

EUROPEAN SPALLATION SOURCE

Free-Neutron Oscillation Searches at the European Spallation Source

PRESENTED BY UDO FRIMAN-GAYER ON BEHALF OF THE HIBEAM / NNBAR COLLABORATION

14-06-2023

Contents

Motivation

Baryogenesis and Dark Matter Background

Free Neutron Oscillation Figure of Merit European Spallation Source (ESS)

Experiment

General Concept Experimental Program Developments for NNBAR Neutron Optics Antineutron Detector Radiation Shielding

ESS Aerial View 22.2.2022. Photo courtesy of ESS

Summary

Baryogenesis and Dark Matter

Matter-Antimatter Asymmetry

Baryon-Number Violation

Neutron-Antineutron Oscillations $n \rightarrow \bar{n}$

Possible Observable

Evidence Ano Astr Hypothesis "Dark

Anomalies in Astrophysics

"Dark Matter"

Neutron-Dark Matter Oscillations $n \rightarrow n'$ (here: "Mirror Matter")

D. Bödeker and W. Buchmüller, "Baryogenesis from the weak scale to the grand unification scale", Rev. Mod. Phys. **93**, 035004 (2021) G. Bertone and D. Hooper, "History of dark matter", Rev. Mod. Phys. **90**, 045002 (2018) Z. Berezhiani and L. Bento, "Neutron–Mirror-Neutron Oscillations: How Fast Might They Be?", Phys. Rev. Lett. **96**, 081801 (2006)

Free Neutron Oscillation

Current lower half-life limits

►
$$\tau_{n \to \bar{n}} > 8.6 \times 10^7 \, \mathrm{s}^{-2}$$

$$\succ \tau_{n \to n'} > 10^1 - 10^2 \,\mathrm{s}^{-3}$$

Mixing of neutron (n), antineutron (n
), and mirror neutron (n') states⁴

² M. Baldo-Ceolin *et al.*, "A new experimental limit of neutron-antineutron oscillations", Z. Phys. C **63**, 409-416 (1994)

³Z. Berezhiani *et al.*, "New experimental limits on neutron - mirror neutron oscillations in the presence of mirror magnetic field", Eur. Phys. J. C **78**, 717 (2018) ⁴Possible mirror antineutron state omitted for better visibility.

A. Addazi et al., "New high-sensitivity searches for neutrons converting into antineutrons and/or ...", J. Phys. G Nucl. Part. Phys. 48, 070501 (2021)

Free Neutron Oscillation

Mixing of neutron (*n*), antineutron (\bar{n}), and mirror neutron (*n*') states⁴

Impact of magnetic fields on energies and transition matrix elements.

² M. Baldo-Ceolin *et al.*, "A new experimental limit of neutron-antineutron oscillations", Z. Phys. C **63**, 409-416 (1994)

³Z. Berezhiani *et al.*, "New experimental limits on neutron - mirror neutron oscillations in the presence of mirror magnetic field", Eur. Phys. J. C **78**, 717 (2018) ⁴Possible mirror antineutron state omitted for better visibility.

A. Addazi et al., "New high-sensitivity searches for neutrons converting into antineutrons and/or ...", J. Phys. G Nucl. Part. Phys. 48, 070501 (2021)

Figure of Merit (FOM)

$$P_{n\bar{n}}\left(t\right) = \underbrace{\frac{\epsilon_{n\bar{n}}^{2}}{\left(\Delta E/2\right)^{2} + \epsilon_{n\bar{n}}^{2}} \sin\left[\frac{t}{\hbar}\sqrt{\left(\Delta E/2\right)^{2} + \epsilon_{n\bar{n}}^{2}}\right]^{2}}_{\text{Neutron-Antineutron Oscillation}} \underbrace{\exp\left(-\frac{t}{\tau_{\beta}}\right)}_{\text{Beta Decay}}$$

$$P_{n\bar{n}}(t) = \underbrace{\frac{\epsilon_{n\bar{n}}^2}{(\Delta E/2)^2 + \epsilon_{n\bar{n}}^2} \sin\left[\frac{t}{\hbar}\sqrt{(\Delta E/2)^2 + \epsilon_{n\bar{n}}^2}\right]^2}_{\text{Neutron-Antineutron Oscillation}} \underbrace{\exp\left(-\frac{t}{\tau_\beta}\right)}_{\text{Beta Decay}}$$

$$P_{n\bar{n}}\left(t\right) = \frac{\epsilon_{n\bar{n}}^{2}}{\left(\mu_{n}B\right)^{2} + \epsilon_{n\bar{n}}^{2}} \sin\left[\frac{t}{\hbar}\sqrt{\left(\mu_{n}B\right)^{2} + \epsilon_{n\bar{n}}^{2}}\right]^{2} \exp\left(-\frac{t}{\tau_{\beta}}\right)$$

$$\blacktriangleright$$
 $n \rightarrow \bar{n}: \Delta E = 2\mu_n B$

$$P_{n\bar{n}}\left(t\right) = \frac{\epsilon_{n\bar{n}}^{2}}{\left(\mu_{n}B\right)^{2} + \epsilon_{n\bar{n}}^{2}} \sin\left[\frac{t}{\hbar}\sqrt{\left(\mu_{n}B\right)^{2} + \epsilon_{n\bar{n}}^{2}}\right]^{2} \underbrace{\exp\left(-\frac{t}{\tau_{\beta}}\right)}_{\approx 1}$$

$$\blacktriangleright n \to \bar{n}: \Delta E = 2\mu_n B$$

• Time of flight $t_{\rm TOF} \approx 0.1 \, {
m s} \ll \tau_{\beta} = 879 \, {
m s}$

$$P_{n\bar{n}}(t) = \frac{\epsilon_{n\bar{n}}^2}{\left(\mu_n B\right)^2 + \epsilon_{n\bar{n}}^2} \sin\left[\frac{t}{\hbar}\sqrt{\left(\mu_n B\right)^2 + \epsilon_{n\bar{n}}^2}\right]^2$$

- $\blacktriangleright n \to \bar{n}: \Delta E = 2\mu_n B$
- Time of flight $t_{
 m TOF}pprox 0.1\,{
 m s}\ll au_eta=879\,{
 m s}$
- Order-of-magntiude estimates:
 - $\mu_n B \approx 5 \times 10^{-10} \, \mathrm{eV}^{-5}$

$$\epsilon_{n\bar{n}} < 8 \times 10^{-24} \, \mathrm{eV}^{-5}$$

$$\mathrm{TOF}/\hbar\approx 2\times 10^{14}\,\mathrm{eV^{-1}}^{6}$$

⁵A. Addazi *et al.*, "New high-sensitivity searches for neutrons converting into antineutrons and/or ...", J. Phys. G Nucl. Part. Phys. **48**, 070501 (2021)

$$P_{n\bar{n}}\left(t\right) = \frac{\epsilon_{n\bar{n}}^{2}}{\left(\mu_{n}B\right)^{2} + \epsilon_{n\bar{n}}^{2}} \underbrace{\sin\left[\frac{t}{\hbar}\sqrt{\left(\mu_{n}B\right)^{2} + \epsilon_{n\bar{n}}^{2}}\right]^{2}}_{\approx \frac{t^{2}}{\hbar^{2}}\left[\left(\mu_{n}B\right)^{2} + \epsilon_{n\bar{n}}^{2}\right]}$$

 $\blacktriangleright n \to \bar{n}: \Delta E = 2\mu_n B$

- Time of flight $t_{
 m TOF}pprox 0.1\,{
 m s}\ll au_eta=879\,{
 m s}$
- Order-of-magntiude estimates:
 - $\mu_n B \approx 5 \times 10^{-10} \, \mathrm{eV}^{-5}$

$$\epsilon_{n\bar{n}} < 8 \times 10^{-24} \, \mathrm{eV}^{-5}$$

- $\mathrm{TOF}/\hbar\approx 2\times 10^{14}\,\mathrm{eV^{-1}}^{6}$
- Magnetic shielding: $t_{
 m TOF} \mu_n B/\hbar \ll 1$

⁵ A. Addazi et al., "New high-sensitivity searches for neutrons converting into antineutrons and/or ...", J. Phys. G Nucl. Part. Phys. 48, 070501 (2021)

$$P_{n\bar{n}}\left(t
ight) pprox rac{\epsilon_{n\bar{n}}^{2}t^{2}}{\hbar^{2}}$$

"Quasi-free approximation"

 $\blacktriangleright n \to \bar{n}: \Delta E = 2\mu_n B$

- Time of flight $t_{
 m TOF}pprox 0.1\,{
 m s}\ll au_{eta}=879\,{
 m s}$
- Order-of-magntiude estimates:
 - $\mu_n B \approx 5 \times 10^{-10} \, \mathrm{eV}^{-5}$

$$\epsilon_{n\bar{n}} < 8 \times 10^{-24} \,\mathrm{eV}^{-5}$$

- $\mathrm{TOF}/\hbar\approx 2\times 10^{14}\,\mathrm{eV^{-1}}^{6}$
- Magnetic shielding: $t_{
 m TOF} \mu_n B/\hbar \ll 1$

⁵ A. Addazi et al., "New high-sensitivity searches for neutrons converting into antineutrons and/or ...", J. Phys. G Nucl. Part. Phys. 48, 070501 (2021)

$$P_{nar{n}}\left(t
ight)pproxrac{\epsilon_{nar{n}}^{2}t^{2}}{\hbar^{2}}$$

"Quasi-free approximation"

FOM = Number of Neutrons(N) × Conversion Probability = Nt^2

- $\blacktriangleright n \to \bar{n}: \Delta E = 2\mu_n B$
- Time of flight $t_{
 m TOF} pprox 0.1\,{
 m s} \ll au_eta = 879\,{
 m s}$
- Order-of-magntiude estimates:
 - $\mu_n B \approx 5 \times 10^{-10} \, \mathrm{eV}^{-5}$

$$\epsilon_{n\bar{n}} < 8 \times 10^{-24} \, \mathrm{eV}^{-5}$$

- $\mathrm{TOF}/\hbar\approx 2\times 10^{14}\,\mathrm{eV^{-1}}^{6}$
- Magnetic shielding: $t_{
 m TOF}\mu_n B/\hbar \ll 1$

⁵ A. Addazi et al., "New high-sensitivity searches for neutrons converting into antineutrons and/or ...", J. Phys. G Nucl. Part. Phys. 48, 070501 (2021)

https://ess.eu

L. Zanini et al., "Design of the cold and thermal neutron moderators for the European Spallation Source", NIM A 925, 33-52 (2019)

⁷ Design value, time averaged, wavelength integrated

Direct $n \to \bar{n}$ search

 Particle detector for reconstruction of nn
 event in thin annihilation target.

Direct $n \to \bar{n}$ search

- Particle detector for reconstruction of *nn* event in thin annihilation target.
- Magnetic-field cancellation

Direct $n \to \bar{n}$ search

- Particle detector for reconstruction of nn
 event in thin annihilation target.
- Magnetic-field cancellation

Direct dark-matter search via "Disappearance"

 Count-rate reduction in neutron detector.

Direct $n \to \bar{n}$ search

- Particle detector for reconstruction of *nn* event in thin annihilation target.
- Magnetic-field cancellation

Direct dark-matter search via "Disappearance"

- Count-rate reduction in neutron detector.
- Magnetic-field control.

Direct $n \to \bar{n}$ search

- Particle detector for reconstruction of nn
 event in thin annihilation target.
- Magnetic-field cancellation

Direct dark-matter search via "Disappearance"

- Count-rate reduction in neutron detector.
- Magnetic-field control.

Dark-matter search via "Regeneration"

 Count-rate increase in neutron detector.

Direct $n \to \bar{n}$ search

- Particle detector for reconstruction of nn
 event in thin annihilation target.
- Magnetic-field cancellation

Direct dark-matter search via "Disappearance"

- Count-rate reduction in neutron detector.
- Magnetic-field control.

Dark-matter search via "Regeneration"

- Count-rate increase in neutron detector.
- Magnetic-field control.

Program Overview

Versatile $n \rightarrow n' / n \rightarrow \bar{n}$ search

- Beamline E6
- \blacktriangleright pprox 60 m flight path
- "Butterfly" moderator (thermal + cold)

Goals:

- Pioneer $n \rightarrow n'$
- Competitive $n \to \bar{n}$

⁸ High-Intensity Baryon Extraction and Measurement

4.

A. Addazi et al, "New high-sensitivity searches for neutrons converting into antineutrons and/or ...", J. Phys. G Nucl. Part. Phys. 48, 070501 (2021)

Proton bean

NNBAR

- High-sensitivity $n \to \bar{n}$ search
 - Custom beamline
 - \blacktriangleright pprox 200 m flight path
 - (Mainly) Lower moderator (cold + very cold)

Goal:

Increase $n \rightarrow \bar{n}$ sensitivity by 10^3

Developments for NNBAR

Upgrades for NNBAR experiment at ESS

- Large beam port
- Very cold neutron source at lower moderator position (HighNESS project)

V. Santoro *et al.*, "Development of high intensity neutron source at the European Spallation Source", J. Neutr. Res. **22**, 209 (2020) L. Zanini *et al.*, "Very cold and ultra cold neutron sources for ESS", J. Neutr. Res. **24**, 77-93 (2022)

Goal: Compact target/detection setup

- **Goal**: Compact target/detection setup
- General Solution: Supermirror-based focusing optics

- **Goal**: Compact target/detection setup
- General Solution: Supermirror-based focusing optics
- Problem: Conventional elliptic mirrors limit free-flight time

- **Goal**: Compact target/detection setup
- General Solution: Supermirror-based focusing optics
- **Problem:** Conventional elliptic mirrors limit free-flight time
- Special Solution: Nested elliptic

mirrors

C. Herb. "Nested mirror optics for neutron extraction, transport, and focusing". NIM A **1040**. 167154 (2022)

O. Zimmer, "Imaging nested-mirror assemblies — A new generation of neutron delivery systems?", I. Neutr. Res. 20, 91-98 (2018)

- Goal: Compact target/detection setup
- General Solution: Supermirror-based focusing optics
- Problem: Conventional elliptic mirrors limit free-flight time
- Special Solution: Nested elliptic mirrors
- Limitation: Gravity

Neutron Optics - HIBEAM / NNBAR

HIBEAM

NNBAR

- ▶ $n \rightarrow \bar{n}$ @ HIBEAM
- $\blacktriangleright~pprox$ 25 m long elliptic mirror
- Competitive with ILL experiment⁷

⁹ M. Baldo-Ceolin *et al.*, "A new experimental limit of neutron-antineutron oscillations", Z. Phys. C 63, 409-416 (1994)
 L. Björk, "Development of a guide system for free neutron oscillation searches at the European Spallation Source", M.Sc. Thesis, Lund University (2023)
 R. Wagner *et al.*, "Design of an optimized nested-mirror neutron reflector for a NNBAR experiment", NIM A 1051, 168235 (2023)

Antineutron Detector

Final state ($E \leq 1.88 \, {
m GeV}$)

- > Charged pions (π^+ , π^-)
- Photons from neutral-pion decays $(\pi^0 \rightarrow \gamma \gamma)$

Nucleons (p, n)

Detector Components

- Thin carbon target
- Time projection chamber
- Scintillator
- Lead-glass calorimeter

S.-C. Yiu et al., "Status of the Design of an Annihilation Detector to Observe Neutron-Antineutron Conversions at the European Spallation Source", Symmetry 14, 76 (2022)

Radiation Shielding

Shielding optimization for 200-m long NNBAR experiment.

- ▶ **Goal**: Dose rate $\leq 1.5 \,\mu \mathrm{Svh^{-1}}$ in exterior
- Advanced variance-reduction techniques in Monte Carlo simulations¹⁰

Also:

- Simulation of background at detector site
- Cosmic-ray veto

Summary

- HIBEAM / NNBAR program to study neutron oscillations
- lncrease $n \rightarrow \overline{n}$ sensitivity
- Pioneer $n \rightarrow n'$ searches

Developments in

- Cold-neutron moderators (HighNESS project)
- Neutron optics and magnetic-field control
- Antineutron detection and cosmic-ray veto
- Radiation Shielding

Appendix

List of Figures 1/3

- Neutron Quark Structure, https://en.wikipedia.org/wiki/Neutron (accessed on 2023-06-09)
- 2. Antineutron Quark Structure, https://en.wikipedia.org/wiki/Antieutron (accessed on 2023-06-09)
- Mirror Neutron Quark Structure, https://en.wikipedia.org/wiki/Neutron modified (accessed on 2023-06-09)
- 4. Galaxy, https://en.wikipedia.org/wiki/Galaxy (accessed on 2023-06-09)
- 5. ESS Aerial View, https://ess.eu/media-bank (accessed on 2023-06-08)
- 6. **ESS "How it works"**, ESS-4003142, Rev. 4 (2022)
- Current ESS Beamlines with HIBEAM/NNBAR sites, A. Addazi *et al.*, "New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the HIBEAM/NNBAR experiment at the European Spallation Source", J. Phys. G Nucl. Part. Phys. 48, 070501 (2021) *modified* https://dx.doi.org/10.1088/1361-6471/abf429

List of Figures 2/3

- 8. HighNess Logo, https://highnessproject.eu (accessed on 2023-06-12)
- 9. Large Beam Port and Moderators, CAD Drawings, L. Zanini, "Status of the NNBAR moderator design", NNBAR/HIBEAM General Meeting 2023 https://indico.esss.lu.se/event/3129/ (accessed on 2023-06-12)
- HighNESS Lower Moderator Intensity Distribution, L. Zanini *et al.*, "Very cold and ultra cold neutron sources for ESS", J. Neutr. Res. 24, 77-93 (2022) https://dx.doi.org/10.3233/JNR-220040
- Nested Mirror Optics Concepts 3D, C. Herb, "Nested mirror optics for neutron extraction, transport, and focusing", NIM A 1040, 167154 (2022) https://doi.org/10.1016/j.nima.2022.167154
- NNBAR Optics Optimization, R. Wagner *et al.*, "Design of an optimized nested-mirror neutron reflector for a NNBAR experiment", NIM A **1051**, 168235 (2023) https://doi.org/10.1016/j.nima.2023.168235

List of Figures 3/3

- Antineutron Detector Drawing, S.-C. Yiu *et al.*, "Status of the Design of an Annihilation Detector to Observe Neutron-Antineutron Conversions at the European Spallation Source", Symmetry 14, 76 (2022) https://doi.org/10.3390/sym14010076
- 14. NNBAR Radiation-Shielding Visualizations, M. Holl, private communication

