Dynamo effect in unstirred self-gravitating turbulence
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Via amplification by turbulent dynamo, magnetic fields can be potentially important for the formation of the first | AR ) e < Ba s
stars. To examine the dynamo behavior during the gravitational collapse of primordial gas, we extend the theory of m . o e -~
the nonlinear turbulent dynamo to include the effect of gravitational compression. The relative importance between ~ - - ¢
dynamo and compression varies during contraction, with the transition from dynamo- to compression-dominated B % - Nonllnear -
amplification of magnetic fields with the increase of density. In the nonlinear stage of magnetic field amplification .
with the scale-by-scale energy equipartition between turbulence and magnetic fields, reconnection diffusion of 7
magnetic fields in ideal magnetohydrodynamic turbulence becomes important. It causes the violation of the flux- - - -~ . 10
freezing condition and accounts for (a) the small growth rate of the nonlinear dynamo, (b) the weak dependence of 1 0-20 1 0-1 8 1 0-16 10-14 1 0-12 1 0-10

magnetic energy on density during contraction, (c) the saturated magnetic energy, and (d) the large correlation
length of magnetic fields. The resulting magnetic field structure and the scaling of magnetic field strength with
density are radically different from the expectations of flux freezing.



Dynamos in various other settings
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Self-gravitating MHD in unbounded space

VQ(I) = 4drG (p - pO) )

Du 2 1
D = -V (cslnp—l—‘iI))—l—E(JxB—l—V-Zp.vS),
DInp
Dt = -V u, Jeans instability
0? = o7 — c2k?
A Consider mostly o,=5
6_ — u X B _ n”OJ! (but 2 in Run 02)
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Earlier work

. L]

Jeans collapse in a turbulent medium op o™ kyT | ol
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from an equation of state and a thermal equation. It is first found
that the solution with uniform density, say D, is not stationary
and corresponds to a uniformly expanding or contracting
(homogeneous isotropic) flow. The equations of motion (4) and
(1) are then written in the accelerated frame of the expansion and,
a’0p+V-(pu)y=0 ~ with the help of some rescaling, evolution equations similar to (4)

a?0u+uvV-u=—-M"2a> 3 (yp) 1Vp"+(2/3)ag+ uaV- Xt
S~

Homogeneous self-gravitating flows
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mass profile undefined; however, this trick has no formal justification. We show that when one
Why does the Jeans Swindle work? includes the expansion of the Universe in the Jeans equation, a term appears which exactly
cancels the divergent term from the background. We thereby establish a formal justification
for using the Jeans Swindle.

M. Falco,'* S. H. Hansen,' R. Wojtak1 and G. A. Mamon?

'Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark
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A swindle is a kind of fraud or confidence trick, Confidence trick

Attempt to defraud a person or group after first gaining their confidence




Dynamo from selfgravitating
turbulent collapse?

High density where
large convergence




Vorticity & magnetic field B
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Summary of the runs
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- ! i E To characterize the flow of energy, it is convenient to de-
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: e = 16 — — —
T P S S [ fine the fractlons eJ = —Wp /Wy, € = —WL/Wj, e =
e i
B .- i i ] Ex / WJ, and €7 J QK /Wy. L1kew1se we define the frac-
- 1 [
. - 16
oooool-x10 tions €™ = Ev/(—WL), and ;M = QM/(—WL). To char-
S E .
i i ] acterize the growth or decay of the magnetic field, we define
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' - ' the nondimensional ratio ey = (—Wr, — Qm)/Qm- A related
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Reynolds number dependence

uk(t) = /2kEx (k,t)/po,  Bi(t) = \/2uokEn(k,t), (13) : E
2F -

respectively. We then define
Rer(t) = ur(t)/vk and Lug(t) = Br(t)/(~/1ropo nk). | _ _
CEVRE é

A Kolmogorov-type spectrum with Ex (k) o« k%3 corre-
sponds then to uy o k=13 and Rey, oc k=43, In the following, 0 : :
- - —157 S _'1 ; é
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10° = 1071¢F

Re(k)
Lu

1072

AN 1077
N\ g - of Rex, and Re; are close to the Taylor microscale Reynolds

1074k L1018 . number (Tennekes & Lumley 1972), which is universally de-
' ' ' ' fined as Rex = v'Aray/v. Here, v = trms/V/3 is the one-
1 10 100 1000 1 10 100 1000 . . . /s
k/k k/k dimensional rms velocity and Aray = /15vpg/Qx V' is the
1 1

Taylor microscale.

enhanced dissipation very late
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Reynolds number definition

consistent definition of the Reynolds number. The correct definition of the

Reynolds number is not the one used here in Eq. (14), or in the many papers
led and co—authored by the lead author. I understand that this dates back
to many works. but the Reynolds number is defined in any major texthook as
Re (or Rm) = L =% v(L) / viscosity. where the viscosity is kinetic or
magnetic, for Re and Rm, respectively. with L being the length scale on
which the Re (or Rm) is defined or measured and v(L) being the velocity
(dispersion) on that length scale (see many textbooks or for quick
reference https://en.uikipedia.org/wiki/Reynolds_number). The definition
used here in Eq. (14) is inconsistent with that general definition of
Reynolds number, because it misses a factor 2pi. In other words. this
incorrect definition of Reynolds number evaluates L and v inconsistently,
i.e.. the velocity (here denoted as u_k in Eq. 14) is not the correct
velocity on the respective length scale (here 1/k). An Re has to be defined
with length and velocity being consistent. such that it is the velocity on
that very length scale used to define Re. This is not the case here in Eq.
14. where v and L are on different scales. This means that the definition
of Re in Eq. 14 is inidorrect, i.e.. it cannot be called a 'Reynolds
number', because it misses a factor 2pi. and therefore. it cannot be

As we explained above. the only universally defined Reynolds number is
Re_lambda. the Taylor microscale Reynolds number. We compare it now with
ours in fAppendix C. The wvalues by our definition are close to it. He

uk(t) = \/QkEK(k',t)/po, Bk(t) = 1/ 2uok’EM(k’,t), (13)

respectively. We then define

Rex(t) = up(t)/vk and Luy(t) = Bi(t)/(\/1ropo nk).
(14)
A Kolmogorov-type spectrum with Fk(k) o k=53 corre-
sponds then to u, x k™% and Rey o« k™43, In the following,
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hope that this addresses this point. They are also consistent in the Of Rekf and Ret are Close to the Taylor microscale ReynOldS

sense mentioned by the referee., because both urms and kf are integral

scale quantities. number (Tennekes & Lumley 1972), which is universally de-
fined as Rex = v'Aray/v. Here, v/ = wurms/V/3 is the one-
dimensional rms velocity and Aty = \/ 15vp0 /Qx v’ is the
Taylor microscale.




Flow of energy

% = —Wjy, ) 1.0000%
< 0.1000
=
d © i
% =Wp + W5+ WL — Qxk, & 0-0100¢
. 0.0010}
< :
dém 0.0001 L
GM _ _yy — :
dt L QMa _
0.0
dék Y
Ep = —<(V(I))2>/8’ETG —(pu.th):—(-pV.u)+H..., _<u.(J><B)>:<an>+?'
Ex = <pu2>/2 where Wp = —(u - Vp) = (pV - 'u;)ls the work done by the
pressure force, W; = —(pu - V®) is the work done by the
Enp — <B2>/2 gravity term, Wi, = (u (J X BQ)) is the. work done l;y the
M HO Lorentz force, and Qk = (2pvS°) and Qu = (uonJ~) are

the viscous and Joule dissipation terms. The thermal energy
density is sourced by the terms —Wp 4+ Qk +@Qn, but with the



Virial parameter
avir = 28k /|Ep|

Ex = (pu”)/2
Ep = —{((V®)*)/87G

d€
—(pu - V) = —(pV - u) + d—f

—WP ~ ;WJ, SK ~ gWJ (16)

The latter can be integrated to give £k ~ (2/3) f W3 dt. Like-
wise, integrating Eq. (5) gives —&p ~ f W3 dt, which implies
avir = 28k /|Ep| & 4/3. Its value would be unity, if only half
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Vortical & irrotational parts

To characterize the compressive and solenoidal flow compo-
nents, it is convenient to compute the rms velocity diver-

gence, (V - U)rms = <(V -'u,)2>1/2, and the rms vorticity,

= (w2, where w = V x u, and to define

kw.w = (V : u)rms/urmsa (9)

wrms

kw — Wrms/’”rms, (10)

which have the dimension of a wavenumber. Since the flow is
helical, we can also define the wavenumber

kw-u — ‘(wu>‘/u3msa (11)

which characterizes the typical wavenumber where helicity
plays a role. Large values of kwv.u, kw, and ke.. imply
strong flow divergences or compressions, strong vortices, and
strong swirls, respectively. To characterize the flow compres-
sion from the gravitational collapse, we also define

kpw.w = —(pV - ) /potrms  (wWhen kpv.. > 0), (12)

PQi—l
~
3]

Vorticity becomes relatively weaker
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~W,, Qy with Wy, —W,, and @

Cases with stronger magnetic field
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Spectra: comparison w/ imposed field
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Turbulent magnetic field: Imposed field:
large-scale vorticity production no vorticity production
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Both signs of magnetic helicity

Helicity spectra: comparison w/ imposed field
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Work against compression, stretching, & curvature force

—(u- (J x B)) = (pond”) + —~.

1.0 I /

| Run 02: weak field and| -

The W1 term can be split into three constituents: Wy = o,=2 (instead of 5) |
= '

- VB 20}, W = (u- (B-VB/pwo)y), and Wit = (u.
(B-VB/u) ). Here, —V B?/2u0 is the magnetic pressure
contribution of J x B, and (B-V B /o) and (B-VB/puo) 1

7/Csk1

00 _______ ------ R . -

are the stretching terms along and perpendicular to the mag- (b) |
1 I 1
v = (=WL — Qu)/Em 0.0 0.5 1.0 1.5
1
YL = (=Wi — Qu)/Ewn

0.10F /.,y Y T 7

e Early growth dominated by curvature 0'5§ U

_____ T . 0.05:
* But declines with time T '
 Compression just at late times ) X 000
* Possibly not by dynamo action Vo
o ey . . . -0.05
e Strong initial magnetic field . . ‘ a
0.0 0.5 1.0 1.5 0.0

* Compression term negative t ok,
e But strong compression at late times



Work terms for 2-D and 3-D fields

In the following, we also decompose Wy, by writing it as
WL —_ <J . (’LL X B)) and expanding the Curl to get Here, we make use of the fact that the Weyl gauge has been

used in Eq. (4). In two dimensions, the magnetic field can be

oD 3D represented as B = V x A.z, with its z and y components

_<J . (u X B)) — <JZ’UJJ (Az,j _ AJ,Z) — WL + WL . (8) lying in the xy plane. Then the term WED = —(Jiu;Aj )
vanishes in 2-D. Thus, we can identify WP with a contri-

_ _ bution that characterizes the 3-D nature of the system and

netic fields. Likewise, we define vop = _(WED + QM)/EM can therefore be a proxy for dynamo action, provided WP

and ysp = —WED/EM, so that yap + v3p = 7. is large enough.
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Oscillations in the spectral?
10* T T T

Waves in k-space:

cos k&(t)

Radius of expansion waves launched at t=0

2 V ) Red line: a simple fit that captures the
-6 Wa
10" \/

— change of phase at early times
" t—0 2 geofp y

Elnp(k) X exp( 10t)

Einp(kyt) = B (k) [1+ g(k,t) (1 — cos kest)]
| ! L R T A B A | 1 1 1 1



Conclusions

Dynamo question not obvious
o Dynamos in collapsing flows previously taken for granted
o Now: collapse responsible for driving irrotational flows
o Such flows never produced dynamos (so far!)

Could be different for Bonnor-Ebert spheres
o Usedin Sur+10,12; Federrath+11
o Collapse might be sufficiently slow to allow dynamo to establish
o Might also produce more vortivity (at least via rotation and B-fields)

Work term analysis
o 1/3 into heating, 2/3 into kinetic energy
o At later times more like 1/4 and 3/4 for heating and kinetic energy
o Implies virial parameters of 4/3 and 3/2, respectively

Next?
o Do 1-D Ebert sheet (solutions by Spitzer-42 and Ledoux-51)



