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Two-loop box and pentagon integrals

Analytic results: one off-shell

leg [2005.04195,2107.14180]
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Why not NIntegrate?

∫ 1

0

∫ 1

0

1

x + y
dxdy = 2 log 2 ≈ 1.3863

In[] NIntegrate[1/(x+y), {x,0,1}, {y,0,1},
Method->{"MonteCarlo","RandomSeed"->19950309}]

Out[] 0.998259
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Reason?

Even though ∫ 1

0

∫ 1

0

1

x + y
dxdy = 2 log 2 ≈ 1.3863

is convergent.

The integral∫ 1

0

∫ 1

0

1

(x + y)2
dxdy = ∞

is divergent, so

Var

(
1

x + y
dx[0,1]dy[0,1]

)
= ∞

The Monte Carlo estimate is

1

N

N∑
i=1

1

xi + yi
+O

(√
∞
N

)
This type of integrable boundary singularities are ubiquitous in Feynman

integrals.
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Feynman integration software

• pySecDec [Borowka et al.]

• FIESTA [Smirnov]

• DiffExp [Hidding]

• AMFlow [Liu, Ma]

• SeaSyde [Armadillo et al.]

• HyperInt [Panzer]

• feyntrop [Borinsky, Munch and FT]

Uses tropical Monte Carlo integration and can be applied to Euclidean as well as

Minkowski kinematics.

True power: On your laptop you can evaluate high-loop multi-scale integrals in

minutes to reasonable error.
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The Feynman Integral

I = lim
ε→0+

Γ(ω)

∫
RE

+

∏
e∈E

(
xνedxe

Γ(νe)xe

)
U−D/2 δ(1− x1 − · · · − xE)(

V − iε
∑

e∈E
xe
)ω

with the superficial degree of divergence

ω :=
∑
e∈E

νe − LD/2

where νe are propagator powers and V = F/U with homogeneous

graph/Symanzik polynomials

U =
∑

T a spanning
tree of G

∏
e 6∈T

xe, deg(U) = L

F = Fm + F0 = U
∑
e∈E

m2
e xe −

∑
F a spanning
2−forest of G

p(F)2
∏
e6∈F

xe, deg(F) = L+ 1
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Contour Deformation

Why iε?
Chooses the causal branch and ensures the convergence.

Why not iε?

• Modifies the analytic structure by displacing branch points and introducing

spurious branch cuts.

• Numerics is hard, as ε → 0 poles can get arbitrarily close to the integration

contour.

Instead: Change of variables

Xe = xe exp

(
−iλ

∂V
∂xe

)
Picks the same causal branch as iε as long as λ is sufficiently small and

xe
∂V
∂xe

6= 0 ∀e ∈ E

i.e. the Landau equations have no solutions.
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Comparison with direct numerics on the Feynman parameterization with iε and

with deformation:

&

[Hannesdottir,Mizera]

For too large λ we get a jump.
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Tropical Monte Carlo

The tropical approximation of a polynomial p(x) =
∑

α∈supp(p) cαx
α:

ptr(x) = max
α∈supp(p)

{xα}.

Theorem
For a homogeneous polynomial p ∈ C[x1, . . . , xn] that is completely non-vanishing in

Pn
+ there exists constants C1, C2 > 0 s.t.

C1 ≤ |p(x)|
ptr(x)

≤ C2 for all x ∈ Pn
+

Key assumption: You can find bounds on a deformed polynomial with the

un-deformed one.

I.e. there are λ dependent constants C1(λ), C2(λ) > 0 s.t.

C1(λ) ≤

∣∣∣∣∣
(
U tr(x)

U(X)

)D0/2(V tr(x)

V(X)

)ω0
∣∣∣∣∣ ≤ C2(λ) for all x ∈ PE

+

where the denominators are the deformed polynomials.
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Expanding in ε:
Assuming that the only potential divergence comes from Γ(ω) we have:

I = Γ(ω0+εL)

∞∑
k=0

εk

k!

∫
PE
+

(∏
e∈E

Xνe
e

Γ(νe)

)
detJλ(x)

U (X)
D0/2 · V (X)

ω0
log

k

(
U(X)
V(X)L

)
Ω

where ω0 =
∑

e∈E
νe − D0L/2.

Writing the integral with these fractions in the integrand:

I =
Γ(ω0 + εL)∏

e∈E
Γ(νe)

∞∑
k=0

εk

k!
Ik

with

Ik = Itr
∫
PE
+

(∏
e∈E

(Xe/xe)
νe

)
detJλ(x)

(U (X) /U tr (x))
D0/2 · (V (X) /V tr (x))

ω0
log

k

(
U(X)
V(X)L

)
µtr

and

µtr =
1

Itr

∏
e∈E

xνe
e

U tr(x)D0/2 V tr(x)ω0
Ω,

∫
PE
+

µtr = 1.
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The program feyntrop

Available at https://github.com/michibo/feyntrop

A C++ program with Python interface:

12

https://github.com/michibo/feyntrop


Example:

36

5 4

2

0

1

Dashed lines: massless, the solid lines: massm and double p24 6= 0.

edges = [((0,1), 1, '0'), ((1,2), 1, 'mm'), ((2,6), 1, '0'),
((6,3), 1, 'mm'), ((3,4), 1, '0'), ((4,5),1, 'mm'),
((5,0), 1, '0'), ((5,6), 1, 'mm')]

Phase space point

p20 = 0 , p21 = p22 = p23 = m2 = 1/2 , s01 = 2.2 , s02 = 2.3 ,

s03 = 2.4 , s12 = 2.5 , s13 = 2.6 , s23 = 2.7 ,

where sij = (pi + pj)
2. With λ = 0.28 , N = 108 , we obtain:
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Prefactor: gamma(2*eps + 2).
(Effective) kinematic regime: Minkowski (exceptional).
Finished in 8.20 seconds.
-- eps^0: [0.06480 +/- 0.00078] + i * [-0.08150 +/- 0.00098]
-- eps^1: [0.4036 +/- 0.0045 ] + i * [ 0.3257 +/- 0.0035 ]
-- eps^2: [-0.7889 +/- 0.0060 ] + i * [ 0.957 +/- 0.016 ]
-- eps^3: [-1.373 +/- 0.030 ] + i * [ -1.181 +/- 0.034 ]
-- eps^4: [ 1.258 +/- 0.088 ] + i * [ -1.205 +/- 0.036 ]

This is a two-loop integral with different mass scales that you can integrate on

your laptop in 8 seconds.
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Example:

1 6

50

2

4

3

edges = [((0,1), 1, 'mm_top'), ((1,6), 1, 'mm_top'),
((5,6), 1, '0'), ((6,2), 1, 'mm_top'),
((2,3), 1, 'mm_top'), ((3,4), 1, 'mm_top'),
((4,5), 1, 'mm_top'), ((5,0), 1, 'mm_top')]

With sij := (pi + pj)
2, we have the following kinematic setup:

p20 = p21 = 0 , p22 = p23 = p24 = m2
H ,

s01 = 5m2
H − s02 − s03 − s12 − s13 − s23 .

Phase space point:

m2
t = 1.8995 , m2

H = 1 ,

s02 = −4.4 , s03 = −0.5 , s12 = −0.6 , s13 = −0.7 , s23 = 1.8 ,

Setting λ = 0.64 and N = 108, we get: 15



Prefactor: gamma(2*eps + 4).
(Effective) kinematic regime: Minkowski (generic).
Finished in 8.12 seconds.
-- eps^0: [-0.0114757 +/- 0.0000082]

+ i * [0.0035991 +/- 0.0000068]
-- eps^1: [ 0.003250 +/- 0.000031 ]

+ i * [-0.035808 +/- 0.000041 ]
-- eps^2: [ 0.046575 +/- 0.000098 ]

+ i * [0.016143 +/- 0.000088 ]
-- eps^3: [ -0.01637 +/- 0.00017 ]

+ i * [ 0.03969 +/- 0.00016 ]
-- eps^4: [ -0.02831 +/- 0.00023 ]

+ i * [-0.00823 +/- 0.00024 ]

• feyntrop 8.12 seconds with relative error∼ 10−3

• pySecDec 3 hours with relative error∼ 10−2
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Thank you!
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