# Search for beyond the standard model physics with ATLAS

David Brunner on behalf of ATLAS Sweden

Fysikdagarna 2023 Stockholm 14.6.2023





# Standard Model of particle physics



Standard Model of Elementary Particles and Gravity

from Wikipedia

B.

12

12

Standard Model (SM) describes known particles and interactions

#### **ATLAS SM** measurements



Measurement agrees well with SM in several order of magnitudes



 $\underline{\texttt{w}}$  Search for beyond the standard model physics with ATLAS  $\underline{\texttt{w}}$ 

David Brunner # Fysikdagarna 2023 Stockholm # 14.6.2023 #

# Why something beyond the SM?

#### What is missing?

Gravity not described

<u>به</u>

- Massive neutrinos (neutrino oscillation)
- Dark matter (gravitational lensing, cosmic microwave background, ...)
- Matter-antimatter symmetry

#### What could be beyond?

- 📽 extended Higgs models
- Supersymmetry (SUSY)
- 🐸 Seesaw mechanism
- 🐸 Hidden sectors
- ₩ ...



# BSM physics in Sweden

|                         | public                                                                                               | on going                                                                                |
|-------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| UPPSALA<br>UNIVERSITET  | Search for dark mesons (see <u>here</u> )                                                            | Vector-like quarks in composite Higgs models see <u>PhD thesis</u> from Thomas Mathisen |
|                         | Search for type-III seesaw heavy leptons (see <u>here</u> )                                          | Doubly charged Higgs boson search<br>Trigger-level analysis                             |
| KTH                     | Search for long-lived massive particles (see <u>here</u> ) (to-<br>gether with Stockholm university) | Search for delayed jets sensitive to longer lifetimes                                   |
| Stockholm<br>University | Search for new phenomena with top quark pairs (see <u>here</u> )                                     | Stop analysis with current ATLAS run<br>BSM Di-Higgs search<br>pMSSM global fits        |



4/583 NIN + 510 CKHO

5



# Search for dark mesons



#### Production of dark mesons



- Hidden sector with new particle content indirect/weakly interacting with SM
- BSM or/and SM mediator (portal) particle needed, e.g. Higgs boson

- Strong non-abelian SU(2) symmetry with vector-like fermions
- Analog to QCD mesons: dark rho and dark pion
- Difference to other common dark matter searches: No missing transverse momentum analysis focus
- Decay of dark pions to top/bottom quarks



■ Search for beyond the standard model physics with ATLAS ■

🛛 David Brunner 🛎 Fysikdagarna 2023 Stockholm 🛎 14.6.2023 🛎

# Search for dark mesons

#### Results





See more in Olga Sunneborn Gudnadottir <u>talk</u> and check out the poster session



■ David Brunner ■ Fysikdagarna 2023 Stockholm ■ 14.6.2023 ■

# Search for type-III seesaw heavy leptons

Seesaw mechanism



Production of heavy leptons



from arXiv:1207.1590

- Mechanism for producing light neutrinos
- Several possible realisation of the mechanism
- In general: introduction of heavy neutral Majorana particle

- Seesaw mechanism (type III) with a triplet of heavy fermions  $(L^{\pm}, N^0)$
- Di-lepton (same and opposite sign) and di-jet final state



■ Search for beyond the standard model physics with ATLAS ■

# Search for type-III seesaw heavy leptons



- No deviations from SM observed
- Heavy leptons with masses below 790 GeV excluded (mass-degeneracy assumed)





# Search for long-lived massive particles

Production of long lived particles



- 🐸 Super-symmetric model
- Final state with many jets and displaced vertices (DV)



from arXiv:1810.12602

■ Search for beyond the standard model physics with ATLAS ■



David Brunner 🛎 Fysikdagarna 2023 Stockholm 🛎 14.6.2023 🛎

# Search for long-lived massive particles



#### Material map of ATLAS tracker

- Unique method: data-driven mapping of the ATLAS tracker
- Used to for the selection of DV



- agenumber u Limits in terms of the life time and mass of  $\chi_1^0$
- widesimes m( $\chi^0_1$ ) values up to 1.58 TeV for au= 0.1 ns
- Results can be interpreted in many different (non-SUSY) models as well!



■ Search for beyond the standard model physics with ATLAS ■

🖌 David Brunner 🛎 Fysikdagarna 2023 Stockholm 🛎 14.6.2023 🛎

# Search for new phenomena with top quark pairs

WIMP paradigm



from arXiv:1509.08767

- Existence of a stable weakly interacting massive particle (WIMP)
- Natural candidate for dark matter
- In high energy frontier: SUSY standard approach

■ Search for beyond the standard model physics with ATLAS ■

Top-quark pair and missing transverse momentum



- Super-symmetric model and generic DM model with scalar mediator
- Classic approach with high missing transverse momentum
- Analyzed in a single lepton and multi-jet final state



🖞 David Brunner 🛎 Fysikdagarna 2023 Stockholm 🛎 14.6.2023 🛎

### Search for new phenomena with top quark pairs





- No deviations from SM observed
- Limits in terms of SUSY parameters and generic DM model
- Dark matter result mentioned in Christina Dimitriad <u>talk</u>



# Conclusion

- Many interesting public results produced in Sweden
- Several BSM areas covered with SUSY, dark matter, hidden sectors, seesaw mechanism
- ₩ With the current data taking of ATLAS new results are expected
- BSM models are pushed to their "limits"







# Tack för er uppmärksamhet! (Thanks for your attention!)

