HUNTING AXIONS WITH METAMATERIALS THE ALPHA HALOSCOPE

A. Gallo Rosso Stockholm University

Fysikdagarna, June 16, 2023

THE AXION

Strong CP problem

$$\frac{d_{n} \approx 2.4 \cdot 10^{-3} \,\mathrm{e\,fm} \times \overline{\theta}}{d_{n} < 1.8 \cdot 10^{-13} \,\mathrm{e\,fm}} \right\} \Rightarrow \left|\overline{\theta}\right| < 8 \cdot 10^{-11}$$

Peccei-Quinn-Weinberg-Wilczek

- 1 $\theta \to \theta(\vec{x}, t) \rightleftharpoons U(1)_{PQ}$ symmetry
- 2 Spontaneous symmetry breaking
- 3 Evolution to CP-conserving value

Dark matter

Non-thermal production of NR bosons

 $^{^{1}\}text{See e.g. arXiv: 1801.08127, 2003.01100, 2012.05029, 2104.07634, 2105.01406, 2109.07376.}$

neV μ eV meV eV keV MeV Axion mass $m_a c^2$

A CLASSIC APPROACH

SIKIVIE'S HALOSCOPE

$$|\mathbf{E}| = g_{a\gamma} B_{e} a_0 \left(1 - \frac{\omega_p}{\omega_a^2 - i\omega_a^2 \Gamma_p} \right)^{-1}$$

SIGNATURE

EM radiation in vacuum in the presence of a magnetic field

²P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983).

SIKIVIE'S HALOSCOPE

SIKIVIE'S HALOSCOPE

SIKIVIE'S HALOSCOPE

CURRENT LIMITS

³O' Hare, cajohare/AxionLimits:AxionLimits.

MATCHING WAVELENGTHS

Desiderata

- Cryogenic temperature
- Tunability
- Large volume
- "Low" plasma frequency

WIRE METAMATERIALS

Metamaterials

Composite materials with different properties than their single parts

⁴P.A. Belov *et al.*, J. Electromagn. Waves. Appl. 16, 8 (2002).

WIRE METAMATERIALS

⁴P.A. Belov et al., J. Electromagn. Waves. Appl. 16, 8 (2002).

WIRE METAMATERIALS

TM_{110} mode structure

Behavior as an effective medium

Properties

- Cryogenic
- Solenoidal magnet
- Much larger volume than cavities

⁵A. Millar *et al.*, Phys. Rev. D 107 (2023) 5, 055013.

AXION LONGITUDINAL PLASMA HALOSCOPE

ALPHA CONSORTIUM

Fermilab IIT Chicago IIT Kanpur ITMO University MIT Cambridge Niels Bohr Institute Oak Ridge National Labs Stockholm University & OKC UC Berkeley UC Davis UCL London University of Maryland University of Oxford Uppsala University

STOCKHOLM UNIVERSITY

Jan Conrad AGR

Hiranya Peiris

Jón Guðmundsson Gaganpreet Singh Gagandeep Kaur Frank Wilczek

DISCOVERY REACH

- $Q \sim (1 \div 3) \cdot 10^4$
- $B = 13 \,\mathrm{T}$
- $V = \pi \times 35^2 \times 75 \,\mathrm{cm}^3$

ALPHA PHASE I

- $(5 \div 40)$ GHz
- HEMT amplifiers

ALPHA PHASE II

- $(5 \div 45)$ GHz
- Quantum noise

⁵A. Millar *et al.*, Phys. Rev. D 107 (2023) 5, 055013.

TUNING IN

TUNING IN

APPLICATION TO HAYSTAC

⁷B.M. Brubaker *et al.* Phys. Rev. Lett. 118.6 (2017).

SUMMARY

ALPHA

- First data run expected in 2026
 - $\,\hookrightarrow\,$ VR and KAW grants
- KSVZ and DFSZ at reach

DAQ & ANALYSIS

- Framework for inference on sequential tests
- Protocol and computational optimizations

IMPROVE SYNERGY FOR SIMULATION & ANALYSIS

SUMMARY

IMPROVE SYNERGY FOR SIMULATION & ANALYSIS