Status of the Light Dark Matter eXperiment

Lene Kristian Bryngemark, Lund University Fysikdagarna 2023, Stockholm

Thermal-relic dark matter: a predictive model

Is present-day dark matter a freeze-out relic from the hot early Universe?

- viable with minimal assumptions
 - observable \rightarrow some minimum non-gravitational interaction \bigcirc
 - reaches thermal equilibrium at some point in history \bigcirc
- predicts a minimum interaction strength experimental sensitivity target \bigcirc
- constrains the ~90 orders of mag. DM mass range light mediator: non-SM force/dark sector \bigcirc

Thermal-relic dark matter: a predictive model

Is present-day dark matter a freeze-out relic from the hot early Universe?

- viable with minimal assumptions
 - observable \rightarrow some minimum non-gravitational interaction \bigcirc
 - reaches thermal equilibrium at some point in history
- predicts a minimum interaction strength experimental sensitivity target \bigcirc
- constrains the ~90 orders of mag. DM mass range light mediator: non-SM force/dark sector \bigcirc

 $MeV \sim m_e$

LDM

DM

Thermal-relic dark matter: a predictive model

Is present-day dark matter a freeze-out relic from the hot early Universe?

- viable with minimal assumptions
 - observable \rightarrow some minimum non-gravitational interaction \bigcirc
 - reaches thermal equilibrium at some point in history
- predicts a minimum interaction strength experimental sensitivity target \bigcirc
- constrains the ~90 orders of mag. DM mass range light mediator: non-SM force/dark sector \bigcirc

 $MeV \sim m_e$

LDM

DM

Dark sector light mediator: dark photons

- "Simplest" possible dark sector extension
- dark QED + kinetic mixing (ε) = a feeble interaction with SM matter sub-GeV thermal prediction targets line up within reach at accelerators

GeV-scale electron beam at SLAC

Experimenta

- Undulator
- LCLS-2 beam at SLAC:
- main use: electron beam for photon science
 - steal some via Linac to End Station A (LESA) \bigcirc
 - upgrade: $4 \rightarrow 8$ GeV beam energy
 - low-current
 - measure each incoming and outgoing electron \bigcirc
 - fast repetition rate
 - expect 37.1 MHz bucket frequency \bigcirc
 - and ~10¹⁴ electrons on target in 1-2 years \bigcirc

With an electron beam

nucleus

SM (QED) bremsstrahlung

Bryngemar

LK

Dark photon bremsstrahlung

A' production $\propto \varepsilon^2$, DM subsequent decay to SM $\propto \varepsilon^4$

LDMX: a fixed-target missing momentum experiment

LDMX focuses on *escaping* dark matter:

- massive dark photon (*A*') bremsstrahlung in thin target
- agnostic when it comes to (invisible) fate of the A'
 - notice that energy goes missing \bigcirc
- strategy: make "all" SM backgrounds appear in detector
 - veto everything but low-activity events \bigcirc

Massive photon \rightarrow momentum kick; missing *momentum* experiment

More detail: <u>A high efficiency photon veto for the Light Dark Matter eXperiment</u>, JHEP04 (2020) 003

LDMX: a fixed-target missing momentum experiment

LDMX focuses on *escaping* dark matter:

6

LDMX detector concept

Signal cartoon

escaping dark matter

• 0.1 $X_{\rm o}$ W target

• Measure (missing) energy in calorimeters, momentum in recoil tracker

electromagnetic

Bryngemark

LK

XMC

or more specifically

shaping the requirements on the detector

relative		incoming
– 10 ⁰		e^{-}
	10 -1	
	10-2	
	10 -3	
	10-4	
	10 -5	
	10-6	
	1 0- 7	
	1 0 -8	
	1 0 -9	
	10 -10	
	10- 11	
	10-12	
	10-13	
	10-14	
	10-15	"visible"
	10-16	backgrounds
		"invisible" bac

Fysikdagarna 2023

Bryngemark

LK

XMC

Fysikdagarna 2023

Bryngemark

LK

XMG

11

HCal work in Lund: hardware

- Designing the HCal frontend boards
 - Scintillating fibers read out with SiPMs

- HGCROC developed for CMS
- used in both ECal and HCal
- Test beam at CERN last spring
 - analysis ongoing
- Test bench work to characterize signal
 - charge injection and LED flashing

HCal work in Lund: hardware

- Designing the HCal frontend boards
 - Scintillating fibers read out with SiPMs

- HGCROC developed for CMS
- used in both ECal and HCal
- Test beam at CERN last spring
 - analysis ongoing
- Test bench work to characterize signal
 - charge injection and LED flashing

pulse fitting work by A. Mihaylov

Extracted pulse amplitude along with expected pulse amplitude against voltage

HCal work in Lund: simulation

- Design relies on simulations with Geant4+ldmx-sw
 - Zero background goal → high efficiency and much confidence needed
 - Recent development work to include other generators
 - We see good agreement with FLUKA in neutron detection efficiency
 - Comparisons of final state rates in Geant4, MCNP, FLUKA and PHITS

XMC

HCal work in Lund: simulation

- Design relies on simulations with Geant4+ldmx-sw
 - Zero background goal → high efficiency and much confidence needed
 - Recent development work to include other generators
 - We see good agreement with FLUKA in neutron detection efficiency
 - Comparisons of final state rates in Geant4, MCNP, FLUKA and PHITS

XMC

HCal work in Lund: simulation

- Design relies on simulations with Geant4+ldmx-sw
 - Zero background goal → high efficiency and much confidence needed
 - Recent development work to include other generators
 - We see good agreement with FLUKA in neutron detection efficiency
 - Comparisons of final state rates in Geant4, MCNP, FLUKA and PHITS

XMQ

See E. Elén's talk

Further theoretical/simulation work in Sweden

Part of KAW-funded Light Dark Matter project

- Integration of Pythia in ldmx-sw
 - quite different for a fixed-target experiment: the beam sees material before the target
 - signal simulation (L. Gellersen, LU) and Geant4 integration (E. Elén, L.G. Sarmiento, LU)
- Consistent statistical treatment of data from different experiments, e.g. direct detection or accelerator-based (T. Emken, SU)
 - Enhancing statistical power by combining likelihoods in a global fit
- Extending models probed by existing and future fixed-target experiments (R. Catena and T. Gray, Chalmers)

Further theoretical/simulation work in Sweden

Part of KAW-funded Light Dark Matter project

- Integration of Pythia in ldmx-sw
 - quite different for a fixed-target experiment: the beam sees material before the target
 - signal simulation (L. Gellersen, LU) and Geant4 integration (E. Elén, L.G. Sarmiento, LU)
- Consistent statistical treatment of data from different experiments, e.g. direct detection or accelerator-based (T. Emken, SU)
 - Enhancing statistical power by combining likelihoods in a global fit
- Extending models probed by existing and future fixed-target experiments (R. Catena and T. Gray, Chalmers)

See T. Gray's talk on spin-1 DM

LDMX projected sensitivity

Bryngemarl

LK

XMQ

Assuming zero background

Phase 1: 4 GeV beam, $\sim 10^{14}$ electrons on target

Phase 2: 8 GeV beam, $\sim 10^{16}$ electrons on target

LDMX projected sensitivity

Bryngemarl

LK

XMQ

Assuming zero background

Phase 1: 4 GeV beam, $\sim 10^{14}$ electrons on target

Phase 2: 8 GeV beam, $\sim 10^{16}$ electrons on target

NEW result: 8 GeV veto performance by E. Wallin

Lund contributions to LDMX

- Main interests: HCal design and performance, generator integration, multi-electron triggering and analysis
- Hardware: HCal readout electronics design, HCal test stand
- Strong student involvement in software development and analysis
- Computing: Lund e-science (arc developers) designed and maintains LDMX's distributed computing system
- Leadership: co-spokesperson (T. Åkesson), physics co-coordinator (R. Pöttgen), computing and sw co-coordinator (LKB)

- LDMX is being designed to conclusively probe the stable matter mass range for DM of thermal origin
- Taking shape as simulations get more refined and prototype beam tests are available
- Lund contributes at all levels from hardware design to prototype tests, computing, data reconstruction, simulation and analysis
- KAW Light Dark Matter project integrates LDMX in a larger Swedish DM search context

Bryngemar

LK

