Photonuclear event generator comparisons for the Light Dark Matter eXperiment

Fysikdagarna

Einar Elén, L.G Sarmiento June, 2023

1. Background

- LDMX aims to perform a zero background search for light dark matter
- The design of LDMX is based on detailed Geant4 studies
 - In particular, photonuclear events are modelled by the Bertini intranuclear cascade (**BERT** in **FTFP BERT**)
- Geant4's hadronic models are well tested and validated
 - LDMX is sensitive to rates and topologies of rare final states
 - What do the competing models say?

1.1. Two questions to answer:

- Are the predicted rates of challenging final states from Bertini accurate?
- Is the LDMX veto strategy sensitive on the particular characteristics of Bertini?

2. Challenging event rates

• First question: Are the predicted rates of challenging final states from Bertini accurate?

2. Challenging event rates

- First question: Are the predicted rates of challenging final states from Bertini accurate?
- Standalone simulations
- We have compared the products of 3 GeV y interactions with tungsten using three alternative photonuclear event generators
 - PHITS [1, 2]
 - MCNP [3, 4]
 - FLUKA [5, 6]

2.1. What constitutes a challenging event?

2.2. Results

- Generally agreement
- Largest deviation seen for two categories
 - "Nothing hard"
 - Very high low-energy nucleon multiplicity events
 - Single hard neutron
- ⇒ Important inputs for the design and physics requirements

2.2. Results

- Generally agreement
- Largest deviation seen for two categories
 - "Nothing hard"
 - Very high low-energy nucleon multiplicity events
 - Single hard neutron
- ⇒ Important inputs for the design and physics requirements

3. Full LDMX simulation with FLUKA's photonuclear modelling • Second question: Is the LDMX veto strategy sensitive on the particular characteristics of Bertini?

3. Full LDMX simulation with FLUKA's photonuclear modelling • Second question: Is the LDMX veto strategy sensitive on the particular characteristics of Bertini?

- Standalone simulations aren't enough
 - Requires running a complete Geant4 simulation and reconstruction chain
 - With a different model for photonuclear interactions

3. Full LDMX simulation with FLUKA's photonuclear modelling • Second question: Is the LDMX veto strategy sensitive on the particular characteristics of Bertini?

- Standalone simulations aren't enough
 - Requires running a complete Geant4 simulation and reconstruction chain
 - With a different model for photonuclear interactions
- FLUKA's hadronic code can be accessed in Geant4 through an interface developed by FLUKA.cern

3.1. Simulation performance

- Generating a full simulation dataset to study this subset of final states would be wasteful
- Event generation is fast but detector modelling and tracking is slow
- However, fixed target: Photonuclear interaction occurs in the middle of the simulation
 - Depends on the full simulation history
- Typical solution: Artificial enhancement of production cross-sections and/or changes to the modelling

3.2. Efficient generation of rare events

- Instead: On a photonuclear interaction
 - Run the event generator until you get the kind of final state that you are interested in
 - Avoids changing any physical properties
 - Provides *orders of magnitude* faster simulation, around 300 times faster for the cases shown today
 - Requires some care

3.3. Results from initial analysis

- We've used this technique to generate two datasets corresponding to \approx 4e14 EOT for the two categories
- Without performing any optimization of the analysis chain and only looking at
 - Trigger performance
 - Ecal veto
 - Hcal veto
- We are able to veto all of these events with both photonuclear models

4. Outlook

- More detailed studies with an optimized analysis chain
 - Focus on impacts for the detector design
- Run the analysis for 8 GeV beam
- Applying the event generation technique for Kaon studies (see poster by Lisa Andersson Loman)
- Further MC scrutiny (see poster by Jaida Raffelsberger)

5. Model references

- [1] T. Sato et al. 2018, J. Nucl. Sci. Technol. 55, 684-690
- [2] Y. Nara et al. 2000, Phys. Rev. C61 024901
- [3] C.J. Werner et al. 2018, LA-UR-18-20808
- [4] S.G. Mashnik et al. 2012, LA-UR-12-01364
- [5] C. Ahdida et al. 2022 Frontiers in Physics 9, 788253
- [6] G. Battistoni et al. 2015 Annals of Nuclear Energy 82, 10-18

