

What if we had 10x more data?

Example projection at 3000 fb⁻¹

Search for di-Higgs production

 \bigstar Di-Higgs production

accessible!

Assumes
 performance
 comparable to Run-2
 ATLAS Detector

★ We need to collideeven more protons.

H. Herde (Lund)

at <u>=200

New accelerator coming: We need a new detector.

Large Hadron Collider, LHC Designed for ~20-30 collisions per bunch crossing

High Luminosity LHC, HL-LHC Up to ~200 collisions per bunch crossing

📷 First stable beams at 13 TeV, https://cds.cern.ch/record/2022598; HL-LHC pileup simulation in ATLAS ITk, https://twiki.cern.ch/twiki/pub/AtlasPublic/UpgradeEventDisplays/HL-LHC-tt.png

ATLAS for HL-LHC

H. Herde (Lund)

NORDUGRIL Forward & luminosity detectors Improved muon coverage Srid Solution for Wide Area Computing and Data Handling Both new and upgraded Multithreaded computing model Heterogeneous computing architecture Significantly increased hardware computing load needs ① Trigger, Data Acquisition rates \rightarrow New TDAQ system (FELIX) Stockholms universitet Tile Hadronic Calorimeter focused **Inner Tracker (ITk)** replaces pixels, semi-conductor tracker, and transition radiation tracker UPPSALA LUNDS UNIVERSITET UNIVERSITET **High Granularity Timing Detector (HGTD)** New! Adapted from <u>https://cds.cern.ch/record/284634</u>

Inner Tracker (ITk): An all-Silicon tracking system

ITk strip system

H. Herde (Lund)

Preparing ATLAS for the Future

H. Herde (Lund)

Preparing ATLAS for the Future

Quality control electrical testing at Lund

Module response to thermal stresses expected during operation

ITk Strips Module QC Thermal Cycle Sequence

EC LARG Cryostat

High Granularity Timing Detector (HGTD)

HGTD modules and goals

- Provide accurate arrival time measurement for particles in the forward direction (< 50 ps) to mitigate pile-up
- Send information of the total number of hits for every bunch crossing, used to estimate the luminosity of the LHC. **[KTH responsibility]**
 - KTH: Firmware, software for luminosity data stream, all analysis for extracting luminosity measurement

HGTD as a luminosity detector

HGTD designed for low occupancy & fast signals

- ★ Average number of hits ∝ luminosity
 - Low occupancy \rightarrow linearity over the full range of μ
- Compensate for 2 Si detector limitations: ALTIROC chips report:
 - Total number of hits in that sensor for every bunch crossing in a dedicated data stream
 - Number of hits in a sideband time window for every bunch crossing → in-situ measurement of afterglow background levels

Trigger & Data Acquisition: Tile Calorimeter readout electronics

Daughterboard: Tile readout-out link

• Control & readout interface for the upgraded TileCal front end systems

ATLAS trigger rates		
LHC Run 3	HL-LHC	
100 kHz	1 MHz	

- + harsher radiation environment \rightarrow new TileCal readout electronics
- Digitised data will be sent off-detector for every LHC bunch-crossing (40 Tb/s over 6000 optical fibres)
- ★ On-detector electronics must sustain high radiation doses
- Design, production, and testing of all 1085
 daughterboards done by Stockholm University

Daughter board

(KU)

2x GBTx

High-speed interface with off-detector electronics via redundant links

Daughterboard v6

ides ion es	Detector signals	TTC TDAQi O FELIX PIPELINE Signal Reco Buffer Trigger Objects C C C C C C C C C C C C C
;	★ Collects digitised data from the MainBoard	Stockholm University produc
ИB	★ Interfaces to off-detector electronics through	 2 test benches for production

optical links

- Clock and commands recovery and distribution
- Design and radiation testing close to complete \star (Final design review in fall 2023)

tion lab:

- testing and debugging
- Burn-in oven for up to 40 daughter boards, with temperatures up to 85°C
 - Delivery to ATLAS by end-2026

ATL-TILECAL-PROC-2022-017

H. Herde (Lund)

Demonstrator module

TilePPr Demonstrator

Running in ATLAS Run 3

- TileCal prototype electronics for HL-HLC installed in ATLAS readout right now
 - Fully integrated with detector control and trigger/data acquisition software
- Good performance
 - Low noise levels wrt legacy modules
- Depends on Stockholm's daughter board

ATLAS for HL-LHC: Key takeaways

- ★ Extensive programme touching every part of ATLAS to cope with massive increase in data rate
- ★ Swedish contributions to ITk, HGTD, TileCal trigger & data acquisition, and software & computing

Next two talks: Focus talks on specific analyses with Avik Banerjee and Olga Sunneborn Gudnadottir

More ATLAS at the poster session!

- ★ Eduardo Torres Reoyo (Lund): ITk module thermal cycling chamber commissioning
- ★ XU Xiangyu (Lund): ITk module metrology
- ★ Lara Čalić (Lund): Tracking with A Common Tracking Software (ACTS)
- Alexander Ekman (Lund), Axel Gallén (Uppsala): Machine learning based compression for scientific data
- ★ Eva Mayer (Uppsala): Boosted decision trees for searches for dark mesons

Additional material

LHC/HL-LHC Schedule

Updated January 2022

Preparing ATLAS for the Future

INA

H. Herde (Lund)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/

H. Herde (Lund)

20

ITk expected resolution

 $p_{\mathrm{T}}^{\mu} = 2 \mathrm{GeV}$

 $p_{\rm T}^{\mu} = 100 {\rm ~GeV}$

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/

H. Herde (Lund)

More active area for less material

ID material budget, fig. 9 https://cds.cern.ch/record/2257755; ITk material budget, fig. 4 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/

H. Herde (Lund)

Readout electronics: Brain of a module

ATLAS binary readout chip

S. Diéz, ICHEP2022

Readout electronics: Brain of a module

Common chipset across all module flavours • 130-nm CMOS chipset

H. Herde (Lund)

The High Granularity Timing Detector (HGTD)

Two main functionalities for HGTD:

- Provide accurate measurement of the arrival time for particles in the forward direction (< 50 ps) to mitigate pile-up.
- Send information of the total number of hits for every bunch crossing, used to estimate the luminosity of the LHC. [KTH idea and responsibility]
- Two detector vessels, mounted to the front walls of the end-cap calorimeters, in the space currently used for the MBTS

detector.

- Located at position $z = \pm 3.5$ m from IP.
- || < r < ||0 cm.
- Thickness 12.5 cm, including moderator.

HGTD Ring Layout

- The active detector is defined by three rings of modules, covers 2.4 < $|\eta|$ < 4.0.
 - Inner ring replaced every 1000 fb⁻¹.
 - Middle ring replaced every 2000 fb⁻¹.
 - Outer ring never replaced.
- Surrounded by the Peripheral Electronics Boards (PEB).
- Modules between 2.4 < $|\eta|$ < 2.8 are used for luminosity determination.
 - At highest radius, lowest occupancy.

HGTD Detector Modules

- One module, which is 2x4 cm², consist of:
 - 2 LGAD sensors.
 - 2 ALTIROC ASICs, bumpbonded to the sensors.
 - Module FLEX.
- Connect to the PEB via the FLEX tail.
 - Arranged in rows.
- Each ALTIROC as 15x15 readout channels (covering the 2x2 cm² sensor area).

Measuring Luminosity at Hadron Colliders

- The luminosity is a measure of the rate of p-p interactions.
 - Integrated over time it is an estimate of the total number of interactions in a dataset.
- Needs to be known precisely for most physics analyses, will be increasingly important for high-precision analyses at HL-LHC.
- Detectors are calibrated in van der Meer runs, with special beam conditions and $10^{-5} < \mu < 1$, where μ is the average number of collisions per bunch crossing.
 - Physics at HL-LHC will be at $\mu \sim 200$, luminosity detectors need dynamic range of 7 orders of magnitude.

- Monitor something which is proportional (linear) to the luminosity, e.g.:
 - Hits in the PMTs of the LUCID detector.
 - Current drawn by LAr.
 - Hits in the BCM diamonds.

Measuring Luminosity at the HL-LHC

- At the HL-LHC, the uncertainty on the luminosity measurement can be the leading uncertainty on the Higgs boson measurements, for example.
 - At the 2016 Aix-Les-Bain workshop theorist Gavin Salam said: "Experimental progress on luminosity determination may be the keystone for precision physics at the LHC. Are there hardware changes to HL-LHC that could help with lumi determination?"

- Silicon detectors have been widely used already for measuring luminosity, by counting hits or counting tracks in the detector.
- Silicon detectors have traditionally had two major shortcomings:
 - They are not able to read out the detector for every bunch crossing, only for the triggered events. Since the trigger introduce a bias on the lumi measurement, a dedicated "random" trigger is needed to collect the data.
 - They can suffer from "afterglow background", hits in the detector which are not directly coming from the primary proton-proton collisions.

HGTD as a Luminosity Detector

- HGTD, with its low occupancy and fast signals, can be used as a luminosity detector. The average number of hits will be proportional to the luminosity.
 - The low occupancy ensures linearity over the full range of μ .
- It is also trying to overcome the two main limitations of silicon detectors:
 - The ALTIROC chips will also report just the *total number of hits* in that sensor *for every bunch crossing* in a dedicated data stream.
 - It will also report the number of hits in a sideband time window for every bunch crossing, in order to get an in-situ measurement of the afterglow background levels.

Luminosity of the LHC

 Protons in the LHC are accelerated in bunches. There are 3,564 nominal positions which can be filled with bunches, labelled by BCIDs.

- In practice a sub-set of these are actually filled with protons, according to the LHC filling scheme. The maximum number of bunches are around 2,800 per beam.
- There can be variations in the number of protons per bunch, or the sizes of the bunches.
 - Therefore the luminosity needs to be determined for every pair of colliding bunches separately.
- So in essence we want to calculate the average number of hits for each ALTIROC, in each of the two time windows and for each BCID, separately using the luminosity data stream.

HGTD Luminosity Developments at KTH

• KTH responsible for developing the firmware and software for the luminosity data stream, and all the steps that turns this into a luminosity measurement.

- Passed a specification review for the luminosity in January 2023, now developing initial firmware in collaboration with the Trigger and Data Acquisition group in ATLAS.
- Need a complete version in time for the surface integration of HGTD which will start in 2024/2025.