New View of Pulsar and Dark Matter Contributions to the Local Cosmic-Ray Positron Flux

Isabelle John isabelle.john@fysik.su.se

With Tim Linden

<u>centr</u>e

16 June 2023 Partikeldagarna Stockholm

Propagation and Energy Losses

Positron source e.g. pulsars or dark matter

Propagation and energy losses

Synchrotron radiation in magnetic fields

Isabelle John

Inverse-Compton scattering on ambient photons

Partikeldagarna Stockholm 2023

Continuous energy loss rate:

Isabelle John

Energy Loss Rate

- σ_T : Thomson cross section
- E_{ρ} : Electron energy
- m_{ρ} : Electron mass
- *u_i*: ISRF photon energy density
- ν_i : ISRF photon energy
- S: Klein-Nishina suppression

Inverse-Compton scattering on ambient ISRF photons

ICS is a stochastic process.

Spectral Features From Pulsars

1. Large fraction of positrons are produced when pulsar is very young

2. High-energy positrons lose energy faster than low-energy positrons

Isabelle John

3. These initial positrons build up sharp feature in positron spectrum over time

Stochastic Inverse-Compton Scattering Model [I. John & T. Linden, arXiv:2107.10261]

- 1. Create positron with some initial energy
- 2. Evolve in time steps:
 - Calculate synchrotron energy losses
 - happens and at what photon energy
 - If ICS: Calculate energy loss and new positron energy
- Repeat until desired cooling time is reached 3.

• Based on positron energy, determine if inverse-Compton scattering

Stochasticity of Inverse-Compton Scattering

Continuous calculation:

All positrons are treated the same way, cool down to exactly the same energy

Stochastic ICS:

- ICS interactions are rare (~120 interactions in 342 kyr)
- Catastrophic energy losses $(\sim 10-100\%$ of energy lost)
- ~30% spread in final positron energy distribution

Positron Spectrum of Individual Pulsars

Sharp spectral features introduced by continuous approximation are smoothened out by ~50% when correctly treating inverse-Compton scattering stochastically

Isabelle John

Partikeldagarna Stockholm 2023

Positrons Injection from Pulsars and Dark Matter

Pulsars

Distribution of $e^+e^$ injection energies (power law)

Burst-like injection of e^+e^-

Isabelle John

Dark matter

Single e^+e^- injection energy (corresponding to dark matter mass)

Continuous injection of e^+e^-

TeV-Scale Dark Matter Signals [I. John & T. Linden, arXiv:2304.07317]

Isabelle John

At high energies, ICS interactions are rare, but take a large fraction of the energy in a single interaction

Mean Energy Loss Times

Isabelle John

10% Energy Loss

At 10% energy loss, energy losses happen slower in stochastic model compared to continuous model

Enhancement of Dark Matter Signal

Isabelle John

 $\chi \chi \rightarrow e^+ e^$ $m_{DM} = 100 \text{ TeV}$ • Near the dark matter mass, the spectral cutoff is enhanced by about a factor of 2.6

• Greatly improves detectability of dark matter signals

Implications of Stochastic ICS

Pulsars do not produce sharp spectral features

[arXiv:2107.10261]

Dark matter is the only known astrophysical mechanism that can produce sharp spectral features in the e^+e^- flux.

TeV-scale dark matter signal is enhanced

[arXiv:2304.07317]

Supplementary Slides

Isabelle John

Interstellar Radiation Fields and Magnetic Fields

Isabelle John

Dark Matter Annihilation into Muons

- Dark matter annihilates into $\mu^+\mu^-$ that subsequently decay into e^+e^-
- e^+e^- are injected at a distribution of energies
- Enhancement is smaller than in direct e^+e^- case
- Enhancement is further reduced for annihilations into $\tau^+\tau^-$ and other hadronic final states

Stochasticity of Inverse-Compton Scattering

Continuous calculation:

• All positrons are treated the same way, cool down to exactly the same energy

Stochastic ICS:

- ICS interactions are rare (~120 interactions) • in 342 kyr)
- Catastrophic energy losses (~10-100% of • energy lost)
- ~30% spread in final positron energy distribution

