FYSIKDAGARNA 2023 | STOCKHOLM | 23.06.16

RESPONDING TO ASTROPHYSICAL ALERTS WITH THE ICECUBE MEV NEUTRINO DATA STREAM

the ball of the ball of the second second

NORA VALTONEN-MATTILA & ERIN O'SULLIVAN

WHY?

Candidates for both gravitational waves and burst of MeV neutrinos

BINARY NEUTRON STAR MERGERS

CORE-COLLAPSE SUPERNOVAE Neutrino emission duration ~ 10 s

NEUTRON STAR - BLACK HOLE MERGERS

Neutrino emission duration \sim ms to s

OUTLINE

- swiftly to gravitational wave alerts
- Additional applications: Exploring the supernova data stream through examples like GRB 221009A
- Conclusions: Summarizing the findings and implications of the analysis

Responding to astrophysical alerts: Low-energy neutrino data to respond

ICECUBE NEUTRINO OBSERVATORY

ICECUBE NEUTRINO OBSERVATORY

Low energy neutrinos result in short tracks in the ice. Interactions that occur near the photosensors can be detected.

High energy neutrinos result in long tracks in the ice. Many photosensors across different strings detect photons.

SUPERNOVA DATA ACQUISITION SYSTEM

- Since neutrinos are observed as single hits, signal is mixed with noise rate.
- A signal will be detectable when considering the rate increase in the entire array.
- The Supernova Data Acquisition (SNDAQ) monitors continuously the detector rate, searching for a significant deviation from background

MEV NEUTRINO ALERT RESPONSE

Currently: we can not trigger an analysis externally. Target: Develop a system that can allow response to external alerts

Respond to Ligo-Virgo-Kagra (LVK) gravitational wave alerts classified as **bursts** (supernova candidates) and **mergers** involving a neutron star Expected frequency LVK alertsLVK RUN O4 Yearly Expectation: 36^{+49}_{-22} BNS / 6^{+11}_{-5} NSBH / fewbursts per year

MEV NEUTRINO ALERT RESPONSE

Currently: we can not trigger an analysis externally. Target: Develop a system that can allow response to external alerts

Respond to Ligo-Virgo-Kagra (LVK) gravitational wave alerts classified as **bursts** (supernova candidates) and **mergers** involving a neutron star

The system can also be employed for prompt responses to other alerts involving objects that are potential candidates for MeV neutrino production

Expected frequency LVK alertsLVK RUN O4 Yearly Expectation: 36^{+49}_{-22} BNS / 6^{+11}_{-5} NSBH / fewbursts per year

DETERMINING SIGNIFICANCE

Through the characterization of background in various analysis time bins, we can establish a threshold for the alerts that warrant a response

CASE STUDY: GRB 221009A

CASE STUDY: GRB 221009A

- First detected by GBM (Fermi gamma ray satellite) on the 9th of October 2022.
- One of the brightest gamma ray burst (GRB) and first >TeV γ -rays detected. Bursts this bright occur only once every 10,000 years!
- Very close GRB (\approx 740 Mpc), or about 20 times closer than average GRB.

Given that GRBs may originate from supernovae and can involve accretion disks around black holes, they possess the potential to generate MeV neutrinos

GRB 221009A ANALYSIS

METHODOLOGY

- Selecting time windows / bin size based on physics motivation
- Characterize the background through trials on off-time data
- Perform observation on on-time data
- Place upper limits

Low-energy data is background dominated. We rely on transient timing information.

MOTIVATION FOR THE DIFFERENT SEARCHES

- Typical CCSNe neutrino emission prior to optical shock
- MeV neutrinos could be produced through Neutrino MeV neutrinos that appear [<u>3,4,5a,5b,5c</u>]
- Fireball production of thermal neutrinos [6]
- All models have isotropic emission

breakout: SBO could be boosted to x-ray/gamma-ray [1,2]

Dominated Accretion Flows (NDAF), producing $\bar{E}_{\nu} \approx 10-20$

SEARCH WINDOWS

SEARCH WINDOWS

2 DIFFERENT BIN SEARCHES IN TOTAL

SLIDING 0.5 S FOR 1 S TIME WINDOWS

SLIDING 1 S FOR THE OTHER TIME WINDOWS

Gamma-ray Íightcurve representation

RESULTS: UPPER LIMITS

Results

- We found no indication of MeV ν emission above background expectation (p-values > 0.3)
- Therefore we set upper limits

Publication: <u>R. Abbasi et al 2023 ApJL 946 L26</u>

Upper limit for MeV neutrino emission for GRB 221009A assuming a black body spectrum with mean energy of 15 MeV

This analysis showcases the diverse applications for the low-energy data stream

CONCLUSIONS

- to low-energy.
- both gravitational waves and thermal neutrinos.
- for the fast response analysis system.
- data stream.
- other external alerts.

IceCube has the capability to observe neutrinos across a wide energy range, from high-energy

Core-collapse supernovae and neutron star mergers are among the sources that can generate

SNDAQ handles the data stream and analysis of low-energy neutrinos, forming the foundation

• The analysis of GRB 221009A is a prime example of the applications of the low-energy neutrino

The fast response system is designed to effectively respond to gravitational wave alerts and

NEUTRINO PROCESSES: ENERGY REGIMES FOR OBSERVATION

Coherent scattering

Inverse beta decay

Elastic scattering off electrons Elastic scattering off electrons Quasi-elastic scattering off nucleon

Elastic scattering off nucleon

Charged current DIP Neutral current DIP

Table 3.2. Important neutrino interactions for the observation of CCSNe neutrinos [62, 149]. N = n, p, X = any final set of hadrons, and l = lepton

[62, 149]. N = n, p, X = any final set of hadrons, and l = lepton

MEV NEUTRINO CROSS SECTION

NEUTRINO PRODUCTION REGIME IN GRBS

MeV Domain

Beta processes					
e^- and v_e capture by nucleons	$e^- + p \leftrightarrow n + v_e$				
e^+ and \bar{v}_e capture by nucleons	$e^+ + n \leftrightarrow p + ar{v}_e$				
e^- and v_e absorption by nuclei	$e^- + (A,Z) \leftrightarrow (A,Z-1) + v_e$				
Thermal pair production and annihilation processes					
Nucleon-nucleon Bremsstrahlung	$N + N \leftrightarrow N + N + v + \bar{v}$				
Electron-positron pair process	$e^+ + e^- \leftrightarrow v + ar{v}$				
Neutrino scattering					
Neutrino scattering with nuclei	$\nu + (A,Z) \leftrightarrow \nu + (A,Z)$				
Neutrino scattering with nucleons	$v + N \leftrightarrow v + N$				
Neutrino scattering with e^{\pm}	$\nu + e^{\pm} \leftrightarrow \nu + e^{\pm}$				
Neutrino-neutrino reactions					
Neutrino pair annihilation	$v_e + \bar{v_e} \leftrightarrow v_x + \bar{v_x}$				
Neutrino scattering	$v_x + (v_e, \bar{v_e}) \leftrightarrow v_x + (v_e, \bar{v_e})$				

GeV-TeV Domain

Photohadronic

$$p+p \begin{cases} \rightarrow X + \pi^{\pm} \rightarrow X + \mu^{\pm} + \nu_{\mu}(\bar{\nu_{\mu}}) \rightarrow X + e^{\pm} + \nu_{e}(\bar{\nu_{e}}) + \\ \rightarrow X + \pi^{0} \rightarrow X + 2\gamma \end{cases}$$

+ also pn interaction!

Hadronuclear

$$p + \gamma \rightarrow \Delta^{+} \begin{cases} \rightarrow n + \pi^{+} \rightarrow n + \mu^{+} + \nu_{\mu} \rightarrow n + e^{+} + \nu_{e} + \bar{\nu_{\mu}} + \lambda_{\mu} \end{cases} \\ \rightarrow p + \pi^{0} \rightarrow p + 2\gamma \end{cases}$$

$$n+\gamma
ightarrow \Delta^0 iggl\{ iggram n+\pi^0
ightarrow n+2\gamma \
ightarrow p+\pi^-
ightarrow p+\mu^- +ar{
u_\mu}
ightarrow p+e^- +ar{
u_e} +ar{
u_\mu}
ightarrow$$

MUON RATE - SEASONAL

Credit: IceCube Collaboration

SUPERNOVAE: LOW ENERGY NEUTRINO LIGHTCURVE

The burst of ν_e comes from electron capture: $e^- + p - > \nu_e + n$ Positron capture increases $\bar{\nu}_e$ luminosity, and thermal pair production like $N + N \leftrightarrow N + N + \nu + \bar{\nu}$ increase the other flavor's luminosity 28

Rest of gravitational binding energy is released during the cooling phase

Credit: H. Thomas Janka, Florian Hanke, Lorenz Huedepohl, et al. Core-Collapse Supernovae: Reflections and Directions. *Progress of Theoretical and Experimental Physics*, 2012(1), 12 2012.

SUPERNOVAE: LOW ENERGY NEUTRINO LIGHTCURVE OBSERVABLE BY ICECUBE

Credit:Robert Cross, Alexander Fritz, and Spencer Griswold. Eleven Year Search for Supernovae with the IceCube Neutrino Observatory. In *International Cosmic Ray Conference*. Proceedings of Science, 2019

ICECUBE: HIGH-ENERGY NEUTRINOS

Track-like

Long tracks Good for directionality

Shorter tracks (O(10's m))

Good for energy reconstruction

ICECUBE: LOW-ENERGY NEUTRINOS

Inverse beta decay (>99% of our signal)

MeV ν —

We need quite a high flux of neutrinos to raise our counts above noise floor

Very short tracks (O(cm))

No directionality (unlike HE neutrinos)

Credit: R. Abbasi and IceCube Collaboration. 'IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae' (2011) Astronomy & Astrophysics 535, 12

ICECUBE: BACKGROUND

PRODUCTION REGIONS

Accretion disk thermal cooling (MeV ν)

SNDAQ ANALYSIS

Form of weighted average

$$\Delta \mu = \sigma_{\Delta \mu}^{2} \sum_{i=1}^{N_{DOM}} \frac{\epsilon_{i}(r_{i} - \langle r_{i} \rangle)}{\langle \sigma_{i} \rangle^{2}}$$

$$\sigma_{\Delta\mu}^{2} = \left(\sum_{i_{1}}^{N_{DOM}} \frac{\epsilon_{i}^{2}}{\langle \sigma_{i} \rangle^{2}}\right)$$

$$\xi = \frac{\Delta \mu}{\sigma_{\Delta \mu}}$$

Significance

