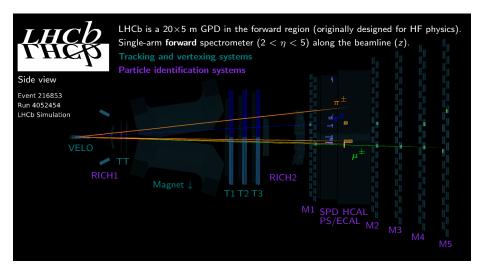
- The LHCb experiment is a natural candidate to search for stealth physics.
- Originally designed as a heavy-flavor experiment, but now a general purpose detector.
- Ability to deal with low-mass backgrounds, soft triggers and particle identification.
- Excellent vertex resolution and tracking capabilities.
- Unique coverage complementary to ATLAS and CMS:

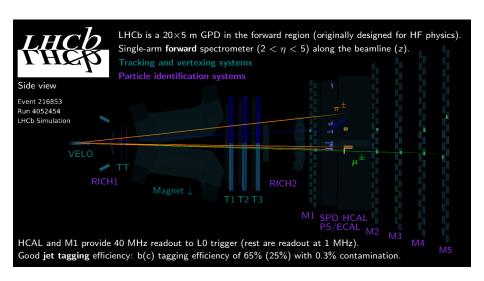


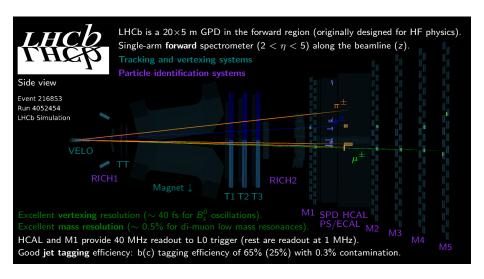


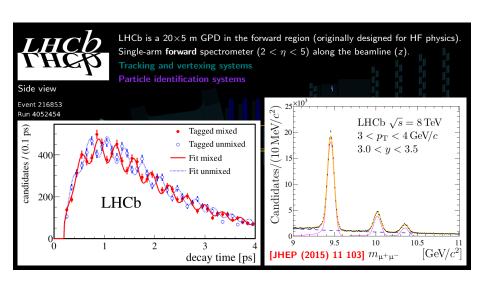


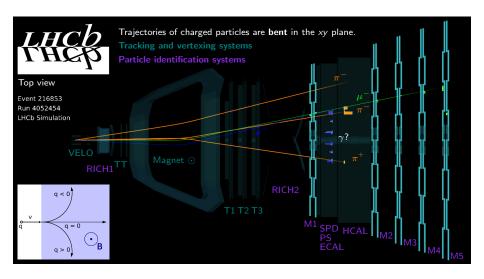


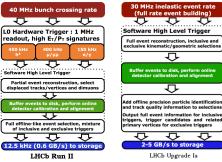






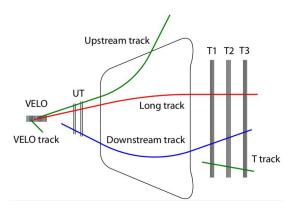






The LHCb trigger

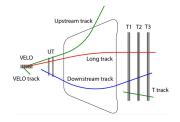
- Hardware level L0:
 - \rightarrow removed for Upgrade Ia (UIa).
 - \rightarrow benefit for low mass searches.
- Software level HLT:
 - \rightarrow Topological triggers on DV.
 - \rightarrow Down to $p_T \sim 80$ MeV/c (μ).
 - \rightarrow UIa: full event reco (30 MHz).
 - ightarrow benefit for exotic searches.
- Turbo (since 2015) lines:
 - \rightarrow Any event part can be saved.
 - ightarrow Can work **directly** on them.
 - ightarrow Online $\mu\text{-ID}$ and jets in turbo.
- in turbo. LHCb Run I

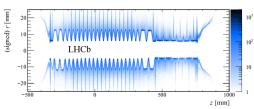


23 / 61

• GPU-based HLT1 (Allen project) from UIa [Comp Soft Big Sci (2020) 4 7]

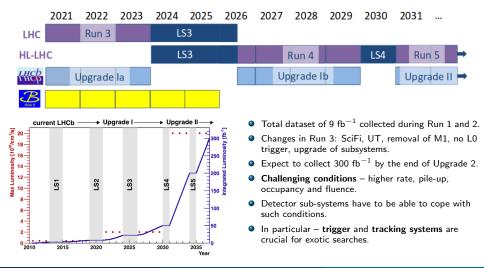
The LHCb reconstruction

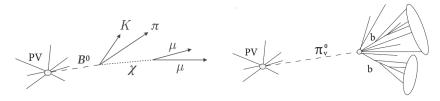

- Long tracks:
 - Tracks with hits in the tracking stations and in the VELO.
 - Excellent spatial and momentum resolution.
 - Reconstruction of particles decaying within VELO.
- Downstream tracks and upstream tracks see backup.



The LHCb reconstruction

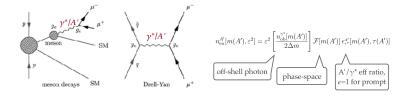
Long tracks:

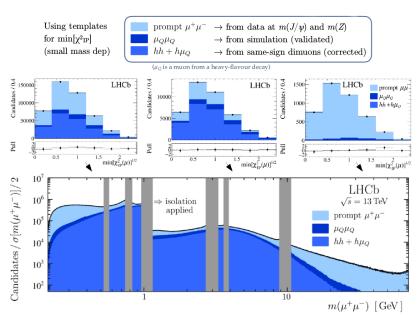

- Tracks with hits in the tracking stations and in the VELO.
- Excellent spatial and momentum resolution.
- Reconstruction of particles decaying within VELO.
- ullet Presence of a **VELO envelope** (RF-foil) at \sim 5 mm from beam:
 - → Background dominated by heavy flavour below 5 mm.
 - → Background dominated by material interactions above 5 mm.
- Having a precise model of material interactions is crucial.
- A detailed VELO material veto map is used: [JINST 13 (2018) P06008]
 - → Sensitivity **improvement** by **one** to **two** orders of magnitude.
 - \rightarrow See **backup** for more details on the material veto map.
- Downstream tracks and upstream tracks see backup.


The future of LHCb

Physics case for an LHCb Upgrade II: Opportunities in flavour physics, and beyond, in the HL-LHC era [CERN-LHCC-2018-027]

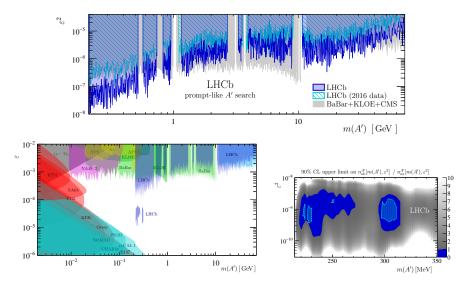
Selection of results and prospects on various signatures and models:


- Low-mass dimuons: dark photons, scalar resonances.
- Long-lived particles: decaying hadronically and semileptonically.
- B-meson decays: hidden sector bosons.
- Other searches: ALPs, CMSP.
- Prospects: Stealth major report, and CODEX-b.

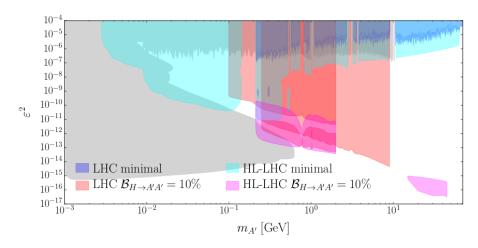

Low-mass dimuons

Search for dark photons decaying into a pair of muons:

- Kinetic mixing of the dark photon (A') with off-shell photon (γ^*) by a factor ε :
 - **1** A' inherits the production mode mechanisms from γ^* .
 - ② $A' \to \mu^+ \mu^-$ can be normalised to $\gamma^* \to \mu^+ \mu^-$.
- ullet Separate γ^* signal from background and measure its fraction.
- Prompt-like search (up to 70 GeV/ c^2) \rightarrow displaced search (214 350 MeV/ c^2).
 - ullet A' is long-lived only if the mixing factor is really small.
- Used 5.5 fb⁻¹ of Run 2 LHCb data (13 TeV).

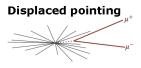


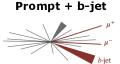
Dark Photons [PRL (2020) 124 041801]


Dark Photons [PRL (2020) 124 041801]

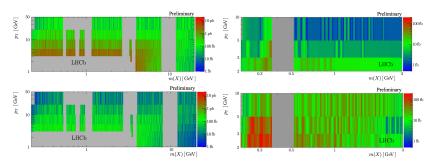
Great sensitivity (especially above 10 GeV and below 0.5 GeV):

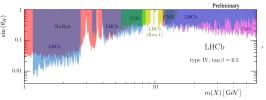
Dark Photons - combined prospects


Minimal scenario (LHCb) + Higgs portal (ATLAS/CMS):

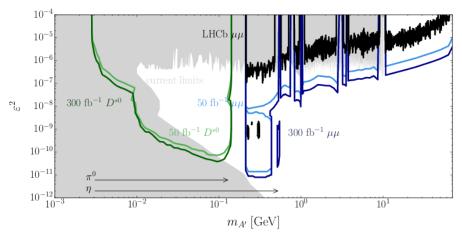

Signature sensitive to other models → model-independent search:

+ no isolation requirement+ non-zero width considered

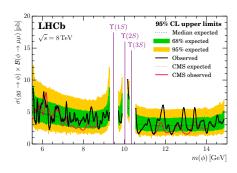

+ non-zero width considered

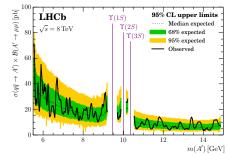

Displaced non-pointing

• UL @ 90% C.L. on $\sigma(X \to \mu\mu)$ (top: inclusive, bottom: b-associated):



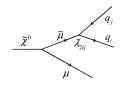
- 2HDM Higgs $\theta_H \rightarrow$ world-best limits: \rightarrow LHCb R1 [JHEP 09 (2018) 147] \rightarrow CMS R1 [PRL 109 (2012) 121801]
 - → CMS R2 [PRL 124, 131802 (2020)] → Belle Y → $X\gamma$ [PRD 87 (2013) 031102]
- Other scenarios covered too (i.e. HV).

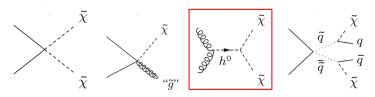

Dark Photons - the future


- Cover di-electron final states in $D^{*0} \rightarrow D^0 A'(ee)$ decays:
 - → Hardwareless trigger is required (softer final state than in the di-muon mode),
 - \rightarrow High statistics \rightarrow get $3\times10^{11}D^{0}$ per inverse fb!
- Prospected reach for Run III and beyond: [arXiv:1812.07831]

Light dark bosons decaying into $\mu\mu$ [JHEP 09 (2018) 147]

- Light spin-0 particles copiously produced in gluon-gluon fusion:
 - Many models: NMSSM, 2HDM+S, etc.
 - Review on LHC searches: [arXiv:1802.02156]
- Search using LHCb Run 1 (3 fb⁻¹) published in JHEP.
- Look for a di-muon resonance from 5.5 to 15 GeV/ c^2 (also between Υ peaks):
 - Mass-interpolated efficiencies in bins of p_T , η (model independent results also given).
 - Production x-section (8 TeV) limits for a scalar (vector) boson on the left (right).
 - \bullet First scalar limits between 8.7 and 11.5 GeV/c² and competitive with CMS elsewhere.
- ullet No excess observed \odot for more details o ask me during the coffee break \odot

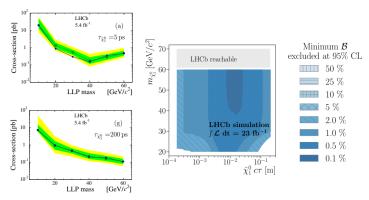




Long-lived particles

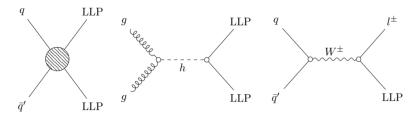
LLPs decaying into μ + jets [arXiv:2110.07293]

- Massive LLP into μ + two quarks (\rightarrow jets).
- Signature sensitive to several benchmark models:
 - mSUGRA RPV neutralino,
 - Right-handed (Majorana) neutrinos,
 - Simplified MSSM production topologies:



- One particular example: decay of a Higgs-like particle into two LLPs.
- Look for a **single displaced vertex** with several tracks + high p_T muon.
- Background dominated by $b\bar{b}$ events and material interactions.

LLPs decaying into μ + jets [arXiv:2110.07293]


- Search with 5.4 fb⁻¹ of LHCb Run 1 and 2 data published.
- Results interpreted in $H^0 o ilde{\chi}_1^0 ilde{\chi}_1^0$ benchmark model:

- Excluded production cross-section down to $\mathcal{O}(0.1)$ pb.
- Exclude $\mathcal{B}(H^0 \to \chi \chi)$ down to 0.1% by the end of Run 3 [LHCb-CONF-2018-006]

LLPs decaying into $e^+\mu^-\nu$ [EPJC (2021) 81 261]

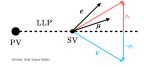
- Search for a long-lived particle decaying into $e^+\mu^-\nu$, and produced:
 - via direct pair production (DPP) from pp collisions,
 - from an exotic Higgs decay (HIG), produced in pairs,
 - or from a charged current process (CC).

- LHCb Run 2 (2016 2018) dataset (5.38 fb⁻¹ at 13 TeV).
- Explore masses between and 7 and 50 GeV and lifetimes between 2 and 50 ps.
- ullet Leptonic triggers with low p_T requirements o allow to access small LLP masses.

LLPs decaying into $e^+\mu^-\nu$ [EPJC (2021) 81 261]

Simulation:

- Signal (DPP and HIG) using MSSM RPV model LLP as $\tilde{\chi}^1_0$ light neutralino,
- Signal (CC) using LRSM model LLP as a HNL from on-shell W boson decay,
- Several signal samples per model for different LLP mass and lifetimes.
- Background sample simulated for QCD $b\bar{b}$ events.


Selection:

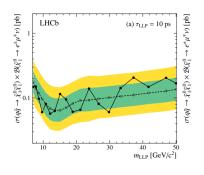
- Require good quality DVs with minimum displacement and kinematic requirements.
- Leptons isolated to suppress QCD background isolation optimised with same-sign data.
- After full selection \rightarrow 60k $b\bar{b}\rightarrow e\mu X$ events (consistent with observed yield).

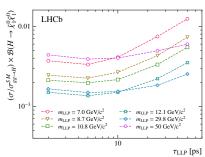
LLPs decaying into $e^+\mu^-\nu$ [EPJC (2021) 81 261]

Corrected mass approach:

- ullet LHCb is a non-hermetic spectrometer o we can not do invisibles.
- However, we can compute a proxy to X+invisible invariant mass \rightarrow corrected mass.
- Required to have only one massless invisible in the final state (ν) .
- Required to know the direction of flight of the parent particle.

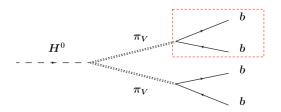
- **1** Assume LLP origin vertex approximately be the same as the *pp* collision.
- ② Obtain a (pseudo) decay vertex using the di-lepton systems.
- 3 Project the di-lepton system momenta to the LLP direction of flight.


$$m_{\rm corr} = \sqrt{m(e\mu)^2 + p(e\mu)^2 \sin^2 \theta} + p(e\mu) \sin \theta$$

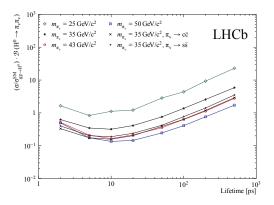

Corrected mass as a good proxy to real mass \rightarrow discriminating variable.

LLPs decaying into $e^+\mu^u$ [EPJC (2021) 81 261]

Results:


- Simultaneous ML fit to m_{corr} and LLP flight distance in two BDT bins.
- Systematics dominated by choice of signal models.
- UL at 95% C.L. on σB per model no excess found.
- ullet Best UL for DPP with lifetimes below 10 ps and masses above 10 GeV ightarrow order of 0.1 pb.

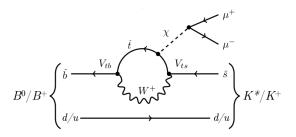
LLPs decaying into jet pairs [EPJC (2017) 77 812]


- Possible scenarios to accommodate this signature:
 - LSP in gravity mediated/BNV or LNV SUSY models,
 - HV π_v decaying to $b\bar{b}$ especially with SM-like $H^0 \to \pi_v \pi_v$ production.
- In most of the cases **only one** of the two π_{ν} decays into the LHCb acceptance.
- Experimental signature is a **single displaced vertex** with two associated jets.

- Reconstruct the displaced vertex and find two associated jets.
- Use π_v detachment to **discriminate** between signal and background.
- Background dominated by $b\bar{b}$ events and material interactions.

LLPs decaying into jet pairs [EPJC (2017) 77 812]

- Search with full LHCb Run 1 (3 fb⁻¹) dataset published.
- Limits at 95% C.L. as a function of π_{ν} lifetime for several π_{ν} masses:

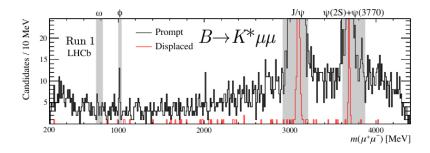


- Plan to analyse final state including kaons and pions (lower π_{ν} masses).
- Improved simulation models including dark showers (multiple dark hadrons).

B-meson decays

Hidden-sector bosons in $B \to K^{(*)}\chi(\mu^+\mu^-)$

- $B^0 \to K^{*0} \chi$ [PRL 115 (2015) 161802] / $B^+ \to K^+ \chi$ [PRD 95 (2017) 071101 (R)]
- Search for hidden-sector bosons $\chi \to \mu^+ \mu^-$ in $b \to s$ penguin decays:
 - Axial-vector portal (χ as axion) [LNP 741 (2008) 3]
 - Scalar (Higgs) portal (χ as inflaton) [JHEP 05 (2010) 10]

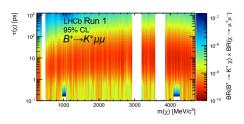

- First dedicated search $(K^{*0}\chi)$ over such a large mass range:

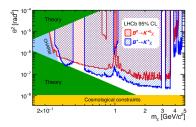
 - Pro: $K^{*0} \to K^+\pi^-$ vertex leads to better $\tau(\chi)$ resolution and less background. Con: $B^0 \to K^{*0}\chi$ has smaller branching fraction than the $B^+ \to K^+\chi$ mode.
- Allow for prompt and **detached** di-muon candidates up to 1000 ps (\sim 30 cm).

Carlos Vázquez Sierra NORDITA 2022 April 25, 2022

Hidden-sector bosons in $B \to K^{(*)} \chi(\mu^+ \mu^-)$

- Full LHCb Run I dataset (3 fb⁻¹) used for both searches.
- Look for a narrow di-muon peak (mass resolution between 2 and 9 MeV/c²).
- Exclude narrow QCD resonances mass distribution: [PRL 115 (2015) 161802]




• MVA selection almost independent of χ mass and decay time (uBoost).

Carlos Vázguez Sierra NORDITA 2022 April 25, 2022

Hidden-sector bosons in $B o {\mathcal K}^{(*)}\chi(\mu^+\mu^-)$

- BR normalised to $\mathcal{B}(B^+ \to K^+ J/\psi)$ ($\sim 10^{-4}$) or $\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)$ ($\sim 10^{-7}$).
- Constraints on $\tau(\chi)$ between 0.1 and 1000 ps (left), [PRD 95 (2017) 071101 (R)]
- Constraints on mixing angle θ^2 between the Higgs and χ in the inflaton model (right):

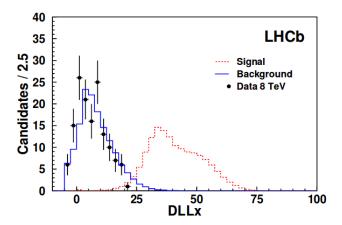

- No evidence for signal observed.
- Large fraction of allowed inflaton parameter space ruled out.

Carlos Vázquez Sierra NORDITA 2022 April 25, 2022

Other searches

ALPs decaying into pairs of photons

- Constraints from LHC resonance searches above $m_a \sim 60 \text{ GeV/c}^2 \ (a \to \gamma \gamma, jj)$.
- ullet But poor limits for low masses ightarrow use $\gamma\gamma$ x-section measurements. [PLB (2018) 06 039]
- ullet LHCb could cover the region between 3 and 10 GeV/c² (recast): [JHEP 1901 (2019) 113]



- Trigger (MVA) for **soft** $\gamma\gamma$ searches.
- Two selections [LHCb-PUB-2018-006] [arXiv:1906.09058] \rightarrow B: cut around $m(B_s^0)$ (since 2015). \rightarrow ALP: up to 11 GeV/ c^2 (only 2018).
- Planned search using 2018 LHCb data.

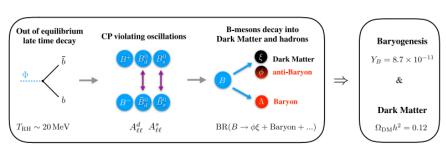
В	ALP
> 3.5	> 5
> 8	> 11
[3.5, 6.0]	[6.0, 11.0]
> 2	> 5
	> 3.5 > 8 [3.5, 6.0]

Identify exotic signatures using RICH sub-detectors

- ullet Use likelihoods to separate particles according to their masses, eta, energy loss...
- Proof of concept (search for CMSP particles at LHCb) [EPJC (2015) 75:595]
- An example distinguish between exotic heavy particles from Drell-Yan muons:

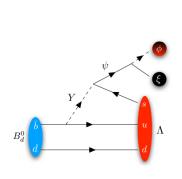
Prospects

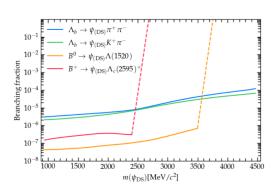
Stealth white paper


- Major report on STEALTH physics at LHCb published in Reports on Progress in Physics [ROPP (2022) 85 024201] [arXiv:2105.12668]
- More than 20 proposed searches on different models are described:

```
4.1.2 Confining Hidden Valleys and the Twin Higgs model . . . . . . .
                    4.2.1 Novel B-decay signatures of light scalars at high energy facilities .
                   4.8.2 Probing the flavor violating ALP couplings
 4.4.1 Mesogenesis: Baryogenesis and Dark Matter from Mesons . . . . .
                  4.4.2 Collider Implications of Baryogenesis and DM from B Mesons . .
                   4.10 Soft Bombs/SUEPs/Dark Showers
4.5 Neutrino Masses 40 4.11 Ouirks 59
 4.5.1 Heavy neutral leptons from Drell-Yan production . . . . . . . .
```

- B-mesogenesis: baryonic DM from B-hadron decays [EPJC (2021) 81 964]
- Confining HV: dark hadrons decaying into SM light hadrons [JHEP (2020) 115]
- Composite ALP: light pseudoscalar in Composite Higgs models [EPJC (2022) 82 3]


S1: B-mesogenesis


- Explain baryon asymmetry and DM abundance at the same time.
- Propose a DM candidate with baryon number: [PRD 99, 035031]
- ullet Observables in the model are $A^{s,d}_{SL}$ and $\mathcal{B}(H_b o \Psi_{(DS)} + X).$

S1: B-mesogenesis

- Predictions of $\mathcal B$ down to 10^{-6} and $A_{SL}^{s,d}$ between 10^{-5} and 10^{-3} .
- $A^{s,d}_{SL}$ is measured with high precision, while $\mathcal{B}(H_b \to \Psi_{(DS)} + X)$ has been never studied.
- LHCb can constrain the allowed space by the end of Run 3 (15 fb⁻¹) [EPJC (2021) 81 964]

S2: Confining HV

• Generic search for $H \to SS$ where $S \to K^+K^-$ instead of to HF: [JHEP (2020) 115]

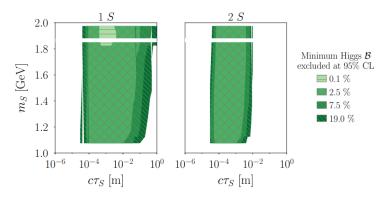
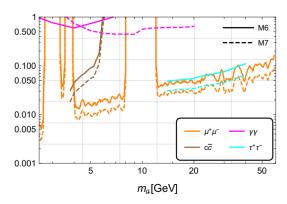
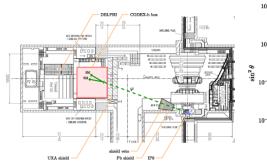
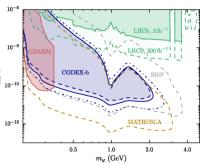



Figure 3. Range of S lifetime and mass for which a 95% CL exclusion of the branching fraction of the decay $h \to SS$ is possible at LHCb with an integrated luminosity of 15 fb⁻¹ for different values of this branching fraction. We assume BR $(S \to K^+K^-) = 100\%$ in these plots. Left plot shows the limits when searching for just one S at the event, while right plot when searching for both of them.

Carlos Vázquez Sierra NORDITA 2022 April 25, 2022


S3: Composite ALP


- Axion-like particle in the context of Composite Higgs models: [EPJC (2022) 82 3]
- Low-mass pseudoscalar decaying into pairs of leptons, quarks or photons.
- ullet Reinterpreation of existing $\gamma\gamma$ (QCD axion projections) and $\mu\mu$ (experimental) boundaries.
- Studies for final states consisting of $\tau\tau$ and $c\bar{c}$ into D mesons.

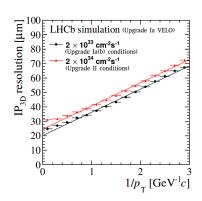
Extended reach for LLPs (CODEX-b + LHCb)

- Compact detector for exotics: [PRD 97 (2018) 015023]
 - Box of tracking layers to search for decays-in-flight of LLPs generated at IP8.
 - Interface with LHCb for identification and partial reconstruction of possible LLP events.
- Prospects for several benchmark models studied:
 - Prospects (various detectors) for $B \to X_s \varphi$ (φ as a light scalar) shown below.
 - LHCb has already provided limits for this signature using Run 1 data [PRD 115 (2015) 161802]

Conclusions

- LHCb proved to be **very competitive** for Stealth physics:
 - Excellent vertexing, tracking and soft trigger.
 - Especially competitive for low masses and lifetimes.
 - Rich variety of models and signatures can be approached.
- Bright prospects for the future:
 - ullet Removal of hardware trigger o access softer kinematics.
 - Better vertex resolution and tracking capabilities.
 - New techniques under development for ideas on new signatures.
- Many other existing results and proposed studies not covered:
 - LFV Higgs decays [EPJC (2018) 78 1008]
 - HNLs from B and D meson decays, or prompt W decays [EPJC (2021) 81 248]
- Major report on Stealth physics at LHCb: more than 20 models covered.

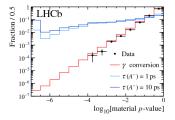
Carlos Vázguez Sierra NORDITA 2022 April 25, 2022

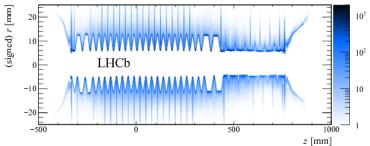

Thanks for your attention!

Backup

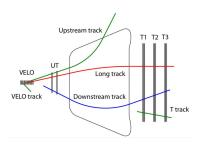
The upgraded LHCb VELO

• Upgrade II VErtex LOcator: [CERN-LHCC-2017-003]


- Probably based on Upgrade la VELO (silicon pixels).
- Access to shorter lifetimes, better PV and IP resolution, and real-time alignment.
- But 10x multiplicity, pile-up and radiation damage w.r.t. Upgrade Ia(b).
- Possibility of removing RF-foil for Upgrade II:
 - \rightarrow better IP resolution + no material interactions.



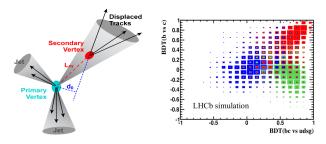
VELO material map [JINST 13 (2018) P06008]


- Background dominated by material interactions for displaced searches at LHCb.
- Mandatory to **keep control** of material interactions veto them in an efficient way:

- ullet Background mainly due to γ conversions (left plot).
- A new VELO material map has been developed:
 - Model in **great detail** both sensors & envelope.
 - Assign a **p-value** to material interaction hypothesis.
 - Sensitivity improvement by $\mathcal{O}(10)$ to $\mathcal{O}(100)$.
 - Based on data from beam-gas collisions (plot below).

The LHCb reconstruction

Downstream tracks:


- Reconstruction of particles decaying beyond VELO.
- Tracks with worse vertex and momentum resolution.
- Trigger on downstream tracks \rightarrow better for LLP (\leq 2 m) signatures.
- Optimisation studies on-going [LHCb-PUB-2017-005]

Upstream tracks:

- Reconstruction of soft charged particles bending out of the acceptance.
- New tracker (UT) high granularity, closer to beam pipe.
- ullet Proposal to add magnet stations (MS) inside the magnet o improve low p resolution.

Jet reconstruction and identification at LHCb

- Jet reconstruction: [JHEP (2014) 01 033]
 - ullet Particle flow algorithm (including neutral recovery) o jet input.
 - Anti- k_T algorithm for clustering (R = 0.5) \rightarrow efficiency > 95% for $p_T > 20$ GeV.
 - ullet Jet energy scale calibrated on data (using $Z
 ightarrow \mu \mu + {
 m jets}$),
 - Energy resolution from 10 to 15% for a p_T range between 10 and 100 GeV.
- Secondary Vertex (SV) identification and jet tagging: [JINST 10 (2015) P06013]
 - ullet Reconstruct SV from displaced tracks o kinematic and quality requirements on both,
 - Train two Boosted Decision Trees (BDTs) for a two-step jet flavour tagging:
 - SV displacement from PV, kinematics, charge and multiplicity;
 - SV corrected mass, defined as $M_{corr}(SV) = \sqrt{M^2 + p^2 \sin^2 \theta} + p \sin \theta$.
 - ullet BDT(bc|udsg) to separate light and heavy flavour jets, BDT(b|c) to separate b from c-jets.
 - Tagging efficiency of b(c)-jets of 65% (25%) with 0.3% contamination from light jets.

