Is There Still Room For Naturalness?, Stockholm, April 19-29, 2022

Probing the composite nature of the Higgs boson at the LHC

Aurelio Juste (ICREA/IFAE, Barcelona)

Outline

- Introduction
- Light overview of Composite Higgs paradigm
- Status and plans for Run 2 searches
 - Fermionic resonances
 - Bosonic resonances
- Future prospects at the LHC and beyond
- Summary and outlook

Why is the Higgs Boson so Light?

All elementary scalars are expected to be ultra-heavy.

• Mass not protected by symmetries like for fermions (chiral symmetry) or vector bosons (gauge symmetry).

 Λ = New physics cutoff

Either New Physics appears at a scale Λ or there has to be a very delicate cancellation ("fine tuning").

If cut-off is at $\Lambda = M_{Pl} = 10^{19} \text{ GeV}$, need: $(125 \text{ GeV})^2 \approx (10^{19} \text{ GeV})^2 - (10^{19} \text{ GeV})^2$

listening to your favorite radio needs the tuned frequency to match that of the radio channel:

radio freq. = 59.05871852091501091981287962349857612 kHz tuned freq. = 59.05871852091501091981287962349857987 kHz

Solutions to the Hierarchy Problem

New Physics stabilizes the hierarchy

Supersymmetry: new symmetry that relates scalars to fermions (cancellation of quadratic divergences).

Solutions to the Hierarchy Problem

New Physics stabilizes the hierarchy

Supersymmetry: new symmetry that relates scalars to fermions (cancellation of quadratic divergences).

Compositeness: the Higgs boson is not an elementary particle but a composite object.

➔ No true hierarchy problem beyond the scale of compositeness.

AdS/CFT

Warped Extra Dimensions:

generate the gauge hierarchy. Higgs boson naturally light.

Composite Higgs Paradigm

New strong interaction that confines at a scale $\Lambda_c \sim 10$ TeV.

• Inspired by QCD where we observed light scalars without problems of naturalness.

Higgs Boson Couplings

Unravel composite nature of the Higgs boson by measuring its couplings to SM particles!

Higgs Boson Couplings

Unravel composite nature of the Higgs boson by measuring its couplings to SM particles!

Higgs Boson Couplings

Unravel composite nature of the Higgs boson by measuring its couplings to SM particles!

Longitudinal Vector Boson Scattering

 In the SM the Higgs boson ensures perturbative unitarity in longitudinal vector boson scattering:

Longitudinal Vector Boson Scattering

 W_L

 γ, Z

 W_L

 In the SM the Higgs boson ensures perturbative unitarity in longitudinal vector boson scattering:

Longitudinal Vector Boson Scattering

In the SM the Higgs boson ensures perturbative unitarity 0.4 in longitudinal vector boson scattering: 0.3 0.2 W_L W_L W_L W_L W_L W_L 0.1 γ, Z γ, Z W_L W_L W_L W_L 3.5 М W_L W_L 2.5 W_L W_L W_L W_L 2 1.5 H1 0.5 W_L W_L W_L W_L Reduced couplings to vector bosons means the Higgs М boson only does in part its job.

•

Partly unitarize

2.5

1.5 1 0.5

Composite Bosonic Resonances

In the SM the Higgs boson ensures perturbative unitarity in longitudinal vector boson scattering:

0.5

Composite bosonic resonances needed to fully unitarize!

Composite Bosonic Resonances

• In the SM the Higgs boson ensures perturbative unitarity in longitudinal vector boson scattering:

- Reduced couplings to vector bosons means the Higgs boson only does in part its job.
- Composite bosonic resonances needed to fully unitarize!

π - π elastic scattering

√s

Composite Fermionic Resonances

Partial Compositeness:

- Elementary fermions couple linearly to heavy vectorlike composite states with same quantum numbers.
- Fermions acquire mass through mixing with new vector-like quarks.
 - Large top-quark Yukawa coupling
 → top-quark largely composite.
- Linear couplings violate global symmetry explicitly
 Higgs potential induced.
- A light Higgs boson requires light top partners (expected to be lighter than bosonic resonances).

They regulate the Higgs mass-squared divergence

Vector-like: left and right components transform the same under SU(2)_L
 → can write mass term in Lagrangian

A Broad Program

Indirect searches (precision EW+Higgs+Top)

Direct searches (fermionic resonances) **Direct searches** (bosonic resonances)

A Broad Program

Fermionic Resonances

Vector-Like Quarks: Production and Decay

Production:

- Pair production: via QCD, "universal" production mode (just depends on m_q).
 - ➔ Focus of Run 1 searches
- Single production: via EW interaction, depends on coupling strength, but potentially important at high m_Q.

Decay: $Q \rightarrow Wq$, Zq, Hq, all with sizable BR

VLQs assumed to mix preferentially with 3rd generation quarks.

400

600

800

19

PROTOS

1200

m_τ [GeV]

1000

Pair Production Strategy

- Very rich phenomenology, depending on VLQ mass and quantum numbers.
- Goal is to probe full BR plane in as model independent possible way.

➔ Searches specialized on particular heavy quark decay modes, but also able to probe part of the plane.

→ Multiple searches required, ideally overlapping on the plane.

Run 1 Summary

(*) Not a combination. Only most restrictive individual bounds shown.

Run 1 excludes T-quark (B-quark) masses below ~720 (740) GeV for any combination of BRs

2000

- Capitalize on Run 1 experience
 - Most sensitive channels
 - Complementary channels
 - Missing channels
 - Most powerful experimental strategies
 - Improved background estimation techniques
 - Reducing the impact of systematic uncertainties

JHEP 1508 (2015) 105

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
 - Large increase in production cross section at high masses
 - Continue to exploit pair production above 1 TeV
 - Add single production above 1 TeV

Pair production model independent, relevant at low mass

Single production model dep. coupling, PDF-favored at high mass

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
 - Large increase in production cross section at high masses
 - Optimize strategy at high mass

SM resonances are often boosted!

Many well understood tools for tagging of hadronically decaying W, Z, Higgs and top!

h-jet

ြ<u>ို</u>ရ 160

ATLAS

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity

ATLAS ATLAS ATLAS ATLAS ATLAS Re ATLAS Re ATLAS Re Good for F 40 20 Delivered: 156 fb⁻¹ LHC Delivered Recorded: 147 fb⁻ sophisticated Physics: 139 fb⁻¹ ATLAS Recorded 2015: 3.9 fb⁻¹ recorded **Good for Physics** Less First results exceeding Run 1 sensitivity! **2016**: ~36 fb⁻¹ recorded Exceed design inst. lumi of 10³⁴ cm⁻²s⁻¹. 20 Jan'¹⁵ Jul'¹⁵ Jan'¹⁶ Jul'¹⁶ Jan'¹⁷ Jul '17 Jan '18 Jul '18 Many results still use: Month in Year up to 36 fb⁻¹ (in analysis) 600 Recorded Luminosity [pb⁻¹/0.1] ATLAS Online, 13 TeV [Ldt=146.9 fb⁻¹ **2017**: ~47 fb⁻¹ recorded 500 2015: *<u>* = 13.4 2016: <µ> = 25.1 Record inst. lumi of $\sim 2.1 \times 10^{34}$ cm⁻²s⁻¹. $2017: < \mu > = 37.8$ 400 $2018: < \mu > = 36.1$ **2018**: ~61 fb⁻¹ recorded Total: $<\!\!\mu > = 33.7$ 300 sophisticated Inst. lumi regularly at ~2x10³⁴ cm⁻²s⁻¹. 200 More 100 Full Run 2: ~139 fb⁻¹ (in analysis) 0^L 10 20 30 50 60 70 80 40

Outstanding performance!

√s = 13 TeV

Pair Production: TT→Ht+X

- Search targeting high BR(T→Ht), with H→bb, but designed as broad-band search.
- Strategy:
 - Consider lepton+jets and high-E_T^{miss}+jets channels.
 - Top and Higgs tagging via mass cut on large-R jets.
 - Categorize events according to b-tag, top-tag and Higgs-tag multiplicities (a total of 34 regions).
 - Signal-depleted regions used to constrain in-situ bkg uncert. through likelihood fit to data.

- Data

1-lepton 0-lepton

tīt + ≥1c Non-tī

Data / Bkg

Events

10⁵

10⁴

10³

10²

10

1.5

0.5

C

ATLAS

√s = 13 TeV, 36.1 fb⁻¹

Search regions

Post-fit (Bkg-only)

Pair Production: BB, $X_{5/3}X_{5/3} \rightarrow WtWt$

- Searches targeting $B \rightarrow W^{-1}$ or $X_{5/3} \rightarrow W^{+1}$.
- Consider SS dilepton+jets and lepton+jets signatures, both with comparable sensitivity.
- Strategy (lepton+jets):
 - Preselection: 1 lepton, high E_T^{miss} , \geq 4 jets/ \geq 1 b-tags.
 - Multiple event categories depending on the presence of boosted top or hadronic W bosons.
 - Analyze B-quark mass or BDT output (ATLAS), or min[M(I,b)] (CMS) spectra.

Pair Production Summary: Vector-Like Top

PRL 121 (2018) 211801 $BR(T \rightarrow Ht)$ m_T = 900 GeV $m_{\tau} = 800 \text{ GeV}$ ATLAS B(bW)0.8 Vs = 13 TeV, 36.1 fb -1 Unphysical Unphysical 0.65 ---- Exp. exclusion Dbs. exclusion 0.4 W(Iv)b+X [arXiv:1707.03347] 0.2 H(bb)t+X [arXiv:1803.09678] Z(VV) t+X [anxiv:1706.10751] m_T = 950 GeV m_T = 1000 GeV 0.8 Trilep./same-sign |CERN-EP-2018-171] Unphysical Unphysic; 0.6 Z(II)t/b+X [arXiv:1606.16555] All-had (CERN-EP-2018-176) 0.4 0.2 ¥ SU(2) doublet

SU(2) singlet m_T = 1050 GeV m_T = 1100 GeV m_T = 1150 GeV 0.8 Unonysical Unphysic Unphysic 0.6 0.4 0.2 B m_T = 1200 GeV m_T = 1300 GeV m_T = 1400 GeV 0.8 Unphysica Unphysical Unonysical 0.6 0.4 0.2 000 0.2 0.4 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 0 0.6 $BR(T \rightarrow Wb)$

Pair Production Summary: Vector-Like Top

PRL 121 (2018) 211801

ATLAS

VLT masses below ~1.3 TeV excluded for any possible combination of BRs

CMS

Vector-like T BR Hypothesis	95% CL Limit on m _⊤ (TeV) obs (exp)	95% CL Limit on m _⊤ (TeV) obs (exp)
100% Wb (chiral, Y)	1.35 (1.30)	1.28 (1.30)
T singlet	1.31 (1.23)	1.20 (1.16)
T in (T, B) doublet	1.37 (1.32)	1.28 (1.24)

Pair Production Summary: Vector-Like Bottom

PRL 121 (2018) 211801

Pair Production Summary: Vector-Like Bottom

PRL 121 (2018) 211801

Need better $B \rightarrow Hb$ searches!

VLB masses below ~1.0 TeV excluded for any possible combination of BRs

CMS

Vector-like B BR Hypothesis	95% CL Limit on m _B (TeV) obs (exp)	95% CL Limit on m _в (TeV) obs (exp)	
100% Wt (chiral, X)	1.35 (1.34)	1.24 (1.24)	
B singlet	1.22 (1.21)	1.17 (1.13)	
B in (B, Y) doublet	1.14 (1.13)	0.94 (0.92)	

Pair Production: BB→Hb/Zb+X

- Search targeting $B \rightarrow Hb/Zb$ with $H \rightarrow bb$ and $Z \rightarrow qq$.
- Strategy:
 - Consider multijet final states with 4, 5, or \geq 6 AK4 jets.
 - Use AK8 jets w/ soft-drop algorithm+N-subjettiness to tag 2-prong candidates from boosted H/Z decay.
 - Further categorize events according to target topology (bHbH, bHbZ, bZbZ) and require high b-tag multiplicity (2-4, depending on topology).
 - Define chi2 variable to assign jets to each VLQ and reconstruct VLQ mass.
 - Multijet background estimated using data-driven technique.

Full Run 2

Pair Production: TT/BB→Zt/Zb+X (2I/3I) Full Run 2

- Search targeting T/B \rightarrow Zt/Zb with Z \rightarrow II.
- Strategy:
 - Consider 2I OS and 3I channels with boosted Z→II candidate and ≥1 b-tags.
 - Top/W/Higgs tagging via multiclass NN applied to reclustered large-R jets.
 - Categorize events according to boosted object tag multiplicities (a total of 18 signal regions).
 - Dedicated control regions for Z+jets and diboson backgrounds.
 - Analyze m(Zb) or H_{T} -related variables.

Model	Observed (Expected) Mass Limits [TeV]			
	2ℓ	3l	Combination	
$T\bar{T}$ Singlet	1.14 (1.16)	1.22 (1.21)	1.27 (1.29)	
TT Doublet	1.34 (1.32)	1.38 (1.37)	1.46 (1.44)	
$100\% T \to Zt$	1.43 (1.43)	1.54 (1.50)	1.60 (1.57)	
B <i>B</i> Singlet	1.14 (1.21)	1.11 (1.10)	1.20 (1.25)	
B <i>B</i> Doublet	1.31 (1.37)	1.07 (1.04)	1.32 (1.38)	
$100\% B \to Zb$	1.40 (1.47)	1.16 (1.18)	1.42 (1.49)	

Individual search with comparable sensitivity to ATLAS combination @36 fb⁻¹

Single Production Strategy

- Many channels (w/ and w/o leptons) to be exploited.
- Powerful handles against backgrounds:
 - Forward jet tagging •
 - **Boosted techniques** ٠
 - VLQ mass reconstruction ٠

Beware of:

- Helicity propagation in decay
- Off-shell/non-resonant production .
- Signal/background interference .

34

Single Production: T→Ht all-hadronic Full Run 2

- Search targeting $T \rightarrow Ht$, with $H \rightarrow bb$ and $t \rightarrow qqb$.
- Strategy:
 - Require two high-p_T large-R jets with b-subjets.
 - 2D grid based on the tagging of the two large-R jets:
 - Higgs (mass+ τ_{21}) or top (mass+DNN) candidate
 - Number of b-tagged VR trackjets inside large-R jet
 - → Used to define multiple CRs, VRs, and the SR.
 - Multijet background estimated using ABCD method.

Single Production: T→Zt mono-top

- Search targeting $T \rightarrow Zt$, with $Z \rightarrow vv$ and $t \rightarrow qqb$.
- Strategy:
 - Use AK4 jets for b-tagging and AK8 jets w/ soft-drop algorithm+N-subjettiness to tag boosted W or top.
 - Define 6 event categories depending on top reconstruction method (merged, partly merged and resolved) and forward jet multiplicity (0, ≥1).
 - Main backgrounds from tt and V+jets, estimated from MC w/ dedicated corrections derived in CRs.
 - Signal extraction from simultaneous fit to transverse mass of top quark and E_T^{miss} across the 6 SRs.

Full Run 2

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches

 - Combinations, particularly for single production!

$$\mathcal{L} = \frac{g_w}{2} \left[c_R^{XV} \,\overline{X}_R \psi t_R + c_L^{XV} \,\overline{X}_L \psi t_L \right] + \frac{g_w}{2} \left[c_L^{XV} \,\overline{X}_L \psi b_L + c_R^{XV} \,\overline{X}_R \psi b_R \right]$$

$$\mathbf{7} + \left[c_R^{Xh} \, h \, \overline{X}_L t_R + c_L^{Xh} \, h \, \overline{X}_R t_L \right] + \left[c_L^{Xh} \, h \, \overline{X}_R b_L + c_R^{Xh} \, h \, \overline{X}_L b_R \right] + \text{h.c.} ,$$

		couplings			
partner (MG name)	Q	W^{\pm}	Z	h	$W^{\pm}W^{\pm}$
$T_{2/3}$ (T23)	2/3	c_L^{TW}, c_R^{TW}	$c_L^{TZ}, \ c_R^{TZ}$	c_L^{Th}, c_R^{Th}	_
$B_{1/3}$ (B13)	-1/3	c_L^{BW}, c_R^{TW}	$c_L^{BZ}, \ c_R^{BZ}$	$c_L^{Bh}, \ c_R^{Bh}$	
$X_{5/3}$ (X53)	5/3	c_L^{XW}, c_R^{XW}	—		
$Y_{4/3}$ (Y43)	-4/3	c_L^{YW}, c_R^{YW}			
$V_{8/3}$ (V83)	8/3				$c_L^{VW}, \ c_R^{VW}$

JHEP 04 (2013) 004

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches
- Make sure we don't miss a signal!
 - Non-standard decays BR(Q→Wq)+BR(Q→Zq)+BR(Q→Hq)<1 Example: Q→q+η, η CP-odd scalar

- If exotic BRs dominant, signal may be picked by existing searches.
- For comparable BRs, it becomes difficult as signal split into many signatures.

But also opportunity for new exciting searches: e.g. **TT→6-top**!

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches
- Make sure we don't miss a signal!
 - Non-standard production

E.g. via heavy W': W' \rightarrow TB (m_W \geq m_T+m_B),

W' \rightarrow Tb or Bt (m_{T/B}+m_{t/b}<m_{W'}<m_T+m_B)

Full Run 2

Bosonic Resonances

Bosonic resonances

- Also expect composite spin-1 resonances (ρ =G', Z', W'), which decay into SM particles.
 - Expect the strongest couplings to heavy SM states (t, W, Z, h).
- Main production mechanisms: Drell-Yan and/or vector-boson fusion

- Preferred signatures:
 - **Diboson resonances**
 - 3rd generation quark resonances (tt, bb, tb) ٠
 - Dilepton/dijet resonances
- In non-minimal CH models can have additional pNGBs besides the SM Higgs \rightarrow extra heavy scalars!

Many final state signatures explored!

- Considering both resolved and boosted topologies.
- Most sensitive signatures at high mass: use highest BR decay W/Z decay modes. –
- Also probe VH with $H \rightarrow bb$, $\tau \tau$.

M(JJ)=4.4 TeV Run: 338846 Event: 2998836394 2017-10-01 21:17:47 UTC

m_{J1J2}~4.4 TeV

p_{T,J2}=2.3 TeV, m_{J2}=62.5 GeV

p_{T,J1}=2.1 TeV, m_{J1}=89.5 GeV

Reaching cross sections down to ~0.2-5 fb for $M_{V'}$ ~4 TeV!

$\rho^0 \rightarrow$ tt Searches

Interference w/ SM tt neglected

Future Prospects

- Many full Run 2 analyses still to be finalized.
- Significant improvements expected for full Run 2+3 dataset analyses:
 - Almost x3 increase in statistics.
 - More sophisticated analysis techniques.
 - Combinations!

Direct searches (bosonic resonances)

arXiv:1905.03764

kappa-3 scenario	HL-LHC	
$1 \geq \kappa_W > (68\%)$	0.985	
$1 \geq \kappa_Z > (68\%)$	0.987	
κ_g (%)	$\pm 2.$	
κ_{γ} (%)	± 1.6	
$\kappa_{Z\gamma}$ (%)	±10.	
κ_c (%)	—	
κ_t (%)	± 3.2	
κ_b (%)	± 2.5	
κ _μ (%)	±4.4	
κ_{τ} (%)	±1.6	
BR _{inv} (<%, 95% CL)	1.9	
BRunt (<%, 95% CL)		
	4.	

Reach few % precision on Higgs couplings

Direct searches (bosonic resonances)

Indirect searches (precision EW+Higgs+Top)

Direct searches (fermionic resonances)

Beyond LHC

Beyond LHC

Beyond LHC

- Broad program of studies at the LHC to test the Composite Higgs paradigm:
 - Precision measurements of Higgs boson couplings.
 - Direct searches for new heavy resonances from the composite sector.
- Full Run 2 dataset analysis in full swing. About to start Run 3.
 Significant improvements expected for full Run 2+3 dataset analyses:
 - Almost x3 increase in statistics.
 - More sophisticated analysis techniques.
 - Combinations!

- Broad program of studies at the LHC to test the Composite Higgs paradigm:
 - Precision measurements of Higgs boson couplings.
 - Direct searches for new heavy resonances from the composite sector.
- Full Run 2 dataset analysis in full swing. About to start Run 3.
 Significant improvements expected for full Run 2+3 dataset analyses:
 - Almost x3 increase in statistics.
 - More sophisticated analysis techniques.
 - Combinations!

- Broad program of studies at the LHC to test the Composite Higgs paradigm:
 - Precision measurements of Higgs boson couplings.
 - Direct searches for new heavy resonances from the composite sector.
- Full Run 2 dataset analysis in full swing. About to start Run 3.
 Significant improvements expected for full Run 2+3 dataset analyses:
 - Almost x3 increase in statistics.
 - More sophisticated analysis techniques.
 - Combinations!

Are we already seeing them in the B-physics anomalies?

- Broad program of studies at the LHC to test the Composite Higgs paradigm:
 - Precision measurements of Higgs boson couplings.
 - Direct searches for new heavy resonances from the composite sector.
- Full Run 2 dataset analysis in full swing. About to start Run 3.
 Significant improvements expected for full Run 2+3 dataset analyses:
 - Almost x3 increase in statistics.
 - More sophisticated analysis techniques.
 - Combinations!

We will know soon!

Are we already seeing them in the B-physics anomalies?

- Broad program of studies at the LHC to test the Composite Higgs paradigm:
 - Precision measurements of Higgs boson couplings.
 - Direct searches for new heavy resonances from the composite sector.
- Full Run 2 dataset analysis in full swing. About to start Run 3.
 Significant improvements expected for full Run 2+3 dataset analyses:
 - Almost x3 increase in statistics.
 - More sophisticated analysis techniques.
 - Combinations!

We will know soon!

 Great prospects for gaining further insights at upcoming LHC runs and (especially) at future colliders!

Are we already seeing them in the B-physics anomalies?

Vector-Like Quarks: Production and Decay

Production:

- Pair production: via QCD, "universal" production mode (just depends on m_Q).
 - ➔ Focus of Run 1 searches
- Single production: via EW interaction, depends on coupling strength, but potentially important at high m_Q.

O

0000

Associated $tt \rho^0$ Production

Full Run 2

If only t_R has a high degree of compositeness:

Associated bb ρ^0 and tb ρ^+ Production Full Run 2

Other possibilities:

