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Systematics in IceCube
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@ PMT response

@ Photon Timings

@ Quantum Efficiency
@ Geometry
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Figure: The method for extracting relative depth from flasher data. The timing
of light from LEDs on other strings will form a hyperbola as a function of the
nominal offset z’. Byt finding the minima of this function we get a correction
to the offset between two strings Az.
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@ The flasher method for x and y gives 2m uncertainty and found
no deviation.

@ Same for data recorded during drilling.
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no deviation.
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@ The flasher method for x and y gives 2m uncertainty and found
no deviation.

@ Same for data recorded during drilling.

@ Maybe we could fit x and y if we had more flashers closer to the
DOMs.

@ But we have something that lights up the detector in every spot.

@ We have millions of muon tracks in the detector every day
lighting up the detector.

@ Our reconstruction gives us the origin of that light.

@ Given the PMT timings and tracks we can estimate the location
of our DOMs.
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Method

@ For a large number of tracks:
@ Remove hits on the string being calibrated

e Require at least 30 hits left.

@ Reconstruct the track.
@ For track i, corresponding photon times fjo...ti,, and noise level b

find DOM position (%, ¥, 2) that maximizes

L(x,y,z) = Log(H H (p(t]i, x,y,2) + b))

i t=tp

, Where p is the photon time pdf.



String 35 results

String 35 data
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a) number of events per DOM. b) error estimate given by bootstrap.
c) offset from nominal positions. d) best fit positions for each DOM.



String 36 results

String 36 data
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a) number of events per DOM. b) error estimate given by bootstrap.
c) offset from nominal positions. d) best fit positions for each DOM.
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Recent improvements in modeling of light propagation in the ice (in
particular birefringence) has shown flasher data to be consistent with
my results.
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Using the new geometry for the central strings we find that for strings
where the DOM positions are clustered around nominal there is no
change in likelihood but for string 36 which has moved over a meter
the new position is a significantly better fit to the flasher data.



Corrections to central strings
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@ Previous studies with flasher had not produced consistant
results.
@ But it seems that with the latest ice model, it gives a result.

@ The result agrees with my results.
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Birefringence Siockholm

Latest ice model models the anisotropy as birefringence which is an
effect of the ice grain sizes and the direction of the ice flow.

As can be seen in the artist rendering, after multiple scatters light
gets bent and is more likely to travel in the flow direction.
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@ IceCube track events are reconstructed using tables that
describe photon propagation in the ice

@ Last set of tables generated in 2015, did not include
anisotropy/birefringence effect

@ Working on implementation of new tables allowing for azimuthal
asymmetry to incorporate this
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ratio plot z = -390.00 rho = 1.66 zenith = 1.23 asizezi

Left plot is number of absorbed photons and right plot is a ratio plot.
Next step: update the tables used for reconstructing muon tracks, see
how much it can improve e.g. direction and energy reconstruction.



Thank you for your attention!



