ALICE Activities in Lund

June 14, 2023

Intro: ALICE

ALICE studies the haystack

1000 authors 171 inst 40 countries

$10^{\text{-}42}\text{m}^3$ of Big Bang matter after $10^{\text{-}6}\text{s}$

PHYSICS

- Lead Lead (PbPb) at LHC, Conditions much later (microseconds) during Big Bang
- Create Quark Gluon Plasma of nuclear size
- Bulk system of color charged particles.
- Thermodynamics of the strong force
- Phase transition to protons and neutrons (hadrons)

Experiment

- 1000 pp in 10⁻²²s high multiplicity
- 10⁴ Hz coll rate
- QGP debris low momentum
- Difficult to trigger
- Particle identification (PID)
- Lund detector TPC 3D tracking +PID

Who: Lund ALICE Group

ALICE

- 3 Seniors
 - Peter Christiansen, Alice Ohlson, David Silvermyr (HW)
 - + Emeriti: Anders Oskarsson (HW)
- 1 Engineer (~25% FTE, 100% value)
 - Lennart Österman (HW)
- 2 Postdocs
 - Sumit Basu + new ITS3 Postdoc... (HW)
- 5 Ph.D. Students
 - Oliver Matonoha (defended June 9th), Joey Staa, Joachim Hansen, Kaare Iversen, Roman Nepeivoda
- Activities
 - Analysis: CLASH (KAW) strangeness, fluctuations
 - Hardware: recent TPC Upgrade/Electronics (LS2), future ITS3 (LS3), ALICE 3 (LS4) : 3-4 people + 2 master students 2023
 - Individuals also work on detector R&D for: ILC (TPC), HIBEAM/NNBAR experiment at ESS, ESSvSB, s/ePHENIX/EIC: more opportunities than we can really pursue...

ALICE Lund Group Activities - Analysis

New small system physics:

- strangeness enhancement (LU),
- flow in small systems.

KAW grant (CLASH), with Peter C. and Leif Lönnblad as co-PIs to pursue this further

Spåtind 2023 overview of experimental results in heavy ion physics, Alice Ohlson:

https://indico.cern.ch/event/1168768/contributions/5177022/

ALICE LU Activities – Hardware : TPC

ALICE Detector Upgrades during LS2 (2019-2021)

Pixel Muon Forward Tracker (MFT)

New Online/Offline (O2)

New Central Trigger Processor (CTP)

Upgrade of R/O for EMCal, PHOS, TRD, HMPID, ZDC

тор BOT

*VR/RFI funding for LU activities 2022-2026 with ITS3

ALICE – Inner Tracker 2 – 2022

2022 Run3/4 ITS2 12.5 10^9 pixels, ~10 m² Si IB: 30 x 30 µm² pixel size 0.35% X₀ (radiation length) hybrid flex HDI water cooling CF support

Pixel Structure (2x2)

Material Budget ITS2

- 0.35% X₀ per layer
- Silicon contributes 15% only
- Irregularities due to support/cooling
- What if ?
- Water cooling is removed
 - Air cooling
 - \rightarrow 0.31% X₀ per layer
- Removal of the HDI hybrid flex board (power & data)
 - If integrated on silicon ASIC
 - \rightarrow 0.14% X₀ per layer
- Removal of mechanical support
 - Stability due to bent silicon wafers
 - \rightarrow 0.05% X₀ per layer

Material Budget ITS2 → ITS3

ITS3 Specifications & Layout

Concept

 replace inner 3 layers of ITS2 with ITS3

280 mm long sensor ASICs

out of 300 mm long stitched (overlapping metal layers) wafers

20-40 μm thick (0.02-0.04% $X_{0})$

 $15 \text{ x} 15 \ \mu\text{m}^2$ pixel size

bent shape with radius 18/24/30 mm

carbon foam rib to hold ASICs in place

air cooling

homogenous material distribution

- 6 sensor ASICs
 - 2 halves * 3 layers

ITS3 Questions

- Idea
 - remove all but the silicon sensor ASIC and
 - bend it around beam pipe
 - for increased performance and mechanical stability
- Questions (many already adressed by collaborators)
 - Can thin silicon be bent without breaking?
 - Are bent silicon sensor ASICs functional?
 - Can long, thinned silicon sensors be integrated without a heavy CF structure?
 - Can the sensor be cooled with air-only efficiently?
 - Can a 280 mm long silicon sensor ASIC be produced?
 - Can the sensors be connected without additional HDI?

ITS3 Assembly

1) Sensor bending

Half layer bending assembly sequence consolidated

2) Wire-bonding

3) Gluing of the mechanical supports

LU Master Student Project (Jesper K G)

Implemented different distorsion models Studies effects on vertexing & tracking efficiency, tracking resolution

Radius quadratic in φ

Stitched sensor ASICs (MOSS)

Primary Goals (Engineering Run 1)

Learn Stitching to make a charged particle detector

Interconnect power and signals on wafer scale design

Learn about yield

Study power, leakage, spread, noise, speed

MOSS / ER1 (May 2023)

Wafer-scale sensors Engineering Run 1 (ER1) is back

- First MAPS for HEP using stitching
 - one order of magnitude larger than previous chips
- "MOSS": 14 x 259 mm, 6.72 MPixel (22.5 x 22.5 and 18 x 18 µm²)
 - conservative design, different pitches
- "MOST": 2.5 x 259 mm, 0.9 MPixel (18 x 18 µm²)
 - more dense design
- Plenty of small chips (like MLR1)

This is the crucial and last remaining item to be added to the TDR

Lund is joining testing of large and small MOSS prototypes

ALICE 3: a next generation HI detector for Run 5 & 6

Ultimate performance for HF, thermal radiation and soft hadrons ($p_T < 50$ MeV/c)

- Multiply heavy flavour, hadron production, multi-quark states
- Chiral symmetry restoration (e.m. probes)
- Beyond HI (phase space complementary to other experiments)
 - Violation of fundamental properties of quantum field theories (emission of soft photons)
 - New physics in soft sector, e.g. dark photons

Lol : arXiv:2211.02491

ALICE3 Inner Tracker / Vertex Detector

Main challenges: mechanical integration (inside beam pipe), spatial resolution (2.5 μ m, i.e. 10 μ m pitch), radiation hardness, power consumption...

- Conceptual study of iris tracker
 - Wafer-sized, bent MAPS (leveraging on ITS3 activities)
 - Rotary petals for secondary vacuum (thin walls to minimise material)
 - Matching to beam pipe parameters (impedance, aperture, ...)

-0.4

- Feed-throughs for power, cooling, data
- R&D programme on mechanics, cooling, radiation tolerance

Outer Tracker: ~70 m² Si... (50 μ m pixel pitch)

Main challenges: mass production, services integration, power consumption, fake-hit rate

Large involvement from former ALICE TPC group (as for ITS3 leadership)

Planning (draft) — Outer Tracker

			2	20	23		2024				2025				2026				2027				2028				2029				2030				2031			
							Run 3												LS3												Run 4				n 4	14		
			Q 1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
rPSCo	65m Engin	neering Runs					ER2 (ITS3)				ER3 (ITS3)				ER4					ER5					ER6											
racker		Chip		De					Pro			ototyping						EDR	Pre-production PRR			PRR	Production PRR			uction								_				
		Module				De	sign	gn Pro			ototyping Prototyping							EDR Pre-produ			produ								Prod	uction				1				
		Mechanics					Design			sign				ş	TOD			Proto	otyping EDR				Pre-	Pre-production PRR				Product				ion						
2		Services									Design				TDR		1			Prototyping						Procurement			ıt									
te																																	Det	ector	assen	nbly		
0																																						
-																											L											

- Major ALICE upgrade during LS2 to take advantage of the luminosity increase. Lund heavily involved in TPC upgrade, in particular readout electronics.
- Lund group also lead ongoing analyses, in particular investigating strangeness production in smaller systems (e.g. pp in QGP domain).
- Present and future exciting hardware involvement in ITS3 (installation in ~2027) and ALICE3 (possible installation ~2033, Behovsinventering list 2023...).

ITS3 Timeline

Milestone		20)22			20	23			20	24			20	25			20	26			20	27		Date	Comment		
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4				
ER1 tape out				٠																					→ Nov 2022			
ER2 spec review				6	٠																				Mar 2023			
ER1 sensors on bench					+	-																			Jun 2023			
ER1 first test results					1	C	-																		Sep 2023			
TDR					/	(5	٠																	Oct 2023			
ER2 tapeout									\blacklozenge	•															Feb 2024			
ER2 produced & diced											-														Sep 2024			
ER2 first test results											6	-													Dec 2024			
QM (ER2 half-barrel)												4													Feb 2025			
ER3 EDR																									Mar 2025			
ER3 tape out											2 2			-											Jun 2025			
ER3 produced & diced													$ \langle$		1										Jan 2026			
ER3 qualified																(-								Apr 2026			
FM (ER3 full detector)																		-							Jul 2026			
commissioned																			4						Sep 2026			
start of installation																				/			-		Nov 2027	includes lumped contingency		

LU Master Student Project (Jesper K G)

A: hit that one would measure with an ideal geometry B: real (measured) hit C: measured hit projected in the ideal geometry $\delta = |A - C|$

2