Michael Korsmeier - 2022/04/28

BSM Meeting

Dark Matter Constraint from Planck Observations of Galactic polarized Synchrotron Emission

DM - CR e[±] - Synchrotron - Planck - Polarization

Dark Matter constraints from Planck observations of the Galactic polarized synchrotron emission

¹Institute for Theoretical Particle Physics and Cosmology,

Silvia Manconi,^{1,*} Alessandro Cuoco,^{2,3} and Julien Lesgourgues¹ RWTH Aachen University, Sommerfeldstr. 16, 52056 Aachen, Germany ²Dipartimento di Fisica, Università di Torino, via P. Giuria, 1, I-10125 Torino, Italy ³Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy

Dark Matter (DM) annihilation in our Galaxy may produce a linearly polarized synchrotron signal. We use, for the first time, synchrotron polarization to constrain the DM annihilation cross section by comparing theoretical predictions with the latest polarization maps obtained by the Planck satellite collaboration. We find that synchrotron polarization is typically more constraining than synchrotron intensity by about one order of magnitude, independently of uncertainties in the modeling of electron and positron propagation, or of the Galactic magnetic field. Our bounds compete with Cosmic Microwave Background limits in the case of leptophilic DM.

arXiv:2204.04232v1

Take home message

- Novelty: Exploitation of synchrotron polarization to derive DM limits
- Polarization is more constraining than intensity
- Leptonic DM bounds are competitive with CMB limits
- Provided limits are conservative (no-background assumption)

Dark Matter Searches

10-31

Michael Korsmeier - OKC BSM Meeting - 2022/04/28

Discussed in this paper

General Idea

Dark Matter annihilation in the Galactic halo Propagation of electrons and positron

Michael Korsmeier - OKC BSM Meeting - 2022/04/28

Synchrotron Polarization Map

Production of radio/ microwave by synchrotron Comparison of the prediction with Planck (I and P)

Cosmic Ray Propagation

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = q(\boldsymbol{x}, p) + \boldsymbol{\nabla} \cdot \left(D_{xx}\boldsymbol{\nabla}\psi - \boldsymbol{V}\psi\right) + \frac{\partial}{\partial p}p^2 D_{pp}\frac{\partial}{\partial p}\frac{1}{p^2}\psi - \frac{\partial}{\partial p}\left(\frac{\mathrm{d}p}{\mathrm{d}t}\psi - \frac{p}{3}\boldsymbol{\nabla} \cdot \boldsymbol{V}\psi\right) - \frac{1}{\tau_f}\psi - \frac{1}{\tau_r}\psi$$

Cosmic Ray Propagation

Model	PDDE	DRE	BASE
Reference	[Orlando, 2017&, arXiv:1712.07127]	[Orlando, 2017&, arXiv:1712.07127]	[Korsmeier+, 2020, arXiv:2103.09824]
Method	Plain Diffusion	Diffusion and Reacceleration	Diffusion and convection
	Tuned with multifrequency data: CRs, gamma-rays, X-rays, synchrotron	Tuned with multifrequency data: CRs, gamma-rays, X-rays, synchrotron	Constrained on CR nuclei dat Li, Be, B, C, N, O
	No reacceleration	Reacceleration is included	No reacceleration
	Break in the diffusion coefficient at ~ 4 GV	No break in the diffusion coefficient	Break in the diffusion coefficie at ~ 4 GV

"We recall that the strength of the GMF is highly degenerate with the normalization of the CR e± density in the Galaxy, and a consistent assessment of the parameters of the GMFs should contextually fit also the CR e± injection and propagation parameters. We leave this assessment to future work..."

Michael Korsmeier - OKC BSM Meeting - 2022/04/28

Figures from:

Synchrotron Emission

- Intensity traces the total magnetic field (regular+random)
- Polarization only traces the regular magnetic field
- Emission from a regular magnetic field is **linear** polarized
- Intensity is obtained by integration along the line of sight

References: [Strong et. al, 2011, arXiv:1108.4822] [Orlando et. al, 2013, arXiv:1309.2947]

$$\epsilon_{par}(\nu) = \frac{\sqrt{3}}{2} \frac{e^3}{mc^2} B_{perp} \left[F(x) - G(x)\right] \qquad \begin{array}{l} x = \nu/\nu_c \\ \nu_c = \frac{3}{4\pi} \frac{e}{mc} B_{perp} \\ F(x) = x \int_x^{\inf} B_{perp} \left[F(x) + G(x)\right] \\ G(x) = x K_{2/3}(x) \end{array}$$

$$\epsilon_{rand}(\nu) = C \ x^2 [K_{4/3} K_{1/3} - \frac{3}{5} x (K_{4/3} K_{4/3} - K_{1/3} K_{1/3})]$$

$$I(v) = \int \epsilon(v) \, ds$$

erpY $K_{5/3}(x') dx'$

10

Polarization

Polarisation	Polarisationszustand	Stokes-Vektor
linear, horizontal	E_y	$\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}$
linear, vertikal		$\left(\begin{array}{c}1\\-1\\0\\0\end{array}\right)$
linear, +45°		$\begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$
links-zirkular		$\begin{pmatrix}1\\0\\0\\-1\end{pmatrix}$
rechts-zirkular		$\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}$
unpolarisiert		$ \left(\begin{array}{c}1\\0\\0\\0\end{array}\right) $

$$egin{aligned} S_0 &= I = P_{0^\circ} \ + \ S_1 &= Q = P_{0^\circ} \ - \ S_2 &= U = P_{45^\circ} \ - \ S_3 &= V = P_{ ext{RZ}} \ - \ \end{array}$$

Michael Korsmeier - OKC BSM Meeting - 2022/04/28

Here they consider the intensity (I) and the polarization ($P = \sqrt{Q^2 + U^2}$)

References: [Wikipedia]

Planck data - 30 GHz

- CMB is subtracted
- Astrophysical background is not subtracted
 - \rightarrow conservative limits
- Further data: 44 GHz 70 GHz

Different GMF

Psh+11

Sun+10

Michael Korsmeier - OKC BSM Meeting - 2022/04/28

JF12

Impact GMF

Michael Korsmeier - OKC BSM Meeting - 2022/04/28

Polarization provides stronger limits independent of the GMF model

Impact of the Frequency

Michael Korsmeier - OKC BSM Meeting - 2022/04/28

mostly thermal dust emission

- Hadronic final states have softer spectra
- Peak frequency increases with DM mass
- Above 100 GHz thermal dust emission dominates

Impact of the DM density profile

Michael Korsmeier - OKC BSM Meeting - 2022/04/28

- Stronger limits for *more* cored profiles
- Impact of DM density profile is larger for polarization than for intensity

16

Region of Interest

 Most important ROI is closer to the GC for polarization than for the intensity

Impact of Pixelsize

Possible Improvements?

 At higher frequencies thermal dust becomes dominant \rightarrow Possibly, improvements for low DM masses and hadronic final states

Reference: [Planck, 2018, arXiv:1807.06205]

Possible Improvements?

 At higher frequencies thermal dust becomes dominant \rightarrow Possibly, improvements for low DM masses and hadronic final states

Reference: [Cirelli+, 2016, arXiv:1604.06267]

Possible Improvements?

• With a good astrophysical background model limits could be improved (example from intensity)

Michael Korsmeier - OKC BSM Meeting - 2022/04/28

Reference: [Cirelli+, 2016, arXiv:1604.06267]

M_{DM} [GeV]

Conclusion

- Novelty: Exploitation of synchrotron polarization to derive DM limits
- Polarization is more constraining than intensity
- Leptonic DM bounds are competitive with CMB limits
- Provided limits are conservative (no-background assumption)

