

Some background

People \& Papers

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

LUND
UNIVERSITY

Six-meson amplitude

Bijnens \& Husek, "Six-pion amplitude"
Phys.Rev.D, 2107.06291[hep-ph]

Bijnens, Husek \& Sjö, "Six-meson amplitude in QCD-like theories"
Phys.Rev.D, 2206.14212[hep-ph]

Tomáš Husek, Lund U./Charles U.

Mattias Sjö, Lund U.

Strengths and Weaknesses of the Lattice

From first principles

Access to experimentally unobservable quantities

Computer-intensive

Euclidean (imaginary) time

Discrete space-time

Finite space-time volume

> Often reqires heavier-than-physical masses

Strengths and Weaknesses of the Lattice

From first principles

Access to experimentally unobservable quantities

Synergy with ChPT

Computer-intensive

Euclidean (imaginary) time

Discrete space-time

Finite space-time volume

Often reqires heavier-than-physical masses

People \& Papers - cont'd

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude Diagrams Simplification

The $\pi \pi \pi$ K-matrix

Anatomy

Leading order

LUND

Three-pion K-matrix

B.-B., Bijnens, Husek, R.-L., Sharpe \& Sjö, "The isospin-3 three-particle K-matrix at NLO in ChPT" JHEP, 2303.13206[hep-ph]
B.-B., Bijnens, Husek, R.-L., Sharpe \& Sjö, "The three-particle K-matrix at NLO in ChPT for general isospin" (in preparation, title preliminary)

Stephen Sharpe, U. of Washington

Fernando Romero-López, MIT

Jorge Baeza-Ballesteros, U. de València

Background

The $\pi \pi \pi \rightarrow$
$\pi \pi \pi$ amplitude
Diagrams
Simplification

The $\pi \pi \pi \rightarrow \pi \pi \pi$ amplitude

Six-Meson Diagrams

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

LUND

UNIVERSITY

Vertices

$$
X=\text { LO vertex } \quad X=\text { NLO vertex }
$$

All the LO and NLO diagrams

Simplification \& shortening by $\mathcal{O}(6!)$

$$
\begin{aligned}
\mathcal{M}\left(p_{1}, a_{1} ;\right. & \left.p_{2}, a_{2} ; \ldots ; p_{6}, a_{6}\right) \\
& =\sum_{R} \sum_{\sigma} \mathcal{M}_{R}\left(\sigma\left[p_{1}, \ldots, p_{6}\right]\right) \mathcal{F}_{R}\left(\sigma\left[a_{1}, \ldots, a_{6}\right]\right)
\end{aligned}
$$

Flavor-ordering

$\sigma \notin$ symmetries of \mathcal{F}_{R}
\rightarrow well-known, unique

Deorbiting

$\sigma \in$ symmetries of \mathcal{F}_{R}
\rightarrow novel, non-unique!

Background

The $\pi \pi \pi \rightarrow$
$\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-t-l-eading order Results

The $\pi \pi \pi K$-matrix

Finite-volume energy shift

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude Diagrams
Simplification
The $\pi \pi \pi$ K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

LUND
UNIVERSITY

Energy spectrum: n particles, box of size L

$$
\operatorname{det}\left[F_{n}^{-1}(E, \boldsymbol{P}, L)+\mathcal{K}_{n}\left(E^{*}\right)\right]=0
$$

$n=2$ particles

Lüscher, "Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories"

Commun. Math. Phys. (1986)

$n=3$ particles

Hansen \& Sharpe, "Relativistic, model-independent, three-particle quantization condition" Phys. Rev. D, 1408.5933[hep-lat] (and several other approaches)

Properties of $\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{NLO}}$

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$ K-matrix

Anatomy
Leading order
Next-to-leading order
Results
Summary

Lorentz invariant, Scheme dependent, On-shell only

Related to $\mathcal{M}_{3}^{\text {NLO }} \rightarrow \mathbb{C N}_{\mathrm{NLO}}^{\mathrm{NLO}}$ through integral equation

NLO in ChPT \rightarrow reduces to algebraic relation

Divergence-free

 (no poles or cuts)
Anatomy of $\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{NLO}}$

Background
The $\pi \pi \pi$
$\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

3 particles, 2 scattering

Spectator \{

Form of \mathcal{M}_{2}

$\rightarrow \mathcal{M}_{2}(\boldsymbol{p})_{l m, l^{\prime} m^{\prime}}$
p-spectator momentum
$Y_{m}^{l}(\theta, \phi)$ - pair angular momentum

Anatomy of $\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{NLO}}$

Background
The $\pi \pi \pi \rightarrow$
$\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

3 particles, 3 scattering

Form of \mathcal{M}_{3}
$\rightarrow \mathcal{M}_{3}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)_{l m, l^{\prime} m^{\prime}}$

Particle exchange \Leftrightarrow Spectator choice

Anatomy of \mathcal{K} NLO df, 3

On-shell propagator substitute

Properties of G

On-shell only - propagator-like near pole:

$$
G\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)_{l m, l^{\prime} m^{\prime}} \sim \frac{1}{\left(P-p-p^{\prime}\right)^{2}-M_{\pi}+i \epsilon}
$$

Smooth cutoff far from pole - non-analytic

$\mathcal{K}_{\mathrm{df}, 3}$ at leading order

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

One-particle exchange pole

One-particle exchange subtraction

$\mathcal{K}_{\mathrm{df}, 3}$ at next-to-leading order

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

Bull's head cut

Bull's head subtraction

Different approaches

Threshold expansion

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

Compound parameters

$$
\Delta_{\mathrm{A}}=\sum_{i}\left(\Delta_{i}^{2}+\Delta_{i}^{\prime 2}\right)-\Delta^{2} \quad \Delta_{\mathrm{B}}=\sum_{i j} \tilde{t}_{i j}^{2}-\Delta^{2}
$$

Threshold expansion

$$
\mathcal{K}_{\mathrm{df}, 3}=\mathcal{K}_{0}+\mathcal{K}_{1} \Delta+\mathcal{K}_{2} \Delta^{2}+\mathcal{K}_{\mathrm{A}} \Delta_{\mathrm{A}}+\mathcal{K}_{\mathrm{B}} \Delta_{\mathrm{B}}+\mathcal{O}\left(\Delta^{3}\right)
$$

Expansion parameters

$$
\begin{aligned}
\Delta & \propto P^{2}-\left(3 M_{\pi}\right)^{2} & & \text { (system above-thr'ness) } \\
\Delta_{i}^{(\prime)} & \propto\left(P-p_{i}^{(\prime)}\right)^{2}-\left(2 M_{\pi}\right)^{2} & & \text { (pair above-thr'ness) } \\
\tilde{t}_{i j} & \propto\left(p_{i}-p_{j}^{\prime}\right)^{2} & & \text { (spectator above-thr'ness) }
\end{aligned}
$$

Different approaches

Different approaches

Results!

Background
The $\pi \pi \pi \rightarrow$
$\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

$$
\left.\begin{array}{ll}
\mathcal{K}_{0}=\left(\frac{M_{\pi}}{F_{\pi}}\right)^{4} 18+\left(\frac{M_{\pi}}{F_{\pi}}\right)^{6}\left[-3 \kappa(35+12 \log 3)-\mathcal{D}_{0}+111 L+\ell_{(0)}^{\mathrm{r}}\right], \\
\mathcal{K}_{1}=\left(\frac{M_{\pi}}{F_{\pi}}\right)^{4} 27+\left(\frac{M_{\pi}}{F_{\pi}}\right)^{6}\left[-\frac{\kappa}{20}(1999+1920 \log 3)-\mathcal{D}_{1}+384 L+\ell_{(1)}^{\mathrm{r}}\right], \\
\mathcal{K}_{2}= & \left(\frac{M_{\pi}}{F_{\pi}}\right)^{6}\left[\frac{207 \kappa}{1400}(2923-420 \log 3)-\mathcal{D}_{2}+360 L+\ell_{(2)}^{\mathrm{r}}\right], \\
\mathcal{K}_{\mathrm{A}}= & \left(\frac{M_{\pi}}{F_{\pi}}\right)^{6}\left[\frac{9 \kappa}{560}(21809-1050 \log 3)-\mathcal{D}_{\mathrm{A}}-9 L+\ell_{(\mathrm{A})}^{\mathrm{r}}\right], \\
\mathcal{K}_{\mathrm{B}}= & \left(\frac{M_{\pi}}{F_{\pi}}\right)^{6}\left[\frac{27 \kappa}{1400}(6698-245 \log 3)-\mathcal{D}_{\mathrm{B}}+54 L+\ell_{(\mathrm{B})}^{\mathrm{r}}\right],
\end{array}\right] \begin{aligned}
& \mathcal{D}_{0} \approx-0.0563476589, \quad \mathcal{D}_{1} \approx 0.129589681, \quad \mathcal{D}_{2} \approx 0.432202370, \\
& \mathcal{D}_{\mathrm{A}} \approx 9.07273890 \cdot 10^{-4}, \quad \mathcal{D}_{\mathrm{B}} \approx 1.62394747 \cdot 10^{-4},
\end{aligned}
$$

Reconciliation with the lattice

Background

The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude

Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results

* Blanton, Hanlon, Hörz, Morningstar, Romero-López \& Sharpe,
"Three-body interactions from the finite-volume QCD spectrum"
Phys.Rev.D, 2021.06144[hep-lat]

Reconciliation with the lattice

Background

The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude

Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

LUND

University

* Blanton, Hanlon, Hörz, Morningstar, Romero-López \& Sharpe,
"Three-body interactions from the finite-volume QCD spectrum"
Phys.Rev.D, 2021.06144[hep-lat]
** using LECs from FLAG and Colangelo, Gasser \& Leutwyler, " $\pi \pi$ scattering" Nucl.Phys.B, hep-ph/0103088

Reconciliation with the lattice

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

LUND

UNIVERSITY

* Blanton, Hanlon, Hörz, Morningstar, Romero-López \& Sharpe,
"Three-body interactions from the finite-volume QCD spectrum"
Phys.Rev.D, 2021.06144[hep-lat]
** using LECs from FLAG and Colangelo, Gasser \& Leutwyler, " $\pi \pi$ scattering" Nucl.Phys.B, hep-ph/0103088

Summary and next steps

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

Complete

$\pi \pi \pi K$-matrix

Summary and next steps

Background

The $\pi \pi \pi \rightarrow$

$\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

LUND

UNIVERSITY

Complete

$$
\pi \pi \pi \rightarrow \pi \pi \pi
$$

Complete

$\pi \pi \pi K$-matrix

Next: Remaining isospin channels

$$
I=3
$$

Singlet

$$
I=2
$$

Doublet

$$
I=1
$$

Singlet Doublet

$$
I=0
$$

Antisymmetric singlet

Summary and next steps

Background
The $\pi \pi \pi \rightarrow$
$\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

LUND

UNIVERSITY

Complete

$\pi \pi \pi \rightarrow \pi \pi r_{1}$ Next?

$$
\pi \pi K
$$

Next: Remainin६

$$
\pi K K
$$

$$
I=3
$$

Complete

$-\boldsymbol{\pi} \boldsymbol{\pi} \boldsymbol{K}$-matrix

 lsSinglet

$$
I=2
$$

Doublet

$$
I=1
$$

$$
I=0
$$

Doublet

Antisymmetric singlet

Background

The $\pi \pi \pi \rightarrow$
$\pi \pi \pi$ amplitude
Diagrams
Simplification

Backup slides

Six-Meson Diagrams

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

LUND

Leading order

Osborn (1969)
Susskind \& Frye (1970)

Six-Meson Diagrams

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

LUND

 UNIVERSITY
Reducible to smaller results

= all 1-loop diagrams (known from before*)
*Bijnens \& Lu, "Meson-meson scattering in QCD-like theories"

$$
J H E P, 1102.0172 \text { [hep-ph] }
$$

Six-Meson Diagrams

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

LUND
UNIVERSITY

4-meson but with more legs

Six-Meson Diagrams

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

LUND

New and difficult

One-Loop Integrals

Background

The $\pi \pi \pi \rightarrow$
$\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

LUND

 UNIVERSITY
One-propagator integral

$$
彐<\int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} \frac{1}{k^{2}-M^{2}} \sim \frac{1}{4-d}+(\text { finite })
$$

Two-propagator integral

One-Loop Integrals

Background
The $\pi \pi \pi \rightarrow$
$\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

Three-propagator integral

In principle reducible to \bar{f} but impractical. Instead: elegant but redundant basis

$$
\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}\left(p_{1}, \ldots, p_{6}\right)
$$

where $C_{3} \sim \frac{1}{4-d}+\bar{C}_{3}$ (others are finite)

The bull's head

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

LUND
UNIVERSITY

How to integrate?

$$
\int \frac{\mathrm{d}^{3} \boldsymbol{r}}{2 \omega_{r}} \frac{[\text { Non-analytic }]}{[\text { Complicated }]}
$$

\square
analytic, has poles
non-analytic, smooth

The bull's head

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude
Diagrams
Simplification
The $\pi \pi \pi$
K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

LUND

UNIVERSITY

How to integrate?

$$
\int \frac{\mathrm{d}^{3} \boldsymbol{r}}{2 \omega_{r}} \frac{\text { [Complicated angular dependence] }}{\text { [Much simpler] }}
$$

The bull's head

Background
The $\pi \pi \pi \rightarrow$ $\pi \pi \pi$ amplitude Diagrams
Simplification
The $\pi \pi \pi$ K-matrix
Anatomy
Leading order
Next-to-leading order
Results
Summary

How to integrate?

$$
\int \frac{\mathrm{d}^{3} \boldsymbol{r}}{2 \omega_{r}} \frac{[\text { Simple }]-[\text { Smooth }]}{[\text { Much simpler function }]}
$$

