Tropical Feynman integration in the physical region

Felix Tellander

June 15, 2023
Based on [2302.08955] with
M. Borinsky and H. J. Munch

2

Two-loop box and pentagon integrals

indep. kinem. scales	massive/ off-shell legs	internal masses	process	full σ	Ana	ts: one off-shell	
$2 \rightarrow 2$					leg	[2005.04195,2107.14180]	
2	0	0	$\gamma \gamma$	2011			
2	0	0	$j j$ (Ic)	2017	Today:		
2	0	0	$\gamma+j$	2017			
3	2	1	$t \bar{t}$	2013			
3	2	0	VV	2014			
4	2	0	$V V^{\prime}$	2015			
3	1	0	$V+j$	2015			
3	1	0	$H+j{ }_{\text {(HTL) }}$	2015			
4	2	1	$H H$	2016			
4	1	1	$H+j$	2018			
3	0	1	$g g \rightarrow \gamma \gamma$	2019			
4	2	1	$g g \rightarrow Z Z$	2020			
4	2	1	$g g \rightarrow W W$	2020			
5	2	1	$g g \rightarrow Z H$	2021			
4	2	1	QCD-EW DY	2022			
$2 \rightarrow 3$							
4	0	0	3γ	2019			
4	0	0	$\gamma \gamma j$	2021			
4	0	0	$3 j$	2021			
5	1	0	$W b \bar{b}$	2022			

Why not NIntegrate?

Why not NIntegrate?

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{x+y} d x d y=2 \log 2 \approx 1.3863
$$

Why not NIntegrate?

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{x+y} d x d y=2 \log 2 \approx 1.3863
$$

In [] NIntegrate[1/(x+y), $\{x, 0,1\},\{y, 0,1\}$, Method->\{"MonteCarlo", "RandomSeed"->19950309\}]
Out [] 0.998259

Why not NIntegrate?

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{x+y} d x d y=2 \log 2 \approx 1.3863
$$

In [] NIntegrate[1/(x+y), $\{x, 0,1\},\{y, 0,1\}$, Method->\{"MonteCarlo", "RandomSeed"->19950309\}]
Out[] 0.998259

Reason?

Even though

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{x+y} d x d y=2 \log 2 \approx 1.3863
$$

is convergent.

Reason?

Even though

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{x+y} d x d y=2 \log 2 \approx 1.3863
$$

is convergent. The integral

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{(x+y)^{2}} d x d y=\infty
$$

is divergent, so

$$
\operatorname{Var}\left(\frac{1}{x+y} d x_{[0,1]} d y_{[0,1]}\right)=\infty
$$

Reason?

Even though

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{x+y} d x d y=2 \log 2 \approx 1.3863
$$

is convergent. The integral

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{(x+y)^{2}} d x d y=\infty
$$

is divergent, so

$$
\operatorname{Var}\left(\frac{1}{x+y} d x_{[0,1]} d y_{[0,1]}\right)=\infty
$$

The Monte Carlo estimate is

$$
\frac{1}{N} \sum_{i=1}^{N} \frac{1}{x_{i}+y_{i}}+\mathcal{O}\left(\sqrt{\frac{\infty}{N}}\right)
$$

Reason?

Even though

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{x+y} d x d y=2 \log 2 \approx 1.3863
$$

is convergent. The integral

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{(x+y)^{2}} d x d y=\infty
$$

is divergent, so

$$
\operatorname{Var}\left(\frac{1}{x+y} d x_{[0,1]} d y_{[0,1]}\right)=\infty
$$

The Monte Carlo estimate is

$$
\frac{1}{N} \sum_{i=1}^{N} \frac{1}{x_{i}+y_{i}}+\mathcal{O}\left(\sqrt{\frac{\infty}{N}}\right)
$$

This type of integrable boundary singularities are ubiquitous in Feynman integrals.

Feynman integration software

- pySecDec [Borowka et al.]
- FIESTA [smirnov]
- DiffExp [Hidding]
- AMFlow [Liu, Ma]
- SeaSyde [Armadillo et al.]
- HyperInt [Panzer]

Feynman integration software

- pySecDec [Borowka et al.]
- FIESTA [Smirnov]
- DiffExp [Hidding]
- AMFlow [Liu, Ma]
- SeaSyde [Armadillo et al.]
- HyperInt [Panzer]
- feyntrop [Borinsky, Munch and FT]

Uses tropical Monte Carlo integration and can be applied to Euclidean as well as Minkowski kinematics.

True power: On your laptop you can evaluate high-loop multi-scale integrals in minutes to reasonable error.

The Feynman Integral

$$
\mathcal{I}=\lim _{\varepsilon \rightarrow 0^{+}} \Gamma(\omega) \int_{\mathbb{R}_{+}^{E}} \prod_{e \in E}\left(\frac{x^{\nu_{e}} d x_{e}}{\Gamma\left(\nu_{e}\right) x_{e}}\right) \mathcal{U}^{-D / 2} \frac{\delta\left(1-x_{1}-\cdots-x_{E}\right)}{\left(\mathcal{V}-i \varepsilon \sum_{e \in E} x_{e}\right)^{\omega}}
$$

with the superficial degree of divergence

$$
\omega:=\sum_{e \in E} \nu_{e}-L D / 2
$$

where ν_{e} are propagator powers and $\mathcal{V}=\mathcal{F} / \mathcal{U}$ with homogeneous graph/Symanzik polynomials

$$
\begin{aligned}
& \mathcal{U}=\sum_{\substack{T \text { a spanning } \\
\text { tree of } G}} \prod_{e \notin T} x_{e}, \quad \operatorname{deg}(\mathcal{U})=L \\
& \mathcal{F}=\mathcal{F}_{m}+\mathcal{F}_{0}=\mathcal{U} \sum_{e \in E} m_{e}^{2} x_{e}-\sum_{\substack{\text { F a spanning } \\
\text { 2 -forest of } G}} p(F)^{2} \prod_{e \notin F} x_{e}, \quad \operatorname{deg}(\mathcal{F})=L+1
\end{aligned}
$$

Contour Deformation

Why is?

Chooses the causal branch and ensures the convergence.

Contour Deformation

Why $i \varepsilon$?
Chooses the causal branch and ensures the convergence.

Why not $i \varepsilon$?

- Modifies the analytic structure by displacing branch points and introducing spurious branch cuts.
- Numerics is hard, as $\varepsilon \rightarrow 0$ poles can get arbitrarily close to the integration contour.

Contour Deformation

Why i i ?
Chooses the causal branch and ensures the convergence.

Why not $i \varepsilon$?

- Modifies the analytic structure by displacing branch points and introducing spurious branch cuts.
- Numerics is hard, as $\varepsilon \rightarrow 0$ poles can get arbitrarily close to the integration contour.

Instead: Change of variables

$$
x_{e}=x_{e} \exp \left(-i \lambda \frac{\partial \mathcal{V}}{\partial x_{e}}\right)
$$

Picks the same causal branch as ie as long as λ is sufficiently small and

$$
x_{e} \frac{\partial \mathcal{V}}{\partial x_{e}} \neq 0 \quad \forall e \in E
$$

i.e. the Landau equations have no solutions.

Comparison with direct numerics on the Feynman parameterization with $i \varepsilon$ and with deformation:

[Hannesdottir,Mizera]
For too large λ we get a jump.

Tropical Monte Carlo

The tropical approximation of a polynomial $p(\boldsymbol{x})=\sum_{\alpha \in \operatorname{supp}(p)} c_{\alpha} \boldsymbol{x}^{\alpha}$:

$$
p^{\operatorname{tr}}(\boldsymbol{x})=\max _{\alpha \in \operatorname{supp}(p)}\left\{\boldsymbol{x}^{\alpha}\right\}
$$

Tropical Monte Carlo

The tropical approximation of a polynomial $p(\boldsymbol{x})=\sum_{\alpha \in \operatorname{supp}(p)} c_{\alpha} \boldsymbol{x}^{\alpha}$:

$$
p^{\operatorname{tr}}(\boldsymbol{x})=\max _{\alpha \in \operatorname{supp}(p)}\left\{\boldsymbol{x}^{\alpha}\right\}
$$

Theorem

For a homogeneous polynomial $p \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ that is completely non-vanishing in \mathbb{P}_{+}^{n} there exists constants $C_{1}, C_{2}>0$ s.t.

$$
C_{1} \leq \frac{|p(\boldsymbol{x})|}{p^{\operatorname{tr}(\boldsymbol{x})}} \leq C_{2} \quad \text { for all } \boldsymbol{x} \in \mathbb{P}_{+}^{n}
$$

Tropical Monte Carlo

The tropical approximation of a polynomial $p(\boldsymbol{x})=\sum_{\alpha \in \operatorname{supp}(p)} c_{\alpha} \boldsymbol{x}^{\alpha}$:

$$
p^{\operatorname{tr}}(\boldsymbol{x})=\max _{\alpha \in \operatorname{supp}(p)}\left\{\boldsymbol{x}^{\alpha}\right\} .
$$

Theorem

For a homogeneous polynomial $p \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ that is completely non-vanishing in \mathbb{P}_{+}^{n} there exists constants $C_{1}, C_{2}>0$ s.t.

$$
c_{1} \leq \frac{|p(\boldsymbol{x})|}{p^{\operatorname{tr}}(\boldsymbol{x})} \leq c_{2} \text { for all } \boldsymbol{x} \in \mathbb{P}_{+}^{n}
$$

Key assumption: You can find bounds on a deformed polynomial with the un-deformed one.
I.e. there are λ dependent constants $C_{1}(\lambda), C_{2}(\lambda)>0$ s.t.

$$
C_{1}(\lambda) \leq\left|\left(\frac{\mathcal{U}^{\operatorname{tr}}(\boldsymbol{x})}{\mathcal{U}(\boldsymbol{x})}\right)^{D_{0} / 2}\left(\frac{\mathcal{V}^{\operatorname{tr}}(\boldsymbol{x})}{\mathcal{V}(\boldsymbol{X})}\right)^{\omega_{0}}\right| \leq C_{2}(\lambda) \quad \text { for all } \quad \boldsymbol{x} \in \mathbb{P}_{+}^{E}
$$

where the denominators are the deformed polynomials.

Expanding in ϵ :

Assuming that the only potential divergence comes from $\Gamma(\omega)$ we have:
$\mathcal{I}=\Gamma\left(\omega_{0}+\epsilon L\right) \sum_{k=0}^{\infty} \frac{\epsilon^{k}}{k!} \int_{\mathbb{P}_{+}^{E}}\left(\prod_{e \in E} \frac{x_{e}^{\nu_{e}}}{\Gamma\left(\nu_{e}\right)}\right) \frac{\operatorname{det} \mathcal{J}_{\lambda}(\boldsymbol{x})}{\mathcal{U}(\boldsymbol{x})^{D_{0} / 2} \cdot \mathcal{V}(\boldsymbol{X})^{\omega_{0}}} \log ^{k}\left(\frac{\mathcal{U}(\boldsymbol{x})}{\mathcal{V}(\boldsymbol{X})^{L}}\right) \Omega$
where $\omega_{0}=\sum_{e \in E} \nu_{e}-D_{0} L / 2$.

Expanding in ϵ :

Assuming that the only potential divergence comes from $\Gamma(\omega)$ we have:
$\mathcal{I}=\Gamma\left(\omega_{0}+\epsilon L\right) \sum_{k=0}^{\infty} \frac{\epsilon^{k}}{k!} \int_{\mathbb{P}_{+}^{E}}\left(\prod_{e \in E} \frac{X_{e}^{\nu_{e}}}{\Gamma\left(\nu_{e}\right)}\right) \frac{\operatorname{det} \mathcal{J}_{\lambda}(\boldsymbol{x})}{\mathcal{U}(\boldsymbol{x})^{D_{0} / 2} \cdot \mathcal{V}(\boldsymbol{X})^{\omega_{0}}} \log ^{k}\left(\frac{\mathcal{U}(\boldsymbol{x})}{\mathcal{V}(\boldsymbol{X})^{L}}\right) \Omega$
where $\omega_{0}=\sum_{e \in E} \nu_{e}-D_{0} L / 2$.

Writing the integral with these fractions in the integrand:

$$
\mathcal{I}=\frac{\Gamma\left(\omega_{0}+\epsilon L\right)}{\prod_{e \in E} \Gamma\left(\nu_{e}\right)} \sum_{k=0}^{\infty} \frac{\epsilon^{k}}{k!} \mathcal{I}_{k}
$$

with

$$
\mathcal{I}_{k}=I^{\operatorname{tr}} \int_{\mathbb{P}_{+}^{E}} \frac{\left(\prod_{e \in E}\left(X_{e} / x_{e}\right)^{\mathcal{L}_{e}}\right) \operatorname{det} \mathcal{J}_{\lambda}(\boldsymbol{x})}{\left(\mathcal{U}(\boldsymbol{x}) / \mathcal{U}^{\operatorname{tr}}(\boldsymbol{x})\right)^{D_{0} / 2} \cdot\left(\mathcal{V}(\boldsymbol{x}) / \mathcal{V}^{\operatorname{tr}}(\boldsymbol{x})\right)^{\omega_{0}}} \log ^{k}\left(\frac{\mathcal{U}(\boldsymbol{x})}{\mathcal{V}(\boldsymbol{x})^{\iota}}\right) \mu^{\operatorname{tr}}
$$

and

$$
\mu^{\operatorname{tr}}=\frac{1}{\rho^{\operatorname{tr}}} \frac{\prod_{e \in E} x_{e}^{\nu_{e}}}{\mathcal{U}^{\operatorname{tr}}(\boldsymbol{x})^{D_{0} / 2} \mathcal{V}^{\operatorname{tr}}(\boldsymbol{x})^{\omega_{0}}} \Omega, \quad \int_{\mathbb{P}_{+}^{E}} \mu^{\operatorname{tr}}=1
$$

The program feyntrop

Available at https://github.com/michibo/feyntrop
A C++ program with Python interface:

Example:

Dashed lines: massless, the solid lines: mass m and double $p_{4}^{2} \neq 0$.

```
edges = [((0,1), 1, '0'), ((1,2), 1, 'mm'), ((2,6), 1, '0'),
    ((6,3), 1, 'mm'), ((3,4), 1, '0'), ((4,5),1, 'mm'),
    ((5,0), 1, '0'), ((5,6), 1, 'mm')]
```

Phase space point

$$
\begin{aligned}
p_{0}^{2} & =0, \quad p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=m^{2}=1 / 2, \quad s_{01}=2.2, \quad s_{02}=2.3 \\
s_{03} & =2.4, \quad s_{12}=2.5, \quad s_{13}=2.6, \quad s_{23}=2.7
\end{aligned}
$$

where $s_{i j}=\left(p_{i}+p_{j}\right)^{2}$. With $\lambda=0.28, N=10^{8}$, we obtain:

Prefactor: gamma(2*eps + 2).
(Effective) kinematic regime: Minkowski (exceptional).
Finished in 8.20 seconds.
-- eps~0: [0.06480 +/-0.00078] + i * [-0.08150 +/-0.00098]
-- eps^1: [0.4036 +/-0.0045] + i * [0.3257 +/-0.0035]
-- eps~2: [-0.7889 +/-0.0060] + i * [0.957 +/- 0.016]
-- eps^3: [-1.373 +/-0.030] + i * [-1.181 +/- 0.034]
-- eps^4: [$1.258+/-0.088]+i *[-1.205+/-0.036]$
This is a two-loop integral with different mass scales that you can integrate on your laptop in 8 seconds.

Example:

With $s_{i j}:=\left(p_{i}+p_{j}\right)^{2}$, we have the following kinematic setup:

$$
\begin{aligned}
p_{0}^{2} & =p_{1}^{2}=0, \quad p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=m_{H}^{2} \\
s_{01} & =5 m_{H}^{2}-s_{02}-s_{03}-s_{12}-s_{13}-s_{23}
\end{aligned}
$$

Phase space point:

$$
\begin{gathered}
m_{t}^{2}=1.8995, \quad m_{H}^{2}=1 \\
s_{02}=-4.4, \quad s_{03}=-0.5, \quad s_{12}=-0.6, \quad s_{13}=-0.7, \quad s_{23}=1.8
\end{gathered}
$$

Setting $\lambda=0.64$ and $N=10^{8}$, we get:

Prefactor: gamma(2*eps + 4).
(Effective) kinematic regime: Minkowski (generic).
Finished in 8.12 seconds.
-- eps^0: [-0.0114757 +/- 0.0000082] + i * [0.0035991 +/- 0.0000068]
-- eps^1: [0.003250 +/- 0.000031] + i * [-0.035808 +/- 0.000041]
-- eps^2: [0.046575 +/- 0.000098] $+i *[0.016143+/-0.000088]$
-- eps^3: [-0.01637 +/- 0.00017] $+i *[0.03969+/-0.00016]$
-- eps^4: [-0.02831 +/- 0.00023]

$$
+i *[-0.00823+/-0.00024]
$$

- feyntrop 8.12 seconds with relative error $\sim 10^{-3}$
- pySecDec 3 hours with relative error $\sim 10^{-2}$

Thank you!

