Propagation of gauge fields in hot and dense plasmas at higher orders

Andreas Ekstedt

DESY II. Institut für Theoretische Physik Uppsala University

Fysikdagarna 2023 2023.06.16

The Cosmological History

Adapted from 1307.3887

Hydrodynamics: Scalar field undergoing a phase transition

Hindmarsh, Huber, Rummukainen, Weir 2015

Open questions:

Can we capture turbulence?

What is the viscosity?

How do we find the scalar damping $\sim \partial_t \phi$?

High-temperature field theories in a nutshell

Collisions push the system back to equilibrium

 $ho \frac{D \vec{u}}{D t} = - \vec{\nabla} \rho + \mu \nabla^2 \vec{u} \quad o \quad \text{The mean-free path controls the viscosity: } \mu \sim \lambda_m$

http://www.damtp.cam.ac.uk/user/tong/kinetic.html

In a relativistic plasma the typical cross-section is set by the screening length: $T^2 \sigma \sim g_s^4 \log T \lambda_s \rightarrow \lambda_m \sim (\sigma n)^{-1} \sim (g_s^4 T \log T \lambda_s)^{-1}$ Arnold, Moore, Yaffe 2000 Screening at high temperatures Braaten, Pisarski 1989 Fast $\vec{p} \sim T$ electrons behave as quasiparticles Blaizot, lancu 1993

$$\partial_{\mu}F^{\nu\mu}=j^{\nu}=2e\int_{\rho}v^{\nu}\left[n^{+}(\rho)-n^{-}(\rho)
ight]\sim e^{2}T^{2}\vec{E}$$

An accelerated electron can travel for $\delta t \sim \left[\left(p^0 + k^0 \right) - \left| \vec{p} + \vec{k} \right| \right]^{-1}$ \rightarrow Its change in velocity is $T \delta v \sim t(e\vec{E})$ \rightarrow The generated current is $\vec{j} \sim en\delta v \sim t \left(T^2 e^2 \vec{E} \right)$ \rightarrow The screening length is parametrically $\lambda_s \sim (eT)^{-1}$

Thermal masses are responsible for the next order: $(p^0)^2 \rightarrow \vec{p}^2 + \underbrace{m_{\infty}^2}_{\sim e^2 T^2}$

ightarrow Charges can only travel for $\delta t \sim T m_{
m m}^{-2}$

What goes into the two-loop calculation?

How large are higher-order corrections? Roughly 30% correction for thermal gluons Ekstedt 2023 & Gorda et.al 2023 2.5 $m_\infty^{\rm LO}$ $m_\infty^{\rm NLO}$ 2.0 m_∞^2/T^2 1.5 1.0 10 50 100 500 1000 $T \; [\text{GeV}]$

Where do we stand and where are we going?

Some recent applications:

Shear viscosity (in QCD) at almost next-to-leading order Ghiglieri et.al 2018 Dense equations of state to N³LO in QED (soon QCD) Gorda et.al 2023 Systematic bubble nucleation at higher orders Gould, Hirvonen 2021

Some open problems:

What is the value of the shear/bulk viscosity around the electroweak scale? How are long-wavelength fermions screened at higher orders? How do we calculate the scalar friction? Can we actually see turbulence in numerical simulations?