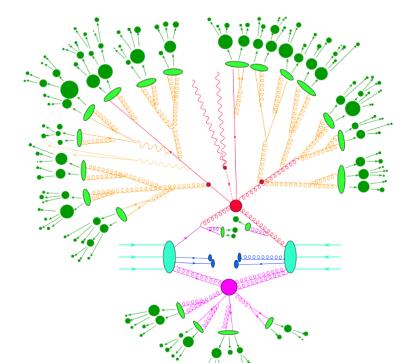
Tropical Feynman integration in the physical region

Felix Tellander

June 15, 2023

Based on [2302.08955] with M. Borinsky and H. J. Munch



Two-loop box and pentagon integrals

indep.	massive/	internal			
kinem.	off-shell	masses	process	full σ	
scales	legs		1		Analytic results: one off-sh
$2 \rightarrow 2$					leg [2005.04195,2107
2	0	0	$\gamma\gamma$	2011	0
2	0	0	<i>jj</i> (lc)	2017	
2	0	0	$\gamma + j$	2017	Today:
3	2	1	$t\bar{t}$	2013	
3	2	0	VV	2014	$\searrow 2$ 6 3
4	2	0	VV'	2015	• • • •
3	1	0	V + j	2015	
3	1	0	$H+j_{ m (HTL)}$	2015	1
4	2	1	HH	2016	±)• •
4	1	1	H+j	2018	$\sim 0 5 4$
3	0	1	$gg \rightarrow \gamma \gamma$	2019	
4	2	1	$gg \rightarrow ZZ$	2020	
4	2	1	$gg \rightarrow WW$	2020	1 6 2//
5	2	1	$gg \rightarrow ZH$	2021	
4	2	1	QCD-EW DY	2022	
$2 \rightarrow 3$					
4	0	0	3γ	2019	
4	0	0	$\gamma\gamma j$	2021	(0 5 4)
4	0	0	$3 j_{-}$	2021	/ 0 0 10
5	1	0	$Wb\overline{b}$	2022	

Why not NIntegrate?

Why not NIntegrate?

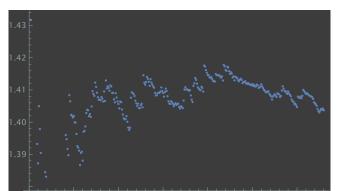
$$\int_0^1 \int_0^1 \frac{1}{x+y} dx dy = 2\log 2 \approx 1.3863$$

$$\int_0^1 \int_0^1 \frac{1}{x+y} dx dy = 2\log 2 \approx 1.3863$$

In[] NIntegrate[1/(x+y), {x,0,1}, {y,0,1}, Method->{"MonteCarlo","RandomSeed"->19950309}] Out[] 0.998259

$$\int_0^1 \int_0^1 \frac{1}{x+y} dx dy = 2\log 2 \approx 1.3863$$

In[] NIntegrate[1/(x+y), {x,0,1}, {y,0,1}, Method->{"MonteCarlo","RandomSeed"->19950309}] Out[] 0.998259



$$\int_{0}^{1} \int_{0}^{1} \frac{1}{x+y} dx dy = 2\log 2 \approx 1.3863$$

is convergent.

$$\int_0^1 \int_0^1 \frac{1}{x+y} dx dy = 2\log 2 \approx 1.3863$$

is convergent. The integral

$$\int_0^1 \int_0^1 \frac{1}{(x+y)^2} dx dy = \infty$$

is divergent, so

$$\operatorname{Var}\left(\frac{1}{x+y}dx_{[0,1]}dy_{[0,1]}\right) = \infty$$

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{x+y} dx dy = 2\log 2 \approx 1.3863$$

is convergent. The integral

$$\int_0^1 \int_0^1 \frac{1}{(x+y)^2} dx dy = \infty$$

is divergent, so

$$\operatorname{Var}\left(\frac{1}{x+y}dx_{[0,1]}dy_{[0,1]}\right) = \infty$$

The Monte Carlo estimate is

$$\frac{1}{N}\sum_{i=1}^{N}\frac{1}{x_i+y_i}+\mathcal{O}\left(\sqrt{\frac{\infty}{N}}\right)$$

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{x+y} dx dy = 2\log 2 \approx 1.3863$$

is convergent. The integral

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{(x+y)^{2}} dx dy = \infty$$

is divergent, so

$$\operatorname{Var}\left(\frac{1}{x+y}dx_{[0,1]}dy_{[0,1]}\right) = \infty$$

The Monte Carlo estimate is

$$\frac{1}{N}\sum_{i=1}^{N}\frac{1}{x_i+y_i}+\mathcal{O}\left(\sqrt{\frac{\infty}{N}}\right)$$

This type of integrable boundary singularities are ubiquitous in Feynman integrals.

Feynman integration software

- pySecDec [Borowka et al.]
- FIESTA [Smirnov]
- DiffExp [Hidding]
- AMFlow [Liu, Ma]
- SeaSyde [Armadillo et al.]
- HyperInt [Panzer]

Feynman integration software

- pySecDec [Borowka et al.]
- FIESTA [Smirnov]
- DiffExp [Hidding]
- AMFlow [Liu, Ma]
- SeaSyde [Armadillo et al.]
- HyperInt [Panzer]
- feyntrop [Borinsky, Munch and FT]

Uses *tropical Monte Carlo integration* and can be applied to Euclidean as well as Minkowski kinematics.

True power: On your laptop you can evaluate high-loop multi-scale integrals in *minutes* to *reasonable* error.

The Feynman Integral

$$\mathcal{I} = \lim_{\varepsilon \to 0^+} \Gamma(\omega) \int_{\mathbb{R}_+^{\varepsilon}} \prod_{e \in \varepsilon} \left(\frac{x^{\nu_e} dx_e}{\Gamma(\nu_e) x_e} \right) \mathcal{U}^{-D/2} \frac{\delta(1 - x_1 - \dots - x_E)}{\left(\mathcal{V} - i\varepsilon \sum_{e \in \varepsilon} x_e \right)^{\omega}}$$

with the superficial degree of divergence

$$\omega := \sum_{e \in E} \nu_e - LD/2$$

where ν_e are propagator powers and $\mathcal{V}=\mathcal{F}/\mathcal{U}$ with homogeneous graph/Symanzik polynomials

$$\mathcal{U} = \sum_{\substack{T \text{ a spanning} \\ \text{tree of } G}} \prod_{e \notin T} x_e, \quad \deg(\mathcal{U}) = L$$
$$\mathcal{F} = \mathcal{F}_m + \mathcal{F}_0 = \mathcal{U} \sum_{e \in E} m_e^2 x_e - \sum_{\substack{F \text{ a spanning} \\ 2-\text{forest of } G}} \rho(F)^2 \prod_{e \notin F} x_e, \quad \deg(\mathcal{F}) = L + 1$$

Contour Deformation

Why $i\varepsilon$? Chooses the causal branch and ensures the convergence.

Contour Deformation

Why *iε*? Chooses the causal branch and ensures the convergence.

Why <u>not</u> $i\varepsilon$?

- Modifies the analytic structure by displacing branch points and introducing spurious branch cuts.
- Numerics is hard, as $\varepsilon \to 0$ poles can get arbitrarily close to the integration contour.

Contour Deformation

Why $i\varepsilon$? Chooses the causal branch and ensures the convergence.

Why <u>not</u> $i\varepsilon$?

- Modifies the analytic structure by displacing branch points and introducing spurious branch cuts.
- Numerics is hard, as $\varepsilon \to 0$ poles can get arbitrarily close to the integration contour.

Instead: Change of variables

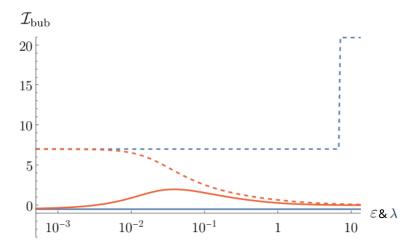
$$X_e = x_e \exp\left(-i\lambda \frac{\partial \mathcal{V}}{\partial x_e}\right)$$

Picks the same causal branch as $i\varepsilon$ as long as λ is sufficiently small and

$$x_e \frac{\partial \mathcal{V}}{\partial x_e} \neq 0 \quad \forall e \in E$$

i.e. the Landau equations have no solutions.

Comparison with direct numerics on the Feynman parameterization with $i\varepsilon$ and with deformation:



[Hannesdottir,Mizera] For too large λ we get a jump.

Tropical Monte Carlo

The *tropical approximation* of a polynomial $p(\mathbf{x}) = \sum_{\alpha \in \text{supp}(p)} c_{\alpha} \mathbf{x}^{\alpha}$:

 $p^{\mathrm{tr}}(\mathbf{x}) = \max_{\alpha \in \mathrm{supp}(p)} \{ \mathbf{x}^{\alpha} \}.$

Tropical Monte Carlo

The tropical approximation of a polynomial $p(\mathbf{x}) = \sum_{\alpha \in \text{supp}(p)} c_{\alpha} \mathbf{x}^{\alpha}$:

$$p^{\operatorname{tr}}(\mathbf{x}) = \max_{\alpha \in \operatorname{supp}(p)} \{ \mathbf{x}^{\alpha} \}.$$

Theorem

For a homogeneous polynomial $p \in \mathbb{C}[x_1, \ldots, x_n]$ that is completely non-vanishing in \mathbb{P}^n_+ there exists constants $C_1, C_2 > 0$ s.t.

$$\mathsf{C}_1 \leq rac{|
ho({m{x}})|}{
ho^{ ext{tr}}({m{x}})} \leq \mathsf{C}_2 \; \; \textit{for all } {m{x}} \in \mathbb{P}^n_+$$

Tropical Monte Carlo

The tropical approximation of a polynomial $p(\mathbf{x}) = \sum_{\alpha \in \text{supp}(p)} c_{\alpha} \mathbf{x}^{\alpha}$:

$$p^{\mathrm{tr}}(\mathbf{x}) = \max_{\alpha \in \mathrm{supp}(p)} \{\mathbf{x}^{\alpha}\}.$$

Theorem

For a homogeneous polynomial $p \in \mathbb{C}[x_1, ..., x_n]$ that is completely non-vanishing in \mathbb{P}^n_+ there exists constants $C_1, C_2 > 0$ s.t.

$$C_1 \leq rac{|
ho(m{x})|}{
ho^{
m tr}(m{x})} \leq C_2 \; \; \textit{for all } m{x} \in \mathbb{P}^n_+$$

Key assumption: You can find bounds on a deformed polynomial with the un-deformed one.

I.e. there are λ dependent constants $C_1(\lambda), C_2(\lambda) > 0$ s.t.

$$C_1(\lambda) \le \left| \left(\frac{\mathcal{U}^{\mathrm{tr}}(\mathbf{x})}{\mathcal{U}(\mathbf{x})} \right)^{\nu_0/2} \left(\frac{\mathcal{V}^{\mathrm{tr}}(\mathbf{x})}{\mathcal{V}(\mathbf{x})} \right)^{\omega_0} \right| \le C_2(\lambda) \quad \text{for all} \quad \mathbf{x} \in \mathbb{P}_+^{\mathcal{E}}$$

where the denominators are the deformed polynomials.

Expanding in ϵ :

Assuming that the only potential divergence comes from $\Gamma(\omega)$ we have:

$$\begin{split} \mathcal{I} &= \Gamma(\omega_0 + \epsilon L) \sum_{k=0}^{\infty} \frac{\epsilon^k}{k!} \int_{\mathbb{P}_+^{\ell}} \left(\prod_{e \in \mathcal{E}} \frac{X_e^{\nu_e}}{\Gamma(\nu_e)} \right) \frac{\det \mathcal{J}_{\lambda}(\mathbf{x})}{\mathcal{U}\left(\mathbf{x}\right)^{D_0/2} \cdot \mathcal{V}\left(\mathbf{x}\right)^{\omega_0}} \log^k \left(\frac{\mathcal{U}(\mathbf{x})}{\mathcal{V}(\mathbf{x})^{\ell}} \right) \, \Omega \\ \text{where } \omega_0 &= \sum_{e \in \mathcal{E}} \nu_e - D_0 L/2. \end{split}$$

Expanding in ϵ :

Assuming that the only potential divergence comes from $\Gamma(\omega)$ we have:

$$\begin{split} \mathcal{I} &= \Gamma(\omega_0 + \epsilon L) \sum_{k=0}^{\infty} \frac{\epsilon^k}{k!} \int_{\mathbb{P}_+^{\epsilon}} \left(\prod_{e \in \mathcal{E}} \frac{X_e^{\nu_e}}{\Gamma(\nu_e)} \right) \frac{\det \mathcal{J}_{\lambda}(\mathbf{x})}{\mathcal{U}\left(\mathbf{x}\right)^{p_0/2} \cdot \mathcal{V}\left(\mathbf{x}\right)^{\omega_0}} \log^k \left(\frac{\mathcal{U}(\mathbf{x})}{\mathcal{V}(\mathbf{x})^{\iota}} \right) \, \Omega \\ \text{where } \omega_0 &= \sum_{e \in \mathcal{E}} \nu_e - D_0 L/2. \end{split}$$

Writing the integral with these fractions in the integrand:

$$\mathcal{I} = \frac{\Gamma(\omega_0 + \epsilon L)}{\prod_{e \in \mathcal{E}} \Gamma(\nu_e)} \sum_{k=0}^{\infty} \frac{\epsilon^k}{k!} \mathcal{I}_k$$

with

$$\mathcal{I}_{k} = l^{\mathrm{tr}} \int_{\mathbb{P}_{+}^{\ell}} \frac{\left(\prod_{e \in \mathcal{E}} (X_{e}/x_{e})^{\nu_{e}}\right) \det \mathcal{J}_{\lambda}(\mathbf{x})}{\left(\mathcal{U}\left(\mathbf{x}\right)/\mathcal{U}^{\mathrm{tr}}\left(\mathbf{x}\right)\right)^{\nu_{0}/2} \cdot \left(\mathcal{V}\left(\mathbf{x}\right)/\mathcal{V}^{\mathrm{tr}}\left(\mathbf{x}\right)\right)^{\omega_{0}}} \log^{k} \left(\frac{\mathcal{U}(\mathbf{x})}{\mathcal{V}(\mathbf{x})^{L}}\right) \mu^{\mathrm{tr}}$$

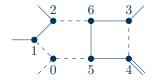
and

$$\mu^{\mathrm{tr}} = \frac{1}{l^{\mathrm{tr}}} \frac{\prod_{e \in \mathcal{E}} x_e^{\nu_e}}{\mathcal{U}^{\mathrm{tr}}(\mathbf{x})^{\nu_0/2} \mathcal{V}^{\mathrm{tr}}(\mathbf{x})^{\omega_0}} \Omega, \quad \int_{\mathbb{P}_+^{\mathcal{E}}} \mu^{\mathrm{tr}} = 1.$$

The program feyntrop

Available at https://github.com/michibo/feyntrop A C++ program with Python interface:

Example:



Dashed lines: massless, the solid lines: mass *m* and double $p_4^2 \neq 0$.

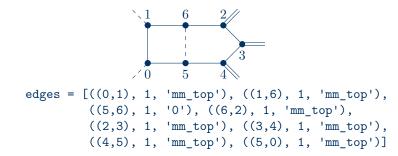
Phase space point

$$\begin{split} p_0^2 &= 0\,, \quad p_1^2 = p_2^2 = p_3^2 = m^2 = 1/2\,, \quad s_{01} = 2.2\,, \quad s_{02} = 2.3\,, \\ s_{03} &= 2.4\,, \quad s_{12} = 2.5\,, \quad s_{13} = 2.6\,, \quad s_{23} = 2.7\,, \end{split}$$
 where $s_{ij} = (p_i + p_j)^2$. With $\lambda = 0.28\,, \, \textit{N} = 10^8$, we obtain:

Prefactor: gamma(2*eps + 2). (Effective) kinematic regime: Minkowski (exceptional). Finished in 8.20 seconds. -- eps^0: [0.06480 +/- 0.00078] + i * [-0.08150 +/- 0.00098] -- eps^1: [0.4036 +/- 0.0045] + i * [0.3257 +/- 0.0035] -- eps^2: [-0.7889 +/- 0.0060] + i * [0.957 +/- 0.016] -- eps^3: [-1.373 +/- 0.030] + i * [-1.181 +/- 0.034] -- eps^4: [1.258 +/- 0.088] + i * [-1.205 +/- 0.036]

This is a **two-loop** integral with different mass scales that you can integrate on your **laptop** in **8 seconds**.

Example:



With $s_{ij} := (p_i + p_j)^2$, we have the following kinematic setup:

$$p_0^2 = p_1^2 = 0, \quad p_2^2 = p_3^2 = p_4^2 = m_H^2,$$

$$s_{01} = 5m_H^2 - s_{02} - s_{03} - s_{12} - s_{13} - s_{23}.$$

Phase space point:

$$\begin{split} m_t^2 &= 1.8995\,,\quad m_H^2 = 1\,,\\ s_{02} &= -4.4\,,\quad s_{03} = -0.5\,,\quad s_{12} = -0.6\,,\quad s_{13} = -0.7\,,\quad s_{23} = 1.8\,,\\ \text{Setting }\lambda &= 0.64 \text{ and } \textit{N} = 10^8\text{, we get:} \end{split}$$

```
Prefactor: gamma(2*eps + 4).
(Effective) kinematic regime: Minkowski (generic).
Finished in 8.12 seconds.
-- eps^0: [-0.0114757 +/- 0.0000082]
          + i * [0.0035991 +/- 0.0000068]
-- eps^1: [ 0.003250 +/- 0.000031 ]
          + i * [-0.035808 +/- 0.000041 ]
-- eps^2: [ 0.046575 +/- 0.000098 ]
          + i * [0.016143 +/- 0.000088 ]
-- eps^3: [ -0.01637 +/- 0.00017 ]
          + i * [ 0.03969 +/- 0.00016 ]
-- eps^4: [ -0.02831 +/- 0.00023 ]
          + i * [-0.00823 +/- 0.00024 ]
```

- feyntrop 8.12 seconds with relative error $\sim 10^{-3}$
- pySecDec 3 hours with relative error $\sim 10^{-2}$

Thank you!