VECTOR-LIKE QUARKS AND VACUUM MISALIGNMENT in composite Higgs models

Avik Banerjee
w/ Gabriele Ferretti
Phys Rev D 107 (2023) 9, 095006

Fysikdagarna 2023, Stockholm

Why Composite Higgs?

$$
\delta m_{h}^{2} \simeq \frac{\lambda_{i}}{16 \pi^{2}} \Lambda_{\mathrm{UV}}^{2}
$$

Hierarchy problem

Why Composite Higgs?

$$
\delta m_{h}^{2} \simeq \frac{\lambda_{i}}{16 \pi^{2}} \Lambda_{\mathrm{UV}}^{2}
$$

Hierarchy problem

- Higgs boson is a composite bound state of a strongly interacting sector
- Similar to pions in QCD, Higgs is a pseudo NambuGoldstone boson (pNGB)

D B Kaplan, H Georgi, Phys. Lett. B 136 (1984) 183

Overview

- Requirement 1: pNGB Higgs potential must trigger electroweak symmetry breaking, give mass to W, Z bosons.

Vacuum misalignment

- Requirement 2: Explain why top quark is so heavy compared to $1^{\text {st }}$ and $2^{\text {nd }}$ generation quarks?

Partial compositeness

- Our goal: Connecting vacuum misalignment mechanism with partial compositeness

```
R Contino, Y Nomura, A Pomarol, [hep-ph/0306259], [hep-ph/0412089]
J Barnard, T Gherghetta, T S Ray, [1311.6562]
G Ferretti, D Karateev, [1312.5330],[1404.7137],[1604.06467]
And many more
```

\qquad

Recap: QCD

- Chiral symmetry breaking leads to pions as NGBs
- How do the pions get a potential?

Recap: QCD

- Chiral symmetry breaking leads to pions as NGBs
- How do the pions get a potential?
$V_{\pi}=V_{q}+V_{\gamma}=\frac{1}{2} m_{\pi^{0}}^{2}\left(\pi^{0}\right)^{2}+m_{\pi^{ \pm}}^{2} \pi^{+} \pi^{-}$
$m_{\pi^{0}}^{2}=-\frac{\left(m_{u}+m_{d}\right)}{f_{\pi}^{2}}\langle q \bar{q}\rangle>0$
Gellmann-Oakes-Renner, 1968
$m_{\pi^{ \pm}}^{2}-m_{\pi^{0}}^{2}=\frac{3 \alpha}{2 \pi} m_{\rho}^{2} \ln 2$
Mathur, Das, Guralnik, 1967

Electromagnetism remains unbroken

Composite Higgs vis-a-vis QCD

$$
\mathcal{L}_{\mathrm{SM}-\mathrm{H}}+\mathcal{L}_{\mathrm{HC}}+\mathcal{L}_{\mathrm{d}>4} \stackrel{f \sim \mathrm{TeV}}{\rightarrow} \mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\mathrm{comp}}+\mathcal{L}_{\mathrm{int}}
$$

Properties	QCD	Composite Higgs
Gauge group	$\mathrm{SU}(3)_{c}$	Hypercolor, $\mathrm{SU}(\mathrm{N}) / \mathrm{Sp}(\mathrm{N}) / \mathrm{SO}(\mathrm{N})$
Fundamental dof	Quarks, Gluons	Hyperquarks, Hypergluons
Global symmetry	$\frac{\mathrm{SU}(3)_{\mathrm{L}} \times \operatorname{SU}(3)_{\mathrm{R}}}{\mathrm{SU}(3)_{\mathrm{D}}}$	$\frac{\mathrm{SU}(\mathrm{N})}{\mathrm{SO}(\mathrm{N})}, \frac{\mathrm{SU}(\mathrm{N})}{\mathrm{Sp}(\mathrm{N})}, \frac{\mathrm{SU}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N})}{\mathrm{SU}(\mathrm{N})_{\mathrm{D}}}$
pNGBs $\langle\psi \psi\rangle$	Pions	Higgs + BSM scalars
$\left\langle\psi \gamma^{\mu} \psi\right\rangle$	$\rho-$ meson	spin-1 resonances
$\langle\psi \psi \psi\rangle$	Baryons	VLQs (Top-partners)
Partial compositeness	-	Explains quark mass
Vacuum misalignment	-	Triggers EWSB

Composite Higgs vacuum

$$
\begin{array}{rl}
\frac{G}{H} \rightarrow & \frac{\mathrm{SU}(4)}{\mathrm{Sp}(4)}, \frac{\mathrm{SU}(5)}{\mathrm{SO}(5)}, \frac{\mathrm{SU}(4) \times \mathrm{SU}(4)}{\mathrm{SU}(4)_{\mathrm{D}}} \\
H & \supset \mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R} \supset G_{\mathrm{EW}} \\
\operatorname{pNGBs} \rightarrow \phi_{(2,2)}+\eta_{(1,1)}+\ldots \\
\mathrm{EWSB} & ?
\end{array}
$$

Composite Higgs vacuum

$$
\begin{gathered}
\frac{G}{H} \rightarrow \frac{\mathrm{SU}(4)}{\mathrm{Sp}(4)}, \frac{\mathrm{SU}(5)}{\mathrm{SO}(5)}, \frac{\mathrm{SU}(4) \times \mathrm{SU}(4)}{\mathrm{SU}(4)_{\mathrm{D}}} \\
H \supset \mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R} \supset G_{\mathrm{EW}} \\
\operatorname{pNGBs} \rightarrow \phi_{(2,2)}+\eta_{(1,1)}+\ldots \\
\mathrm{EWSB} \stackrel{?}{\Longrightarrow} G_{\mathrm{EW}}=\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y} \rightarrow \mathrm{U}(1)_{\mathrm{EM}}
\end{gathered}
$$

Requirement for EWSB

$$
V_{\phi} \sim-\mu^{2} \phi^{\dagger} \phi+\ldots \quad \Longrightarrow\langle\phi\rangle \sim v
$$

Tachyonic directions : vacuum misalignment

Vacuum misalignment

$$
V=V_{\mathrm{mass}}+V_{W, Z}+V_{\mathrm{t}}
$$

Hyperquark mass

Top quark partial compositeness

Similar to QCD hyperquark mass and gauge contributions to V can not misalign the vacuum

$$
V_{\mathrm{mass}}+V_{W, Z} \sim+\mu_{m}^{2} \phi^{\dagger} \phi+\ldots
$$

$$
V_{t} \sim C\left(\mu_{1}^{2}-\mu_{2}^{2}\right) \phi^{\dagger} \phi+\ldots
$$

AB, G Ferretti, Phys.Rev.D 107 (2023) 9, 095006

Partial compositeness

Requirements:

- Nearly conformal dynamics above confinement scale
- Large anomalous dimension to reproduce top mass

Partial compositeness

Requirements:

- Nearly conformal dynamics above confinement scale
- Large anomalous dimension to reproduce top mass
- Physical states are mixture of elementary and composite degrees of freedom
- Top quark is more composite compared to lighter quarks

Vacuum misalignment via 4-Fermi operators

$$
\begin{aligned}
& V_{t} \sim C\left(\mu_{1}^{2}-\mu_{2}^{2}\right) \phi^{\dagger} \phi+\ldots \\
& \Psi \xrightarrow{G / H} \Psi_{R_{1}}+\Psi_{R_{2}} \quad \Longrightarrow y_{1} t \Psi_{R_{1}}+y_{2} t \Psi_{R_{2}} \\
& V_{t} \sim C \mu^{2}\left(y_{1}^{2}-y_{2}^{2}\right) \phi^{\dagger} \phi+\ldots \\
& C=f\left(M_{1}, M_{2}\right): \text { Non-perturbative, sign undetermined }
\end{aligned}
$$

Regardless of the overall sign, tachyonic directions can exist

Vacuum misalignment via 4-Fermi operators

$$
V_{t} \sim C\left(\mu_{1}^{2}-\mu_{2}^{2}\right) \phi^{\dagger} \phi+\ldots
$$

$S U(N)$	\rightarrow	$S O(N)$
$\mathbf{A d}$		$\mathbf{A d}+\mathbf{S}_{2}$ $\mathbf{1}+\mathbf{S}_{2}$
\mathbf{S}_{2}		$S p(2 N)$
$S U(2 N)$	\rightarrow	$\mathbf{S d}+\mathbf{A}_{2}$
$\mathbf{A d}$		$\mathbf{1}+\mathbf{A}_{2}$
\mathbf{A}_{2}	\rightarrow	$S U(N)$
$S U(N) \times S U(N)$		$\mathbf{A}_{2}+\mathbf{S}_{2}$
(\mathbf{F}, \mathbf{F})	$\mathbf{1}+\mathbf{A d}$	
$(\mathbf{F}, \overline{\mathbf{F}})$		

$C=f\left(M_{1}, M_{2}\right):$ Non-perturbative, sign undetermined

Regardless of the overall sign, tachyonic directions can exist

$$
C \sim \int \frac{d^{4} k}{(2 \pi)^{4}} \int d \mu^{2} \frac{\rho_{1}\left(\mu^{2}, M_{1}^{2}\right)-\rho_{2}\left(\mu^{2}, M_{2}^{2}\right)}{k^{2}+\mu^{2}}
$$

Lattice calculations can in principle determine the overall sign:

- estimate mass spectrum of the VLQs
- determine which irrep leads to misalignment

Vector-like quarks @LHC

Limitations:

- Simplified model framework (often with single VLQ)
- Interacting only with SM states
- 100% BR to specific SM channels
- Narrow width approximation

AB, D B Franzosi, G Ferretti, L Panizzi et al [2203.07270]

BSM decays of VLQs

$$
p p \rightarrow T_{2 / 3} \bar{T}_{2 / 3} \rightarrow\left(t S^{0}\right)+X \rightarrow(t \gamma \gamma)+X
$$

Ongoing ATLAS search in diphoton final states [SHIFT collaboration]

Benchmark composite Higgs coset: $\mathrm{SU}(5) / \mathrm{SO}(5)$

$$
\sigma\left(M_{T}=1.3 \mathrm{TeV}\right) \sim[1-10] \mathrm{fb}
$$

AB, D B Franzosi, G Ferretti, JHEP 03 (2022) 200

BSM decays of VLQs

$$
p p \rightarrow X_{8 / 3} \bar{X}_{8 / 3} \rightarrow\left(t S^{++}\right)\left(\bar{t} S^{--}\right) \rightarrow\left(2 t \bar{b} W^{+}\right)\left(2 \bar{t} b W^{-}\right)
$$

- Aim: searching $\left(\Psi \in 3_{5 / 3}\right) \rightarrow t+\left(S \in 3_{ \pm 1}\right)$
- Cosets: $\mathrm{SO}(5) / \mathrm{SO}(4), \mathrm{SU}(5) / \mathrm{SO}(5)$
- Interesting feature: Existence of $X_{8 / 3} \rightarrow t+S^{++}$
- Challenge: How to isolate its signal from SM + other VLQ backgrounds? Machine learning?

AB, R Enberg, V Ellajosyula, L Panizzi [work in progress]
https://feynrules.irmp.ucl.ac.be/wiki/NLOModels :Vector like quarks + exotic pNGBs

Summary

- Partial compositeness interactions are necessary to trigger electroweak symmetry breaking through vacuum misalignment.
- Major predictions involve existence of colored vector-like quarks which can be searched at the LHC.
- Lattice studies can shed some light on the spectrum of VLQs and the mechanism of EWSB.
- Strong constraints from the VLQ searches at the LHC under specific assumptions, upcoming searches in new channels will reveal more.

Thank you!

