22 Solutions to the Hierarchy Problem

University of California, Santa Barbara

Nathaniel Craig UCSB

Overview of CMS EXO results

June 2021					$\sqrt{s} = 13 \text{ TeV}$	
Model	Signature ($\mathcal{L} dt$ [fb ⁻¹]	Mass limit		Reference	
$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & \ 2\mbox{-6 jets} & E_T^{miss} \ mono\mbox{-jet} & \ 1\mbox{-3 jets} & E_T^{fniss} \end{array}$	139 36.1	$ \vec{q} $ [1×, 8x Degen.] 1.0 $ \vec{q} $ [8x Degen.] 0.9	1.85 m($\tilde{\chi}_1^0$)<400 GeV m(\tilde{q})-π($\tilde{\chi}_1^0$)=5 GeV	2010.14293 2102.10874	
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{0}$	$0 e, \mu$ 2-6 jets E_T^{miss}	139	ğ ğ Forbidden	2.3 m(k˜1)=0 GeV 1.15-1.95 m(k˜1)=1000 GeV	2010.14293 2010.14293	
$\begin{array}{c} \widetilde{\mathcal{O}} & \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} W \tilde{\chi}_{1}^{0} \\ \overbrace{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} (\ell \ell) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \end{array}$	$ \begin{array}{lll} 1 \ e, \mu & \ 2 \text{-} 6 \ \text{jets} \\ e^e, \mu \mu & \ 2 \ \text{jets} & \ E_T^{\text{miss}} \\ 0 \ e, \mu & \ 7 \text{-} 11 \ \text{jets} & \ E_T^{\text{miss}} \\ \text{SS} \ e, \mu & \ 6 \ \text{jets} \end{array} $	139 36.1 139 139	ž 1.2 ž 1.12 ž 1.15	2.2 $m(\tilde{k}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{k}_{1}^{0}) = 50 \text{ GeV}$ 1.97 $m(\tilde{k}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{k}_{1}^{0}) = 600 \text{ GeV}$	2101.01629 1805.11381 2008.06032 9.005.7	
$\underline{\tilde{g}}_{\tilde{g}, \tilde{g} \to t \tilde{\chi}_1^0}$	$\begin{array}{ccc} \text{0-1 } e, \mu & \text{3 } b \\ \text{SS } e, \mu & \text{6 jets} \end{array}$	79.1 13	6 h 3V6 1.25	m (ĝ)-m(\tilde{k}_1^i 00 G	AT DN 010101	
$\tilde{b}_1 \tilde{b}_1$	0 e,µ 2 b	V		5 10 GeV <Δm(\tilde{k}_1^{\prime}) = 20 GeV	101.127 =101.7=527	
$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	$\begin{array}{cccc} 0 \ e, \mu & 6 \ b & E_T^{\text{miss}} \\ 2 \ \tau & 2 \ b & E_T^{\text{miss}} \end{array}$	139 139	b1 Forbidden 0.23-1. 0.13-0.85 0.13-0.85 0.13-0.85	3. $ \Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, \ m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV} \\ \Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, \ m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV} $	1908.03122 ATLAS-CONF-2020-031	$\tilde{t} \rightarrow h \tilde{v}^{\pm} \rightarrow h W$
$\begin{array}{l} \begin{array}{l} \tilde{r}_{1}\tilde{r}_{1},\tilde{r}_{1}\rightarrow\tilde{x}_{1}^{T}\\ \tilde{r}_{1}\tilde{r}_{1},\tilde{r}_{1}\rightarrow Wh\tilde{x}_{1}^{0}\\ \tilde{r}_{1}\tilde{r}_{1},\tilde{r}_{1}\rightarrow Wh\tilde{x}_{1}^{0}\\ \tilde{r}_{1}\tilde{r}_{1},\tilde{r}_{1}\rightarrow\tilde{r}_{1}hv,\tilde{r}_{1}\rightarrow\tau\tilde{G}\\ \tilde{r}_{0}\tilde{r}_{0}\tilde{r}_{0}\tilde{r}_{0}\tilde{r}_{0}\tilde{r}_{0}\tilde{r}_{0}\tilde{c}\tilde{c}\tilde{c}\tilde{c}\tilde{c}\tilde{x}_{1}^{0}\\ \tilde{r}_{0}\tilde{r}_{0}\tilde{r}_{0}\tilde{r}_{0}\tilde{r}_{0}\tilde{r}_{0}\tilde{c}\tilde{c}\tilde{c}\tilde{c}\tilde{c}\tilde{c}\tilde{x}_{1}^{0}\\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	139 139 139 36.1 139	Ti Forbidden 0.65 Ti Forbidden 2 Ti Forbidden 2 Ti 0.85 0		a ATLAS-4 2021-0 2102 / 99 2102 / 99 2102 / 0974	outst
$ \begin{array}{l} \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 {\rightarrow} t \tilde{\chi}_2^0, \ \tilde{\chi}_2^0 {\rightarrow} Z/h \tilde{\chi}_1^0 \\ \tilde{t}_2 \tilde{t}_2, \ \tilde{t}_2 {\rightarrow} \tilde{t}_1 + Z \end{array} $	$\begin{array}{ccc} 1-2 \ e, \mu & 1-4 \ b & E_T^{\text{miss}} \\ 3 \ e, \mu & 1 \ b & E_T^{\text{miss}} \end{array}$	139 139	Image: Transmission of the second s	$m(\tilde{\chi}_{2}^{0}) = 500 \text{ GeV}$ $m(\tilde{\chi}_{2}^{0}) = 360 \text{ GeV}, m(\tilde{\chi}_{1}) = m(\tilde{\chi}_{1}^{0}) = 40 \text{ GeV}$	2006.05880 2006.05880	$ ilde{{f t}} ightarrow ({f t} ilde{\chi}_1^0/{f b} ilde{\chi}_1^\pm ightarrow {f b}W$
$\widetilde{X}_{1}^{\pm}\widetilde{X}_{2}^{0} \text{ via } WZ$ $\widetilde{X}_{1}^{\pm}\widetilde{X}_{1}^{\mp} \text{ via } WW$ $\widetilde{X}_{1}^{\pm}\widetilde{X}_{2}^{0} \text{ via } Wh$ $\widetilde{X}_{1}^{\pm}\widetilde{X}_{2}^{0} \text{ via } \widetilde{U}_{L}/\widetilde{v}$ $\widetilde{\tau}_{1}^{\mp}\widetilde{\tau}_{1}^{\mp} \text{ via } \widetilde{\ell}_{L}/\widetilde{v}$ $\widetilde{\tau}_{1}^{\mp}\widetilde{\tau}_{1}^{\mp} \text{ via } \widetilde{\ell}_{L}/\widetilde{v}$ $\widetilde{\tau}_{1}^{\mp}\widetilde{\tau}_{-R}\widetilde{\tau}_{-R}\widetilde{\tau}_{-R}\widetilde{\tau}_{0}/\widetilde{\tau}_{1}^{0}$ $\widetilde{H}\widetilde{H}, \widetilde{H} \rightarrow h\widetilde{G}/Z\widetilde{G}$	$\begin{array}{c c} \mbox{Multip} & \mbox{ts} & \mbox{jot} & \mbox{c_T} \\ \mbox{2 e,μ} & \mbox{jot} & \mbox{c_T} \\ \mbox{Multip} & \mbox{jot} & \mbox{c_T} \\ \mbox{2 e,μ} & \mbox{c_T} \\ \mbox{2 e,μ} & \mbox{c_T} \\ \mbox{2 e,μ} & \mbox{0 jets} & \mbox{c_T} \\ \mbox{c_T} \\ \mbox{c_{P}} & \mbox{c_{T}} \\ $c_$	139 139 139 139 139 36.1 139 139	$\begin{array}{c} \xi^{\pm}/\hat{x}_{2}^{0} \\ \tilde{x}_{2}^{\pm} \\ \tilde{x}_{1}^{\pm} \end{array} \begin{array}{c} 0.42 \\ \tilde{x}_{1}^{\pm} \\ \tilde{x}_{1}^{\pm} \end{array} \begin{array}{c} 0.96 \\ 0.42 \\ \tilde{x}_{1}^{\pm} \\ \tilde{x}_{1}^{\pm} \\ \tilde{x}_{1}^{\pm} \\ \tilde{x}_{1}^{\pm} \\ \tilde{x}_{1}^{\pm} \\ \tilde{x}_{1}^{\pm} \end{array} \begin{array}{c} 0.16 \\ 0.3 \\ 0.12 \\ 0.39 \\ 0.7 \\ \tilde{x}_{1}^{\pm} \\ 0.7 \\ \tilde{x}_{1}^{\pm} \\ 0.256 \\ \tilde{x}_{1}^{\pm} \\ 0.13 \\ 0.25 \\ \tilde{x}_{1}^{\pm} \\ 0.55 \\ 0.45 \\ 0.93 \end{array}$	$e^{-m(\tilde{r}_{1}^{0})=0} e^{-m(\tilde{r}_{2}^{0})=0} e^{-m(\tilde{r}_{2}^{0})=$	2106.01676, ATLAS-02 4F 2021-022 1911.12 1908.0 5 04. 94, ATLAN ONF-21-0 1908.08215 1911.06660 1908.08215 1911.12606 1806.04030 2103.11684 ATLAS-CONF-2021-022	$\begin{array}{c} \mathbf{Ve}_{t \to b \tilde{\chi}_{1}^{\pm} \to b f} \\ \tilde{t} \to \tilde{t} \to \tilde{t} \\ \tilde{t} \to b \tilde{\chi}_{1}^{\pm} \to b \nu \tilde{\ell} \to b \nu \end{array}$
$\begin{array}{c} \text{Direct}\tilde{\chi}_1^+\tilde{\chi}_1^-\text{prod., long-lived}\tilde{\chi}_1^\pm\\ \text{Stable }\tilde{g}\text{R-hadron}\\ \text{Metastable }\tilde{g}\text{R-hadron, }\tilde{g}\rightarrow qq\tilde{\chi}_1^0\\ \tilde{\ell}\tilde{\ell},\tilde{\ell}\rightarrow\ell\tilde{G}\end{array}$	Disapp. trk 1 jet E_T^{miss} Multiple Multiple Displ. lep E_T^{miss}	139 36.1 36.1 139	$ \begin{array}{c} \tilde{\chi}_{1}^{\pm} & 0.66 \\ \\ \tilde{g} \\ \\ \tilde{g} \\ \tilde{g} \\ [r(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}] \\ \\ \tilde{e}, \tilde{\mu} \\ \tilde{\tau} \\ \end{array} $	Pure Wino Pure higgsino 2.0 2.05 2.4 $m(\tilde{r}_{1}^{0})=100 \text{ GeV}$ $\tau(\tilde{\ell})=0.1 \text{ ns}$ $\tau(\tilde{\ell})=0.1 \text{ ns}$	ATLAS-CONF-2021-015 ATLAS-CONF-2021-015 1902.01636,1808.04095 1710.04901,1808.04095 2011.07812 2011.07812	$egin{array}{c} ilde{f b} ightarrow t \ ilde{f b} ightarrow t \ ilde{f \chi}_1^\pm ightarrow t f W$
$\sum_{i=1}^{\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow Z\ell \rightarrow \ell\ell\ell\ell} \frac{\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu}{\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu} \frac{\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{0}}{\tilde{\pi}, \tilde{r} \rightarrow \ell\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ths} \frac{\tilde{\pi}, \tilde{r} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bhs}{\tilde{\pi}_{1}\tilde{\tau}_{1}, \tilde{\tau}_{1} \rightarrow bs} \frac{\tilde{\tau}_{1}\tilde{\tau}_{1}, \tilde{\tau}_{1} \rightarrow q\ell}{\tilde{\tau}_{1}^{\pm}\tilde{\chi}_{1}^{0}, \tilde{\tau}_{1}^{0} \rightarrow \tau_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ths} \frac{\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow bhs}{\tilde{\tau}_{1}\tilde{\tau}_{1}, \tilde{\tau}_{1} \rightarrow q\ell}$	$\begin{array}{cccc} 3 \ e, \mu & & \\ 4 \ e, \mu & 0 \ \text{jets} & E_T^{\text{miss}} \\ & & 4\text{-5 large jets} \\ & & & \\ & & $	139 139 36.1 36.1 139 36.7 36.1 136	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pure Wino 1.55 $m(\tilde{k}_{1}^{0})=200 \text{ GeV}$.3 1.9 Large \mathcal{X}'_{112} $m(\tilde{k}_{1}^{0})=200 \text{ GeV}$, bino-like $m(\tilde{k}_{1}^{0})=200 \text{ GeV}$, bino-like $m(\tilde{k}_{1}^{0})=200 \text{ GeV}$, bino-like $m(\tilde{k}_{1}^{0})=500 \text{ GeV}$ 1.45 $BR(\tilde{r}_{1} \rightarrow bc/b\mu)>20\%$ $BR(\tilde{r}_{1} \rightarrow q\mu)=100\%$, $\cos\theta_{r}=1$	2011.10543 2103.11684 1804.03568 ATLAS-CONF-2018-003 2010.01015 1710.07171 1710.05544 2003.11956	$\tilde{\mathbf{q}} \rightarrow$ Selection of observed limits at 95% C The quantities ΔM and x represent sparticle and the LSP relative to ΔM
*Only a selection of the available ma	1-2 ϵ, μ ≥6 jets	139 1(<i>X</i> [™] ₁ 0.2-0.32	Pure higgsino	ATLAS-CONF-2021-007	

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

L. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stated otherwise he absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate , respectively, unless indicated otherwise.

Higgs sector cutoff

m_H is not technically natural

The Hierarchy Problem Cartoon

Quantum gravity cutoff

Uninteresting RG flow to IR

Standard Model

 \Rightarrow hierarchy problem

Adding a symmetry

- The familiar host of prompt signals (with or without missing energy) • Rich variety of displaced decays (RPV, twin higgs, folded SUSY, ...)

...and (sometimes) breaking it softly

- **1.** Supersymmetry (a la the electron)
- 2. Global symmetry (a la the pion)
- 3. Discrete symmetry
- 4. Modular invariance

[Dienes et al. '94-'01, ...]

Experimental signals: partner particles

Discrete Symmetries

Consider a scalar *H* transforming as a fundamental under a global SU(4):

V

Potential leads to spontaneous symmetry breaking,

$$V(H) = -m^2 |H|^2 + \lambda |H|^4$$

$$|\langle H \rangle|^2 = \frac{m^2}{2\lambda} \equiv f^2$$

 $\mathcal{I}(3)$ yields seven goldstone bosons.

Discrete Symmetries

Now gauge SU(2)_A x SU(2)_B \subset SU(4), w/ $H = \begin{pmatrix} H_A \\ H_B \end{pmatrix}$ Us Twins

Then 6 goldstones are eaten, leaving one behind.

Explicitly breaks the SU(4); expect radiative corrections.

$$V(H) \supset \frac{9}{64\pi^2} \left(\right.$$

But these become SU(4) symmetric if $g_A=g_B$ from a Z_2

Quadratic potential has accidental SU(4) symmetry.

$$g_A^2 \Lambda^2 |H_A|^2 + g_B^2 \Lambda^2 |H_B|^2 \Big)$$

Discrete Symmetries

Now gauge SU(2)_A x SU(2)_B \subset SU(4), w/ $H = \begin{pmatrix} H_A \\ H_B \end{pmatrix}$ \downarrow \uparrow \downarrow Us Twins

Then 6 goldstones are eaten, leaving one behind.

Explicitly breaks the SU(4); expect radiative corrections.

$$V(H) \supset \frac{9}{64\pi^2} g^2 \Lambda^2 \left(|H_A|^2 + |H_B|^2 \right)$$

But these become SU(4) symmetric if $g_A=g_B$ from a Z_2

Quadratic potential has accidental SU(4) symmetry.

Z2 Standard Model I Interview Intervi

Radiative corrections to mass-squared are SU(4) symmetric thanks to Z_2 :

 $V(H) \supset \frac{\Lambda^2}{16\pi^2}$

Higgs is a PNGB of ~SU(4), but partner states neutral under SM.

$$\mathcal{L} \supset -y_t H_A Q_3^A \bar{u}_3^A -$$

$$h + \ldots$$

Twin Higgs [Chacko, Goh, Harnik '05]

$$\left(-6y_t^2 + \frac{9}{4}g^2 + \dots\right)\left(|H_A|^2 + |H_B|^2\right)$$

Mirror GlueballsHiggs coupling shiftsHiggs portal observables~ tuning

[Curtin, Verhaaren '15]

Cosmology is Key

The problem: thermal history of Z₂-symmetric theory has too much energy density in twin v, γ

$$\Delta N_{\text{eff}} \approx 7.4 \left. \frac{\rho_B}{\rho_A} \right|_{\text{BBN}} \approx 5.6$$

Preserve symmetry & reconcile w/ current limits if energy density set by neutral particle N that

- decouples while relativistic
- decays some time thereafter
- decays primarily to A (SM)

Easy to do w/ symmetric coupling to H_A, H_B [Chacko, NC, Fox, Harnik '16; NC, Koren, Trott '16]

At heart, solving hierarchy problem is about controlling

For finite # of states $\operatorname{Str}\mathcal{M}^{2\beta} \equiv \sum (-1)^F (M_i)^{2\beta}$ states i

For infinite # of states, suitably regularize:

Then many *nondegenerate* spectra have vanishing supertraces

E.g. for masses
$$M_n = \sqrt{n\mu}$$
 and degeneracies
 $g_n = \begin{cases} (-1)^n n^{2k} & \text{for any } k \ge 1, k \in (-1)^n (n^5 - n) & \text{n even: bosons} \\ (-1)^n (n^5 + 2n^3) & \text{n odd: fermions} \end{cases}$

Modular Invariance

[Dienes et al. '94-'01, ...]

 $\delta m_H^2 \sim (\mathrm{Str}\mathcal{M}^0)\Lambda^2 + (\mathrm{Str}\mathcal{M}^2)\log\Lambda + \dots$

Cancellations require degenerate boson/fermion pairs

$$\operatorname{Str}\mathcal{M}^{2\beta} \equiv \lim_{y \to 0} \sum_{\text{states } i} (-1)^F (M_i)^{2\beta} e^{-yM_i^2}$$

Lowering the cutoff

... in diverse dimensions

5. RS / Technicolor

[Randall, Sundrum '99; Weinberg '79; Susskind '79]

6. LED / 10³² x SM

[Arkani-Hamed, Dimopoulos, Dvali '98; Antoniadis + ibid. '98; Dvali, Redi '09]

7. LST / Clockwork

[Antoniadis, Dimopoulos, Giveon '01; Kaplan, Rattazzi '15; Giudice, McCullough '16]

8. Classicalization

[Dvali, Giudice, Gomez, Kehagias '10]

Disorder 9.

[Rothstein '12]

Experimental signals: resonances, ...

Primary distinctions are in spacing & coupling of resonances

• Potential goldmine of relatively unexplored signals for LST - e.g. perturbative string excitations

A Cutoff Solution?: Disorder

How does RS solve hierarchy problem? Curvature localizes the graviton zero mode.

→ Fields localized at different points in 5th $M = e^{-ky} M_{\Omega}$ M_0 dimension see different fundamental scales

> [Rothstein '12]: Can achieve the same outcome in a flat fifth dimension by localizing graviton w/ disorder

$$S = -\int d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R}) + \sum_{\langle i \rangle} \frac{1}{\langle i \rangle} d^5 x \sqrt{G} (M_\star^3 \mathcal{R$$

In this case disorder = randomly spaced & tensioned branes

But: not obvious that it works in detail

An interesting source of exponential hierarchies for scalars [NC, Sutherland '17]

Selecting a vacuum

- **10. Anthropics (pressure)**
- **11. Relaxation (rolling)** [Graham, Kaplan, Rajendran '15]
- **12. NNaturalness (reheating)** [Arkani-Hamed et al '16]
- **13. Crunching away (collapse)** [Csaki et al '20, see also Geller, Hochberg, Kuflik '18, Cheung & Saraswat '18, ...]

 - Cosmology (Bubble collisions; axions; contributions to N_{eff} and Σm_{v}) • Exotic lab signals (displaced decays, hidden sector confinement, intensity frontier, ...)

Vacuum is one of many; end up in observed vacuum through dynamical process or anthropic constraint.

Experimental signals: Diverse, but typically

Relaxion

What if the weak scale is selected by dynamics, not symmetries?

The idea: couple Higgs to field whose minimum sets $m_{H}=0$ The problem: How to make $m_{H}=0$ a special point of potential?

But: immense energy stored in evolving field, need dissipation.

Viable for Higgs + non-compact axion + inflation w/

• Very low Hubble scale ($\ll \Lambda_{QCD}$)

Why not? Various other subtleties regarding technical naturalness, trans-Planckian field excursions, CC, fine-tuning to inflationary sector; need to solve strong CP problem. New UV considerations.

Extensive development, e.g. [Espinosa et al. '15; Hardy '15; Gupta et al '15; Batell, Giudice, McCullough '15; Choi, Im '15; Kaplan, Rattazzi '15; Di Chiara et al. '15; Ibanez et al. '15; Hook, Marques-Tavares '16; Nelson, Prescod-Weinstein '17; ...]

[Graham, Kaplan, Rajendran '15]

Relaxion

10 Giga-years of inflation

[Flacke, Friguele, Fuchs, Gupta, Perez '16]

+5th force for $m_{\phi} < eV$ & cosmology for $eV < m_{\phi} < MeV^{-17}$

New Signals

[Fuchs, Matsedonskyi, Savoray, Schlaffer '20]

breaks CP *assuming $\langle D \rangle$

NNaturalness

N copies of the SM

High Higgs cutoff $\Lambda_{\rm H}$, high gravity cutoff $\Lambda_{\rm G}$

Two effects:

[Arkani-Hamed, Cohen, D'Agnolo, Hook, Kim, Pinner '16]

NNaturalness

Why does copy w/ smallest m_H dominate? Cosmology.

Reheaton ϕ starts universe via ϕ $|H_i|^2$ couplings $m_{H,i}^2 < 0$ $m_{H,i}^2$ $f^c f^c$

Preferentially reheats copy w/ smallest $|m_H| \& m_{H^2} < 0$

N Higgses...in the sky

All sectors reheated by some amount \Rightarrow dark radiation

 $(r=1 \leftrightarrow \text{flat } m_{\text{H}^2}; r<1 \leftrightarrow \text{larger splitting})$

20

Complicating the flow

SM is reached from some intermediate fixed point where, say, a generalized Veltman condition is satisfied

could address the hierarchy problem

A challenge: how do fixed point couplings know about UV scale?

Experimental signals: Not fully explored, but expect new particles w/ SM quantum numbers around the TeV scale. Novelty is that statistics, irreps & couplings differ from more familiar solutions.

$$\delta m_H^2 = \sum_i c_i \frac{g_{i,\star}^2}{16\pi^2} \Lambda_i^2 = 0$$

This is a sense in which

14. Conformal symmetry

Top-down: Embed SM in orbifold of N=4 SYM [Frampton, Vafa '99; Csaki, Skiba, Terning '99]

Bottom-up: "Little conformal symmetry" [Houtz, Colwell, Terning '16]

Exploding the cutoff

Gravity doesn't provide a UV scale & the SM takes care of itself

Scale M_{PI} not associated with relevant operator becoming strong, not "felt" by non-grav physics.

In IR, looks like CFT perturbed by irrelevant operators; in UV, no UV fixed point; cannot define local observables.

Example in 2d, no proposal for 4d.

Experimental signals: Details of gravity sector might be irrelevant. Crucially, must render SM couplings asymptotically free. Not a property of the SM itself, so entails low-scale unification 22

15. Asymptotic fragility

[Dubovsky, Gorbenko, Mirbabayi '13]

Not actually the SM

[Grinstein, O'Connell, Wise '06]

Lee-Wick: higherderivative theory

$$\sim \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2M^2} (\partial^2 \phi)^2 + A$$

Improves UV convergence of diagrams, introduce for every SM

> Can be defined in a unitary, Lorentz-invariant manner with only microscopic acausality. But who ordered that?

17. Lee-Wick (higher derivative scalar)

field
$$\frac{1}{p^2 - m^2} - \frac{1}{p^2 - M^2} = \frac{m^2 - M^2}{(p^2 - m^2)(p^2 - M^2)}$$

Connecting UV & IR

NCQFT (cartoon version): non-commutativity of the form $[x^{\mu}, x^{\nu}] = i\theta^{\mu\nu}$, qualitatively a position-position uncertainty principle $\Delta x^{\mu} \Delta x^{\nu} \ge \theta/2$ [Filk '96, Minwalla, Seiberg, Van Raamsdonk '99, NC, Koren '19]

> Two ways to put this to work for hierarchy problem:

Essential feature of the hierarchy problem: the UV doesn't know about the IR...unless it does?

Two frameworks exhibiting UV/IR mixing: QG & NCQFT

QG (cartoon version): collide sufficiently energetic particles, make a black hole. More energetic particles \rightarrow bigger black hole.

18. Indirect UV/IR mixing

19. Direct UV/IR mixing

[Isabel Garcia Garcia, BSM Pandemic seminar 07/20]

Indirect UV/IR

Usual (EFT) logic of hierarchy problem: uncorrelated UV contributions give broad distribution of possible values of m_h up to cutoff; m_h well below cutoff "unlikely"

Usual (EFT) logic of hierarchy solution: lower the cutoff or eliminate sensitivity.

Alternately: consistency with gravity orchestrates correlations among UV parameters to satisfy bounds, changing the distribution.

 $\frac{m^2}{\Lambda^2}$

Indirect UV/IR: WGC

(Electric) weak gravity conjecture: an

abelian gauge theory must contain a state of charge q and mass m satisfying

[Arkani-Hamed, Motl, Nicolis, Vafa '07]

"Justification": consider BH of charge Q, mass M decaying to this particle

Then BH satisfies

Extremal BH (Z=1) stable unless there exists a state with z > 1

particles produced = Q/q

Energy conservation: mQ/q < M

$Z = Q M_{Pl}/M < z = q M_{Pl}/m$

$\Rightarrow q > m/M_{Pl}$ to avoid stable black holes, remnants, in conflict w/ holography

A Family of Conjectures

[Arkani-Hamed, Motl, Nicolis, Vafa '07]

Magnetic WGC:

[Arkani-Hamed, Motl, Nicolis, Vafa '07]

+Scalar WGC: [Palti '17]

dS WGC: [Montero, Van Riet, Venken '19]

[Arkani-Hamed, Motl, Nicolis, Vafa '07]

New hierarchies from EFT + gravity.

- Electric WGC: $m \leq (gq)M_{\rm Pl}$
- $\Lambda \lesssim g M_{\rm Pl}$
- $m \leq \sqrt{g^2 q^2 \mu^2 M_{\rm Pl}}$
- $m^2 \gtrsim gq M_{\rm Pl} H$
- Axion WGC: $f \leq (1/S)M_{\rm Pl}$

Weak Gravity, Weak Scale?

[Cheung, Remmen '14]: If mass of WGC particle is UV sensitive, then for fixed UVinsensitive parameters, satisfying the WGC enforces fine-tuning. (Or: would orchestrate correlations among UV contributions)

Application to SM: charge SM fermions under weakly gauged (unbroken) $U(1)_{B-L}$ (bounds currently $q \leq 10^{-24}$). Cancel anomalies with RHN v_R

Neutrino mass from EWSB $y_{\nu}HL\nu_R \to m_{\nu} \sim y_{\nu}v$

See also: [Ibañez, Martin-Lozano, Valenzuela '17, ...; March-Russell & Petrossian-Byrne '20, ...]

If lightest neutrino is WGC particle,

m_v ~ 0.1 eV, q≥10⁻²⁹

For fixed y, q, satisfying WGC places an upper bound on v

Weak Gravity, Weak Scale?

New $U(1)_X$ plus matter acquiring some mass from the Higgs. E.g...

[NC, Garcia Garcia, Koren '19]

 $-\mathcal{L} \supset \left\{ m_L L L^c + m_N N N^c + y H^{\dagger} L N^x + y H L^c N \right\} + \text{h.c.}$

Best option: $m_N < m_L$, lightest mass eigenstate χ_1 is WGC particle

Then for fixed (technically natural) g, m_L, m_N, y,

Problem: Magnetic WGC implies Λ well below weak scale. Simple fix...

$$\frac{1}{2}\left(m_{\chi_1}^2 + m_{\chi_1}(m_L - m_N) - m_L m_N\right)$$

Weak Gravity, Weak Scale?

Lightest particle charged under U(1)_X is stable \Rightarrow dark matter candidate

U(1)_X gives a very weak, long-range force, too weak to influence individual collisions but relevant on scale of galaxy clusters

Galaxy cluster collisions can trigger plasma instabilities, making DM collisional on large scales [Ackerman, Buckley, Carroll, Kamionkowski '08; Heikinheimo, Raidal et al '15; Spethmann et al '16]

Timescale of plasma fluctuations set by plasma frequency,

$$\omega_p = \sqrt{\frac{g^2 \rho}{m^2}} \ge \frac{\sqrt{\rho}}{M_{\rm Pl}} \qquad \omega_p^{-1} \lesssim 10^{15} \,\mathrm{s} \times \left(\frac{0.04 \,\mathrm{GeV \, cm^{-1}}}{\rho}\right)$$

C.f. $\tau \sim 1 \, \mathrm{Gyr} \sim 10^{16} \, \mathrm{s}$ for galaxy cluster collisions

Things I can't (yet) cleanly compartmentalize

20. Tune the CC to set the weak scale [Arvanitaki, Dimopoulos, Gorbenko, Huang, Van Tilburg '16]

[Dong, Freedman, Zhao '14, '15]

Example: explicit marginal SUSY breaking involving $U(1)_R$ gauge fields on bdy of AdS₃

$$\delta S \sim \int_{bdy} A \wedge \tilde{A} \sim \int d^2 z J($$

Induces splitting in R-charged multiplets. Feed to R-neutral multiplets w/ yukawa

$$\lambda \phi_N \phi_R^\dagger \phi_R$$

R-neutral scalars massless to all orders

Analogous to

"Other"

21. Massless moduli from explicitly broken SUSY

Self-Organized Criticality

Some systems evolve into critical states on their own (sandpiles, a la [Bak, Tang, Wiesenfeld '84]). Wouldn't that be nice? [Giudice '08, Kaplan '97]

Vanishing Higgs mass coinciding with potential minimum for an extra-dimensional modulus field [Eroencel, Hubisz, Rigo '18] $\dot{m}_H^2 = 0$ **(**φ)**Λ**

22. Self-organized Criticality

[Khoury et al. '19-'20]

1.	Supersymmetry	9.	Disorde
2.	Global symmetry	10.	Anthrop
3.	Discrete symmetry	11.	Relaxati
4.	Modular invariance	12.	NNatura
5.	RS/Technicolor	13.	Crunchi
6.	LED/10 ³² xSM	14.	Conforn
7.	LST/Clockwork	15.	Asympto
8.	Classicalization	16.	Agravity

r

- ics
- ion
- alness
- ing away
- nal symmetry
- otic fragility

- 17. Lee-Wick Theory 18. Weak gravity conjecture 19. Non-commutative QFT 20. Weak scale from CC 21. AdS magic 22. Self-organized criticality
- 23. ...

With apologies for the many omissions...

- Should obviously keep searching for these as hard as possible, but...
- these are a way of making sense of the apparent failure of Wilsonian EFT.
- playing an increasingly central role.

Conclusions

Electroweak hierarchy problem remains one of the strongest motivations for BSM physics.

Close to comprehensively understanding conventional solutions & searching accordingly.

• ...at some point data tips the balance towards truly unconventional solutions. Many of

Promising places to look: discrete symmetry; UV/IR mixing; self-organized criticality. But who am I to say? Lots to explore. Lively intersection of QFT, cosmology, guantum gravity.

Experimental possibilities vast once we understand the full space of theories, cosmology

stified, but imagine facing the ultraviolet catastrophe in the early 20th c.

Thank you!

