

Background Rejection Studies

Overview

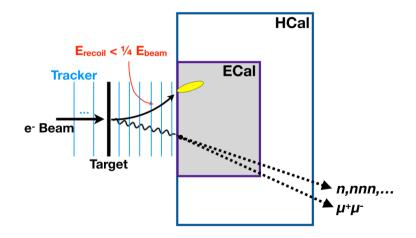
Backgrounds

8 GeV Upgrade

Background Rejectio

- LDMX requires: Extensive discrimination between signal and background events!
- 2 Study goal: Out of 2×10^{14} electrons on the target, no background event should be misclassified as the DM signal.
- Question: This worked 4 GeV beam energy, what about at 8 GeV?

Focus: Photon Induced Background


Overview

Backgrounds

GeV Upgrade

Background Rejection

Simulated Samples

Overview

Backgrounds

8 GeV Upgrade

Background Rejection

Results & Outlook

Certain backgrounds simulated in detail. Statistics comparable to, at least, 2×10^{14} electrons on target (EoT).

Simulated sample	Total events simulated	EoT equivalent
ECal Photo-nuclear	3.60×10^{11}	1.98×10^{14}
Ecal $\gamma o \mu \mu$	8.00×10^{10}	2.40×10^{15}
Target Photo-nuclear	1.63×10^{12}	8.99×10^{14}
Target $\gamma ightarrow \mu \mu$	9.45×10^{11}	9.45×10^{15}

Compare: Actual 8 GeV run expects, on the order of, 10¹⁶ EoT.

Why study LDMX at 8 GeV?

Overview

Backgrounds

8 GeV Upgrade

Background Rejectio

Results & Outloo

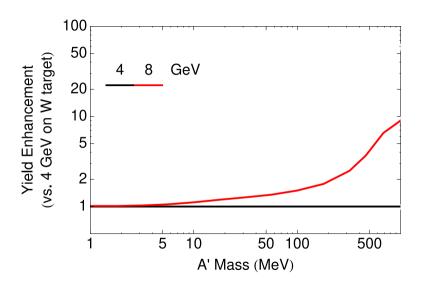
The LCLS-II accelerator at SLAC *will* be upgraded from 4 to 8 GeV, and is where most of our data will be taken!

Expected benefits at 8 GeV compared to 4 GeV:

- Energetic particles shower more clearly the in ECal
- Larger signal yield (in A' mediator model)
- Reduced rates of some challenging backgrounds

However:

More boost means more limited by ECal resolution



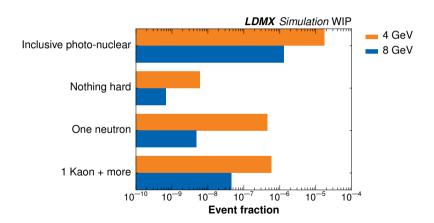
Overview

Backgrounds

8 GeV Upgrade

Background Rejection

Photo-nuclear Events in the ECal


Backgrounds

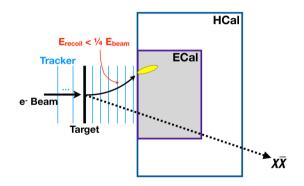
8 GeV Upgrade

Results & Outlook

Rates of (triggered) photo-nuclear event final states:

Background Rejection Procedure

Overview


Backgrounds

8 GeV Upgrad

Background Rejection

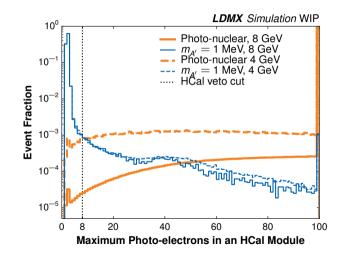
Results & Outlook

Signal signature:

- ECal missing energy
- Missing momentum in recoil tracker
- No activity in ECal beyond recoil electron shower (BDT)
- No activity in HCal
- No track-like features in ECal

HCal Improvement

erview


Backgrounds

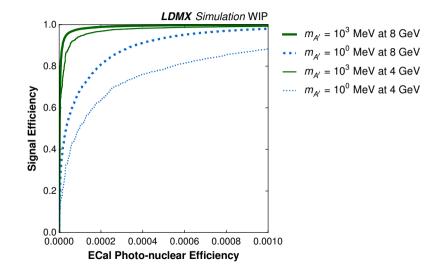
8 GeV Upgrad

Background Rejection

Results & Outlook

15th June 2023 9/18

ECal BDT Improvement


rerview

Backgrounds

8 GeV Upgrad

Background Rejection

Applying All Vetos

Backgrounds

8 GeV Upgrade

Background Rejection

Results & Outlook

LDMX Simulation WIP

	Photo-nuclear		Muon conversion		
	Target-area	ECal	Target-area	ECal	
EoT Equivalent	2.00×10^{14}	2.00×10^{14}	2.00×10^{14}	2.00×10^{14}	
Trigger	7.57×10^{7}	4.43×10^{8}	2.37×10^{7}	8.12×10^{7}	
Missing ECal Energy	2.73×10^{7}	7.27×10^{7}	1.76×10^{7}	6.06×10^{7}	
Missing Momentum	3.03×10^{6}	6.64×10^{7}	5.32×10^4	5.69×10^{7}	
ECal BDT	1.50×10^{5}	1.04×10^{5}	< 1	< 1	
HCal Activity	< 1	2.02	< 1	< 1	
ECal MIP Tracking	<1	<1	<1	< 1	

Not a single simulated background event remaining!

What now?

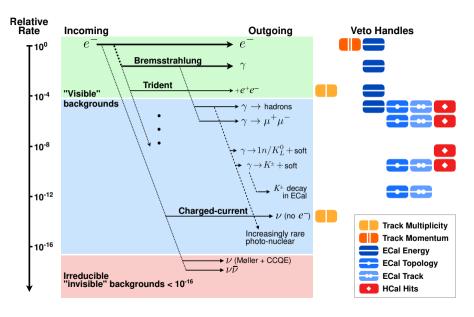
Results & Outlook

- Pile-up: Low intensity beam, but still a busier detector.
- Statistics: 10^{16} electrons on target or more expected in 8 GeV run. Compare to 2×10^{14} electrons simulated in this study. Clever simulation strategy needed!

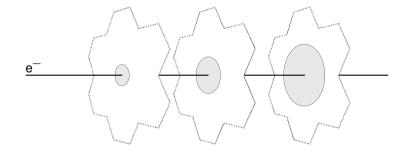
Rejecting all of 2×10^{14} background events is a good first step!

Thanks!

Backgrounds


8 GeV Upgrade

Background Rejection



Background Rejection

Containment Radii A standard shower shape

Results & Outlook

Electron and photon trajectories are known from the recoil tracker.

Signal events expect no energy near the bremsstrahlung photon trajectory, only near the electron.

BDT Variables

- Global features: Number of hits, summed energy of hits with no hits in neighbouring cells [...]
- Transverse features: Distribution of energy around the inferred electron and photon path [...]
- Longitudinal features: The average layer of a hit, layer of the deepest hit [...]

4 GeV Results

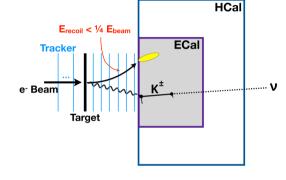
Backgrounds

8 GeV Upgrade

Background Rejection

	Photo-i	nuclear	Muon conversion		
	Target-area	ECal	Target-area	ECal	
EoT equivalent	4×10^{14}	2.1×10^{14}	8.2×10^{14}	2.4×10^{15}	
Total events simulated	8.8×10^{11}	4.65×10^{11}	6.27×10^{8}	8×10^{10}	
Trigger, ECal total energy $< 1.5 \text{ GeV}$	1×10^{8}	2.63×10^{8}	1.6×10^{7}	1.6×10^{8}	
Single track with $p < 1.2 \mathrm{GeV}$	2×10^{7}	2.34×10^{8}	3.1×10^{4}	1.5×10^{8}	
ECal BDT (> 0.99)	9.4×10^{5}	1.32×10^{5}	< 1	< 1	
HCal max PE < 5	< 1	10	< 1	< 1	
ECal MIP tracks = 0	< 1	< 1	< 1	< 1	

Charged Kaon Background


Overview

Backgrounds

8 GeV Upgrade

Background Rejection

Results & Outlook

 K^{\pm} may decay to neutrinos inside the ECal. Both the BDT and HCal may deem the event signal-like.

The K^{\pm} can leave a short track before it decays. At 4 GeV, a tracking algorithm was implemented to find such short tracks.