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THE 𝛬CDM MODEL OF COSMOLOGY

A phenomenological Standard Model of Cosmology has 
emerged, in perfect agreement with current observations: 

It is complemented with the inflationary 
scenario to generate primordial fluctuations 
that seed large scale structures we observe 
today

Cosmology established as a precise science in the last 20 years 
after first Cosmic Microwave Background (CMB) results from 
COBE satellite

The ΛCDM model (Lambda cold dark matter)            

In this model, the universe contains three 
major components: dark energy (Λ) cold 
dark matter and ordinary matter.Dark  
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EARLY TIME ACCELERATION: INFLATION 
• A period of quasi exponential accelerated expansion in 
the very early Universe due to vacuum energy domination. 

• Governed by the dynamics of a single 
scalar field with very flat potential: slow-
roll conditions.        
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• Simplest inflationary model in agreement with latest 
observations (Planck/Bicep2/Keck)

A&A 641, A10 (2020)

Fig. 7. Marginalized joint two-dimensional 68% and 95% CL regions for combinations of (✏1, ✏2, ✏3) (upper panels) and (✏V , ⌘V , ⇠2
V ) (lower panels)

for Planck TT,TE,EE+lowE+lensing (red contours), compared with Planck TT,TE,EE+lowE+lensing+BK15 (blue contours).
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Fig. 8. Marginalized joint 68% and 95% CL regions for ns and r at k = 0.002 Mpc�1 from Planck alone and in combination with BK15 or
BK15+BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized joint 68% and 95% CL
regions assume dns/d ln k = 0.

Table 4. Priors for cosmological parameters used in the Bayesian com-
parison of inflationary models.

Parameter range Prior type

0.019 < ⌦bh2 < 0.025 Uniform
0.095 < ⌦ch2 < 0.145 Uniform
1.03 < 100✓MC < 1.05 Uniform
0.01 < ⌧ < 0.4 Uniform

gravity (Spokoiny 1984; Lucchin et al. 1986; Salopek et al. 1989;
Fakir & Unruh 1990), or an additional damping term for the
inflaton due to dissipation in other degrees of freedom, as in
warm inflation (Berera 1995; Bastero-Gil et al. 2016). In the fol-
lowing we report on the constraints for a non-minimal coupling
to gravity of the type F(�)R, with F(�) = M2

Pl+⇠�
2, and a quartic

potential. For this model we compute the theoretical predictions
in terms of HFFs and number of e-folds to the end of inflation
in the Einstein frame as for the R2 model above, but we omit
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lensing data determine the spectral index of scalar perturbations to be ns = 0.9649 ± 0.0042 at 68% CL. We find no evidence for a scale depen-
, either as a running or as a running of the running. The Universe is found to be consistent with spatial flatness with a precision of 0

ns = 1� 6✏� 2⌘
r = 16✏

[Planck ’18]
[BICEP2/Keck ’21]

r < 0.036

Nearly scale invariant adiabatic Gaussian 
spectrum of scalar perturbations.
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FIG. 5. Constraints in the r vs. ns plane for the Planck
2018 baseline analysis, and when also adding BICEP/Keck
data through the end of the 2018 season plus BAO data to
improve the constraint on ns. The constraint on r tightens
from r0.05 < 0.11 to r0.05 < 0.035. This figure is adapted from
Fig. 28 of Ref. [2] with the green contours being identical.
Some additional inflationary models are added from Fig. 8 of
Ref. [35] with the purple region being natural inflation.
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• The energy scale of the very early universe when cosmic 
inflation occurred is likely to be extremely high and field 
range (super)-Planckian.  

• Likely to be described in the context of theories beyond 
the standard model of particle physics, e.g. supergravity 
and string theory. 

• Usually multiple degrees of freedom that  could  be  
relevant  for  inflation and give interesting observational 
consequences to be tested in forthcoming experiments 
(e.g. PBHs, gravitational waves, non-Gaussianities, etc.)  

FUNDAMENTAL ORIGIN OF INFLATION?



LATE TIME ACCELERATION: DARK ENERGY 

One of the greatest discoveries of XX century was that of the 
accelerated expansion of the universe 

It is also one of the major puzzles in modern physics: its cause 
is often dubbed dark energy as its nature is still an mystery.

[Riess et al. '98;  Perlmutter et al. ’99]

Credit: NASA/STSci/Ann Feild

• Why is its value so small:   
⇢DE ⇠ (0.002 eV)4

(⇢DE = 5.96⇥ 10�27kg/m3)

The simplest possibility, consistent with 
data, is a constant energy density: a 
cosmological constant, 𝛬



STRING THEORY AND COSMOLOGICAL ACCELERATION

➠ String theory may help to understand nature of early 
and late time acceleration  

➠ If string scale is closer to the Planck scale than the TeV 
scale, it makes it difficult to probe string theory in 
terrestrial experiments (colliders) 

➠ This strongly motivates the use of observational 
cosmology to constraint string theory, and of string 
theory as the foundation for a more complete 
description of the very early universe.



Early universe  
acceleration:  

inflation

Late universe  
acceleration: 

dS vacua

UV completion 
in string theory

 Gravitational tests

LIVING AT THE TIP OF THE THROAT



PLAN

• Flux compactifications and the warped throat  

• Early time acceleration: fat inflatons and large 
turns at the tip of the warped throat 

• Late time acceleration: dS in string theory revisited 

• Gravity at the tip of the throat  

• Summary



DS VACUA IN STRING THEORY 

•Fluxes backreact warping internal 
CY manifold; new avenues for 
phenomenology and cosmology!  

•Fluxes provide potential for some 
of the moduli: dilaton & complex 
structure

[Giddings, Kachru, Polchisnki, ’01]

Calabi−Yau

D3
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4D

Warped Throat
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TYPE IIB FLUX COMPACTIFICATIONS 

Fn

Fn

Consider type IIB string theory compactifications with 
internal fluxes turned on:



Type IIB string theory in 10D with fluxes and localised 
sources: D-branes & Orientifolds 

Here gs denotes the string metric. We have also defined the combined three-flux, G(3) =

F(3) − τH(3), where as usual τ = C(0) + ie−φ, and

F̃(5) = F(5) −
1

2
C(2) ∧ H(3) +

1

2
B(2) ∧ F(3) . (2.2)

The term Sloc is the action of localized objects, such as branes, which will become important

shortly. The condition F̃(5) = ∗F̃(5) must as usual be imposed by hand on the equations of

motion.

We will be considering compactifications arising from F-theory, so it is particularly useful

to reformulate the action in an SL(2,Z) invariant form by defining the Einstein metric

gMN = e−φ/2gsMN , whence the action becomes

SIIB =
1

2κ10
2

∫
d10x

√
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8iκ10
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Im τ
+ Sloc . (2.3)

Henceforth we use the Einstein metric throughout. Invariance under the SL(2,Z) transform

τ → aτ + b

cτ + d
, (2.4)

together with the transformation

G(3) →
G(3)

cτ + d
(2.5)

is readily checked.

Our interest is in warped metrics maintaining four-dimensional Poincaré symmetry, with

convenient parameterization

ds2
10 = e2A(y)ηµνdxµdxν + e−2A(y)g̃mndymdyn (2.6)

in terms of four-dimensional coordinates xµ and coordinates ym on the compact manifold

M6. The axion/dilaton will be allowed to vary over the compact manifold,

τ = τ(y) , (2.7)

and since we will consider D7-branes, monodromies of the form (2.4) will be allowed. To

maintain Poincaré invariance only compact components of G(3) are present, and furthermore,

with monodromies (2.5), these will transform in a non-trivial bundle over M6:

G(3) ∈ σ(Ω3 ⊗ L) , (2.8)

5

2 Type IIB flux compactifications

In this section we review the basic ingredients of four dimensional supergravity which arises from

the low energy limit of type IIB string theory compactified on Calabi-Yau (CY) orientifolds with

non-trivial RR and NSNS 3-form fluxes. Along the way we fix our notation and conventions.

2.1 N = 1 SUGRA

We start with the ten dimensional e↵ective supergravity action in the Einstein frame4 (see [1]) and

reducing to four dimensions. In four dimensions the action takes the form
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Z
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p
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P l
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a@µ�̄b̄ + V (�l)

�
, (2.1)
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2
s) is the Planck scale, with 210 = (2⇡)7(↵0)4/2 ⌘ `8s/4⇡ with

`s =
p
2⇡↵0 the string scale and gs = he�i the string coupling. The indices a, b run over the moduli

fields present, which are the axio-dilaton ⌧ = C0 + i e�, complex structure, zi, i = 1, . . . , h(1,2) and
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�
� 2 ln [V] , (2.2)

where ⌦ is the holomorphic (3, 0) form of the CY. The complex structure moduli can be described

by giving the periods of ⌦ over a canonical homology basis of the CY. In this work we choose a

canonical symplectic basis of H3(CY ) to be (AA, BB) and the cohomology basis dual to this to be
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⌦ = ⇧A↵A �⇧B�
B . (2.6)

4We use the conventions for transforming to the Einstein frame GE
MN = e(���0)/2Gs

MN , where GMN is the 10D
metric, he�i = e�0 = gs with � the dilation and gs is the string coupling. With this conventions the volumes are
conformal invariant.
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turns, a su�cient condition is to consider models where

H2 ⌧ �  VTT , (2.35)

that is, multifield fat field inflation. Clearly in this case, the second condition (2.31) is not

satisfied.

Let us also comment on another conjecture, the Distance Swampland Conjecture (DSC)

[44]. Roughly, it claims that the geodesic displacement between two points in field space

is bounded, again by an order one number in Planck units, that is:

�� . c̃MP l , (2.36)

with c̃ ⇠ O(1). Otherwise a tower of light states emerges which would spoil the low

energy e↵ective description. A recent discussion on multifield inflation and the DSC has

appeared in [45]. So here we simply stress that inflationary trajectories with large turning

rates ⌦/H & 1 di↵er strongly from a geodesic and thus (2.36) does not apply. Moreover,

an almost geodesic trajectory requires a very small turning rate value ⌦/H ⌧ 1. (See

appendix A for a concrete example).

In the next two sections we discuss an explicit example of of fat inflation where a probe

D5-brane moves along the angular and radial directions of a warped resolved conifold in a

type IIB string theory compactification.

3 D5-brane Inflation supergravity set-up

In this section we present the supergravity set-up where we study a concrete example of

fat D5-brane inflation. In the next section we will use the results discussed here to study

the full cosmological evolution and predictions of this model.

Consider a flux compactification of type IIB string theory on an orientifold Calabi-Yau

threefold [46], where the use of internal fluxes generates a warped throat in the internal

space.

The low energy 10D action of type IIB supergravity, together with local sources in the

Einstein frame, is given by

SIIB = � 1
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where ⌧ = C
0

+ ie�� is the axio-dilaton and the three-form flux, G
3

= F
3

� ⌧H
3

, is a

combination of the Ramond-Ramond (RR) and Neveu-Schwarz–Neveu-Schwarz (NS-NS)

three-form fluxes: F
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= dC
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, H
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= dB
2

and F̃
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that F
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is self-dual five-form with F̃
5

= ?
5

F̃
5

. The 10D gravitational constant is given

by 2

10

= 1

2

(2⇡)7g2s↵
04, where

p
↵0 = `s is the string length and gs = eh�i. To add Dp-

branes into the setup, we include in the local action Sloc, a DBI term plus a Chern-Simons

contribution, namely

Sloc = SDBI + SCS . (3.2)

We consider a warped metric ansatz for a flux compactification given by [46],

ds2 = e2A(y)gµ⌫dx
µdx⌫ + e�2A(y)g̃mndy

mdyn , (3.3)

where the warp factor A(y) and the unwarped internal metric, denoted by g̃mn, depend

only on the internal six-dimensional coordinates ym and the maximally symmetric 4D

spacetime has metric gµ⌫ . The self-dual F̃
5

takes the form [46],

F̃
5

= (1 + ?
10

)d↵(y) ^
p
�detgµ⌫ dx

0 ^ dx1 ^ dx2 ^ dx3 , (3.4)

where ↵(y) is a function of the internal coordinates. The 10D Einstein equations and the

5-form Bianchi identity imply [47]

r̃2�� = R
4

+
e8A(y)+�

24
|G�|2 + e�4A(y)|@��|2 + local (3.5)

where R
4

is the four-dimensional Ricci scalar. This curvature term is not present when

the 4D spacetime is taken to be Minkowski [46], but in the case of inflation, this spacetime

is quasi-de Sitter, hence R
4

' 12H2, with H the Hubble parameter. Furthermore, the

Laplacian r̃ is constructed from the unwarped internal metric g̃mn, and we define the

following fields

�� ⌘ e4A(y) � ↵(y), G� ⌘ ⇤
6

G
3

� iG
3

. (3.6)

Integrating (3.5) over the internal space in the case R
4

= 0 (assuming no boundary

contribution at infinity) the LHS vanishes as it is a total derivative. Since each term on

the RHS is positive semi-definite, each must individually vanish at leading order, giving

the imaginary self-dual (ISD) solution G� = 0 and �� = 0.

In order to construct cosmological solutions, we start in the non-compact limit with an

infinitely long warped throat, supported by the ISD flux solutions G� = �� = 0. To obtain

dynamical 4D gravity, we then cut o↵ the warped throat at some large radial distance,

rUV , and glue it to a compact bulk Calabi-Yau (CY). While the full metric on the bulk

is not known, the metric on the warped throat is explicitly known for certain cases, such

as the one used here, corresponding to the well known resolved conifold (RC) [48–50].

Given that we partially know the full metric, we only consider the possibility of having

inflation well within the warped throat region. Perturbations to �� arise as a result of

this gluing procedure and are solutions to the Poisson equation (3.6). Assuming that the

gluing procedure induces small corrections to ��, and G� of the same order, the leading
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A variety of SUGRA backgrounds with internal fluxes has 
been explored in the context of the AdS/CFT 
correspondence.
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THE CONIFOLD 

The conifold is of particular interest: singular non-
compact Calabi-Yau 3-fold. Can be seen as a cone 
over                         

whose minimum value is reached when:

ψ =
πq

N
. (5.28)

At this value of ψ, the determinant (5.27) becomes:

gsNls
2 sin θ sin

πq

N
, (5.29)

and from the probe action (after performing the trivial integration in θ,φ) one can read

the following effective tension for the confining q-string:

Tq =
N

2π2ls
2 sin

πq

N
. (5.30)

This behavior of the tension of the confining q-string has been found also with other ap-

proaches [85, 86] and seems also supported by lattice calculations in non-supersymmetric

pure glue gauge theory [87, 88]. Notice finally that the N →∞ limit of (5.30) gives for

the tension of the confining one-string the one of the fundamental string, T1 → 1
2πls2 ,

as expected.

5.2 The conifold and N = 1 gauge theories

The next case we are going to consider is the prototype example of the “geometric tran-

sition” framework we discussed in chapter 3, the conifold [44, 45]. We will not have the

space to explain all derivations in detail as far as the classical solutions are concerned,

but we will limit ourselves to essentially following the lines of the nice reviews [89, 90].

In section 3.6, we showed how a relevant deformation of a C2/Z2 orbifold makes

the geometry flow to the conifold, which breaks additional supersymmetry down to

eight supercharges. The theory living on a stack of M D3-branes on the conifold

is then an N = 1 four-dimensional superconformal quiver theory with gauge group

SU(M)× SU(M), matter in bifundamentals and a quartic superpotential.

We have also seen that adding to the configuration N fractional D3-branes stuck at

the singular point, which have the interpretation of D5-branes wrapping the vanishing

two-cycle of the conifold geometry, changes the gauge group to SU(M+N)×SU(M) and

makes the theory non-conformal. In the following, we will report on the construction of

a supergravity solution describing this brane configuration and we will discuss as usual

what gauge theory information we can recover from the classical solution.

Fractional D-branes on the conifold and the duality cascade

Let us start by recalling that the conifold can be seen as a six-dimensional cone over

the space T 1,1, so that the metric can be written as:

ds2
6 = dr2 + r2ds2

T 1,1 , (5.31)
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Figure 1: Conifold transition in type IIB string theory.

compactifications of M-theory on manifolds of G2 holonomy, where the resulting four

dimensional theories have N = 1 supersymmetry. There is, once again, an analog of

the flop transition; this time three-cycles shrink and grow and, as with the Calabi-

Yau example, the process is smooth [6, 7]. Other G2 geometrical transitions involving

shrinking CP2’s have also been discussed [7]. These proceed via a phase transition
but, unlike the conifold transition, do not appear to be related to condensation of any

particle state1. For related work, see [8].

The purpose of this paper is to study geometrical transitions in M-theory on eight-

dimensional manifolds with Spin(7) holonomy. Since the physics is very similar to the
conifold transition in Calabi-Yau manifolds, let us briefly recall what happens in that

case. As the name indicates, the conifold is a cone over a five dimensional space which

has topology S2 ×S3 (see Figure 1). Two different ways to desingularize this space —

called the deformation and the resolution — correspond to replacing the singularity

by a finite size S3 or S2, respectively. In type IIB string theory, the two phases of

the conifold geometry correspond to different branches in the four-dimensional N = 2
low-energy effective field theory. In the deformed conifold phase, D3-branes wrapped

around the 3-sphere give rise to a low-energy field q, with mass determined by the size

of the S3. In the effective four-dimensional supergravity theory these states appear as

heavy, point-like, extremal black holes. On the other hand, in the resolved conifold

phase the field q acquires an expectation value reflecting the condensation of these black

holes. Of course, in order to make the transition from one phase to the other, the field
q must become massless somewhere and this happens at the conifold singularity, as

illustrated in Figure 1.

In this paper we will argue that a similar phenomenon occurs in M-theory on a

Spin(7) manifold with a certain conical singularity. Apart from related orbifold con-
1However, we shall argue below that this interpretation can be given to the same transition in type

IIA string theory.

2

[Candelas-de la Ossa, ’89]
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In a series of papers it has recently been shown (1,2J that the moduli spaces for a lacge 
class of Calabi-Yau manifolds abut on each other so that these moduli spaces form a 
"connected web". Moreover, it has been shown (2,3) that the point field theory limit 
of the Zamolodchikov metric (4} coincides with the natural metric on the moduli space, 
and that in this metric the distance between moduli spaces in the web corresponding to 
distinct Calabi-Yau manifolds is finite, even when the endpoints of the path correspond to 
Calabi-Yau manifolds that are topologically different. The points where the moduli spaces 
meet correspond to conifolds, i.e. singular spaces that are smooth apart from a number of 
isolated conical singul8l'ities, and have vanishing first Chern class 1 . 

The essential point is that a conifold has singularities that can be smoothed in at 
least two different ways 7 . The neighborhood of a singular point of a conifold M' can be 
described by a quadric inc" 

• l_)wA)' = 0. (1.1) 
A= I 

It is not hard to show, as we shaH presently, that this descrihcs a cone whose base is 
5 2 x 5 3 . The singularity at the apex can he repaired in two different ways. The first is by 

1 That is, the smooth manifold obtained by deleting the singular points has vanishing 
first Chern class. 

7 Here we come up against a terminological difficulty. refer to these 
two processes by different terms, one is a smoothing or deformation, while the other is a 
(small) resolution. 

2 P. Cnndcla..,, X. de Ia Os.'la 

dcfonnation: equation ( 1.1) is deformed to 

• 
L<wA)2 = f:2 , 

A=l 

(1.2) 

with t a non-zero constant. This yields a smooth manifold M• 1 and has the effect of 
replac.ing the node by o.n 53 . The other consists of first making a··lineit.r 'clttutgC. of variables 
so a.c; to write (1.1) in the form ·· 

XY -UV =0 . (1.3) 

and then make a small resolution by replacing (1.3) by the pair of equation.s 

nG:)=o. (1.4) 

in which (>. 1 ,>.2 ) are not both zero. Equations (1.4) therefore obtain in C4 xiP1 • The 
resulting manifold M is smooth, the node having been replaced by a F, = 5 2 • It is less 
apparent but true, if global issues ore properly attended to, that the resulting 
manifolds are Kiihler and have vanishing first Chern class. Thus it is possible to pass 
continuously from one Calabi-Yau manifold to another 

M ............ M 1 ............ M • • 

even though M and M• are topologically distinct (see Fig.1 ). 

S' 

A • • 
3 

/ e• \ 
S' 

S' 
ij 

Fig. I Local neighborhoods of the node B' C Ml, its small resolution jj C M, 
and its defonnation C M•. Ml is singular while both M and M• are smooth. 

(1.5) 

THE CONIFOLD 

The conical singularity can be smoothed out in two 
topologically distinct ways, leading to the

The conifold: singular non-
compact Calabi-Yau three-fold 

resolution deformation

[Candelas-de la Ossa, ’90; Minasian-Tsimpis, '99; Ohta-Yokono, '99] 
[Pando-Zayas, Tseytlin, ’00]
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When internal fluxes are turned on, backreaction warps 
10D spacetime giving rise to throat like geometry

THE WARPED CONIFOLD 
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Here gs denotes the string metric. We have also defined the combined three-flux, G(3) =
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is readily checked.

Our interest is in warped metrics maintaining four-dimensional Poincaré symmetry, with

convenient parameterization

ds2
10 = e2A(y)ηµνdxµdxν + e−2A(y)g̃mndymdyn (2.6)

in terms of four-dimensional coordinates xµ and coordinates ym on the compact manifold

M6. The axion/dilaton will be allowed to vary over the compact manifold,

τ = τ(y) , (2.7)

and since we will consider D7-branes, monodromies of the form (2.4) will be allowed. To

maintain Poincaré invariance only compact components of G(3) are present, and furthermore,

with monodromies (2.5), these will transform in a non-trivial bundle over M6:

G(3) ∈ σ(Ω3 ⊗ L) , (2.8)
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๏ D-brane inflation: a D-brane (anti-D-brane) moves in 
the internal 6D warped space driving inflation* 

[Kachru et al, ’03; Baumann et al. ’06-’10]

*[For earlier work see: Dvali-Tye, ’98; Burgess et al., 01; Dvali, Shafi Solganik, '01]

๏ D3-brane can move in 6D ➠ 
multifield inflation

[w/Gregory, Easson,Mota, Tasinato, ’07; 
Huang, Shiu, Underwood, '07; Chen, Gong, Shiu, ’08; Agarwal, Bean, McAllister, Xu, '11;  

Dias, Frazer, Liddle, '12; McAllister, Renaux-Petel, Xu, '12; Marzouk, Maraio, Seery, '21]

๏ DBI inflation: non-standard kinetic 
terms and warping ➠ inflation 
with distinctive phenomenology 

[Tong, Silverstein, ’04; Alishahiha, Tong, Silverstein, ’04]



THE CONIFOLD AND STRING INFLATION

Calabi−Yau

D3

p−3

D3

y

4D

Warped Throat

Dp

Fn

๏ D-brane inflation: a D-brane (anti-D-brane) moves in 
the internal 6D warped space driving inflation* 

*[For earlier work see: Dvali-Tye, ’98; Burgess et al., 01; Dvali, Shafi Solganik, '01]

๏ Higher dimensional Dp-branes 
wrapping a (p-3)-cycle.

[Kobayashi, Mukohyama, Kinoshita ‘07; Becker, Leblond, Shandera ‘07] 

 D7 brane wrapping 4-cycle.

D5 wrapping a 2-cycle in the 
internal manifold. 

[Kobayashi, Mukohyama, Kinoshita ’07]

D5/D7 moving in more than one 
dimension: multifield  



MULTI FIELD INFLATION, RECENT 
DEVELOPMENTS

In multifield inflation, a new inflationary attractor arises 
characterised by strongly non-geodesic trajectories

inflationary 
trajectory

๏ Departure from geodesic measured by turning rate

[Aragam, Paban, Rosati, ’20]

[Achúcarro, Bjorkmo, Brown, Hetz, Palma, Christodoulidis, Marsh, Roest, Renaux-Petel, Sfakianakis, Turzyński, 15-19]

!
which should vary slowly during slow-roll inflation 

⌫ ⌘ !̇

H!
, ⌫ ⌧ 1

together with usual slow-roll conditions  ✏, ⌘ ⌧ 1

new slow-roll parameter

! � 1 Strongly non-geodesic attractor

๏ Interesting phenomenology, in particular for sharp turns



FAT INFLATION
[w/Chakraborty, Chiovoloni, Loaiza, Niz ’19]

Contrary to standard belief, inflaton masses can all be 
larger than Hubble scale: fat. Steep potentials are ok

2.1 Slow-roll inflation

The slow-roll conditions require the slow-roll parameters ✏, ⌘, �', defined above, to be much

smaller than one to guarantee long lasting slow-roll inflation, that is, ✏, ⌘, �', ⇠' ⌧ 1. These

conditions imply

H2 ' V

3MP l
, (2.11)

3H'̇+ VT ' 0 , (2.12)

and thus that the tangent projection of the derivative of the potential is small, that is:

✏T ⌘ M2
P l

2

✓
VT

V

◆2

⌧ 1 . (2.13)

On the other hand, the normal projection VN does not need to be small, and it is related

to the turning rate by eq. (2.6). Additionally, from (2.8) we see that during slow-roll,

VTT

3H2
⇠ ⌦2

3H2
, (2.14)

while from (2.9) we observe that, barring cancellations, ⌘ ⌧ 1 (equivalently �' ⌧ 1),

implies that
VTN

3H2
⇠ ⌦

H
, and ⌫ ⌧ 1 . (2.15)

Hence, we see that ⌫ behaves as a new slow-roll parameter in multifield inflation: the

turning rate is guaranteed to be slowly varying during slow-roll [12, 13]. As discussed

in [13], the slow-roll conditions above do not require small eigenvalues of the Hessian.

That is, the ⌘V parameter:

⌘V ⌘ M2
Pl

����min eigenvalue

✓
rarbV

V

◆���� , (2.16)

does not need to be small in multifield inflation and indeed can be larger than one, as in

the examples discussed in [13, 14].

2.2 Sharp turns from transient slow-roll violations

The discussion above implies that if the slow-roll condition is obeyed exactly with ✏, ⌘, �' ⌧
1, then the field moves in the manifold with slow-turns, ⌫ ⌧ 1. This hints at the possibility

of obtaining large turning rates, and therefore strong deviations from a geodesic trajectory,

if one or more of the slow-roll conditions are violated, while still maintaining a long-lasting

inflationary paradigm that is consistent with current observations. Indeed, if the potential

has intrinsic features which give rise to transient violations of the slow-roll condition with

⌘ & 1, it will generate transient violations of slow-turn (leading to sharp turns), or strong

geodesic deviations, with ! & 1 and ⌫ & 1. This interesting e↵ect arises naturally in

multifield axion inflation in field theory and supergravity and we study this mechanism in

what follows.

– 5 –

� 1

[w/Chakraborty et al. ’19; 
w/Aragam, Chivoloni, Paban, Rosati, ’21]

H < |Minf | < Mheavy (8 �a)
MPl

Mheavy

H
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• Consider a warped compactification in type IIB string 
theory. A probe D5-brane moving in the radial and 
angular directions in a warped resolved conifold

[Single field case: Kenton-Thomas, ’14]

We refer to [25] for further details. The homogeneous solution �h is independent of the

choice of probe brane and it is valid everywhere within the WRC throat, in particular

near the tip. The coe�cients al, bl are undetermined, but small. We keep two independent

solutions (depending only on ✓
2

) to the Laplace equation for (l,m) = (0, 0), (1, 0), so that

�h is given by17

�h = a
0


2

⇢2
� 2 log

✓
1

⇢2
+ 1

◆�
+ 2a

1


6 +

1

⇢2
� 2(2 + 3⇢2) log

✓
1 +

1

⇢2

◆�
cos ✓

2

+
b
1

2

�
2 + 3⇢2

�
cos ✓

2

, (3.33)

where again, the coe�cients a
0

, a
1

, b
1

are small. In [25] a
1

was taken to be zero. However

we will keep it in our analysis of the inflationary solutions in the next section.

Figure 1. A cartoon representation of the D5-brane embedding in the WRC.

3.3 Moduli stabilisation

We are using the open string moduli associated to the position of a moving probe D5-brane

to drive inflation and are thus intrinsically assuming that all closed string moduli, complex

structure, dilaton and Kähler moduli, have been stabilised and are fixed at their minima.

We briefly outline how this assumption can be realised, as discussed also in [25], but we

do not attempt to implement a full closed string stabilisation mechanism in detail in the

present paper.

In type IIB flux compactifications, closed string moduli are partially stabilized by turn-

ing on suitable RR and NSNS fluxes [46]. This can be seen in a supergravity N = 1

description by the scalar potential induced from the Gukov-Vafa-Witten (GVW) superpo-

tential in type IIB string theory W =
R
G

3

^ ⌦, where ⌦ is the holomorphic (3, 0)-form

of the internal manifold and G
3

is the three-form flux defined above. The GVW scalar

potential depends on the complex structure and the axio-dilaton moduli which can thus

17We take b0 = 0, as this term multiplies HB
0 = 1 and thus gives a small constant contribution to the

potential given by �b0.
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FAT INFLATION IN STRING THEORY
[w/Chakraborty, Chiovoloni, Loaiza, Niz ’19]



6D resolved  
conifold metric

order perturbation of �� in the large throat limit is a solution to the homogeneous Laplace

equation:

r̃2�h = 0 , (3.7)

while �� is the solution to the Poisson equation arising when we consider the e↵ect of a

non-negligible R
4

:

r̃2�� = R
4

, (3.8)

The solutions to (3.7) and (3.8) depend on the unwarped internal 6D geometry and were

computed in [25] for the RC geometry. These will be relevant for the potential for the

D5-brane positions and will be presented in subsection 3.2.

3.1 The warped resolved conifold

We now consider the warped resolved conifold (WRC) [49, 50] where we study the dynamics

of moving probe D-branes. This resolved conifold (RC) is one of the two smooth versions

of the non-compact Calabi-Yau threefold, the conifold [48], which is a cone over the base

T 1,1 = SU(2)⇥SU(2)

U(1)

, which can be thought topologically as an S2 ⇥ S3. At the tip of the

cone, the volume of both spheres vanishes, and there is a singularity. This can be removed

by either deformation or resolution. In the case of deformation the S2 sphere of the T 1,1

base shrinks at the tip and it takes the shape of a S3 giving rise to deformed conifold

(DC). In the case of resolution the singularity is removed by blowing up the two-sphere

of the T 1,1 giving rise to the resolved conifold [48, 50]. The warped 10D spacetime is

obtained by placing a stack of N D3-branes at the tip of the RC, extended along the four

non-compact spacetime directions localised at the north pole of the S2 at the tip of the

RC. Since localising the stack at the north pole specifies an angle, the warp factor has both

angular and radial dependence15. The resulting geometry is the resolved conifold with 10D

metric [49, 50]

ds2 = H�1/2(⇢, ✓
2

)ds2FRW +H1/2(⇢, ✓
2

)ds2RC , (3.9)

where we take the 4D spacetime to be FRW for our cosmological application, and the 6D

unwarped space is the RC, whose metric is given by [49]

ds2RC = g̃mndy
mdyn =

✓
r2 + 6u2

r2 + 9u2

◆
dr2 +

1

9

✓
r2 + 9u2

r2 + 6u2

◆
r2(d + cos ✓

1

d�
1

+ cos ✓
2

d�
2

)2

+
1

6
r2(d✓2

1

+ sin2 ✓
1

d�2

1

) +
1

6
(r2 + 6u2)(d✓2

2

+ sin2 ✓
2

d�2

2

) , (3.10)

here u is the resolution parameter. It is also the natural length scale of the resolved

conifold. We have also defined the dimensionless coordinate ⇢ = r/3u. The warp factor,

H(⇢, ✓
2

) is the solution to the Green’s function equation for the Laplace operator on the

15In contrast, the warp factors depend only on the radial coordinate in the case where the internal
geometry is the singular or deformed conifold, and is an assumption usually made for generic warped
throats.
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• The 10D metric for the WRC is given by 

{{
Warp factor

[Pando Zayas, Tseytlin, 00;  
Klebanov, Murugan, '07]

WARPED GEOMETRY AND D5-BRANE 
DYNAMICS

D5-brane dynamics are described by the DBI and CS terms:

S
5

= SDBI5 + SCS5

= �T
5

Z

W6

d6⇠
p
�det(P

6

[gab +Bab + 2⇡↵0Fab])

+µ
5

Z

W6

P
6

[C
6

+ C
4

^ (B
2

+ 2⇡↵0F
2

)] , (3.13)

where

µ
5

=
⇥
(2⇡)5`6s

⇤�1

, and T
5

= µ
5

g�1

s , (3.14)

F
2

is the world volume gauge field, B
2

is the NSNS 2-form field pulled back on the brane

and P
6

is the pullback of a 10D tensor to the six dimensional brane worldvolume

We take the simple embedding of the D5-brane in the 10D spacetime as in [25, 51]:

⇠a = (xµ, ✓
1

,�
1

) , (3.15)

where µ = 0, 1, 2, 3 are the non-compact coordinates. The wrapping of the brane of the

2-cycle ⌃
2

in the internal space is specified by the natural 2-cycle in T 1,1, given by

r = const. ,  = const. , ✓
2

= f(✓
1

) = �✓
1

, �
2

= g(�
1

) = ��
1

. (3.16)

Having specified the embedding and wrapping, we can now compute the pullback of the

10D metric gMN defined as

P
6

[g]ab =
@xM

@⇠a
@xN

@⇠b
gMN , (3.17)

which gives us the induced metric on the brane, with components:

P
6

[g]
00

= �H�1/2(1�Hv2) , (3.18)

P
6

[g]ij = a2H�1/2�ij , (3.19)

P
6

[g]✓1✓1 =
1

3
H1/2(r2 + 3u2) , (3.20)

P
6

[g]�1�1 =
1

3
sin2 ✓

1

H1/2(r2 + 3u2) . (3.21)

We will be considering the D5-brane to be moving along the radial and one angular direc-

tion, ✓
2

, while it is assumed to be fixed along the other two internal dimensions. In this

case, the speed squared of the brane is given by

v2 = gmn ẏ
mẏn = grrṙ

2 + g✓2✓2 ✓̇
2

2

=

✓
r2 + 6u2

r2 + 9u2

◆
ṙ2 +

1

6
(r2 + 6u2)✓̇2

2

. (3.22)
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Having specified the embedding and wrapping, we can now compute the pullback of the
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We will be considering the D5-brane to be moving along the radial and one angular direc-

tion, ✓
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, while it is assumed to be fixed along the other two internal dimensions. In this

case, the speed squared of the brane is given by
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We will be considering the D5-brane to be moving along the radial and one angular direc-
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(gs = string coupling)

(`s = string scale)

p p
q

p = wraping number

V (r, ✓) = �(r) + �(��(r) + �h(r, ✓))

[Kenton-Thomas, ’14; 
Bauman et al.  ’07-10]

• Probe D5-brane dynamics is described by 

for a wide range of values of p consistent with (3.36). We can similarly find a bound

for the brane flux q by noting that it induces a D3-brane charge due to the CS term of

the D5-brane action (3.13). Therefore it contributes to the five form Bianchi identify as

[25]: T
5

⇢pq D5

3

which should be small compared to the D3-brane contribution T
3

⇢N D3

3

, so

we require, similar to (3.35) that
T
5

⇢pq D5

3

T
3

⇢N D3

3

⌧ 1 . (3.37)

Here [25]

⇢N D3

3

= N
�(6)(⌃

0

)p
det g

6

, ⇢pq D5

3

= p q(⇡↵0) sin ✓
1

�(4)(⌃
2

)p
det g

6

. (3.38)

Therefore we arrive at the constraint

pq ⌧ T
3

T
5

N

⇡`2s sin ✓1
=

4⇡N

sin ✓
1

. (3.39)

Therefore, once we choose a value for p that satisfies (3.36), we need to choose q such that

(3.39) holds. As we will see there is a large parameter space where these conditions can be

satisfied, giving rise to a successful period of inflation with large and small turning rates.

4 Fat D5-brane inflation in the warped resolved conifold

We now have all we need to study explicitly the multifield D5-brane inflationary evolution,

where a probe D5-brane moves inside the WRC along the radial and an angular directions:

(r, ✓) (from now on, we drop the subindex 2 in the angular coordinate). Due to the

complexity of the system, we solve all equations numerically.

4.1 E↵ective 4D action and cosmological equations
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At the end of the day, the 4D action takes the form

As we mentioned above, we turn on a non-zero worldvolume flux F
2

of strength q, along

the wrapped 2-cycle (all other components of Fab are set to zero), so that its pullback has

the following non-zero components
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6
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2
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. (3.23)

With this we have all information we need to write down the total action for the D5-brane

(3.13). Notting also that P
6

[B
2

] = 0 and C
6

= 0, the action becomes (expanding the

square root)
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2

) , (3.25)

F ⌘ H
9
(r2 + 3u2)2 + (⇡`2sq)

2 , (3.26)

V (r, ✓
2

) = '(r) + �
�
�� + �h

�
, � = 4⇡2`2spqT5

gs , (3.27)

'(y) = 4⇡pT
5

H�1

⇥
F1/2 � `2s⇡qgs

⇤
, (3.28)

H =

✓
LT 1,1

3u

◆
4

✓
2

⇢2
� 2 ln

✓
1

⇢2
+ 1

◆◆
, L4

T 1,1 =
27⇡

4
Ngs`

4

s . (3.29)

Here �� = �� + �h, is the solution to the Poisson equation, while �h is the solution to

the homogeneous equation (3.7) while �� is the solution due to the correction of the Ricci

scalar (3.8). We focus on solutions of the Laplace equation which are invariant under the

SU(2)
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⇥ U(1) which rotates the (✓
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) and  coordinates of the shrinking S3. The

solutions were presented in [25] and are given by (remember that ⇢ = r/3u)

�h(⇢, ✓2,�2

) =
1X

l=0

m=lX

m=�1

⇥
alH

A
l (⇢) + blH

B
l (⇢)

⇤
Ylm(✓2,�2

) , (3.30)

�� =
5

72

⇥
81

�
9⇢2 � 2

�
⇢2 + 162 log (9

�
⇢2 + 1

�
)� 9� 160 log(10)

⇤
, (3.31)

where (l,m) denote the other SU(2)
2

quantum numbers of the corresponding isometries

of T 1,1. The independent solutions are given by HA
l (⇢) in (3.12) and

HB
l (⇢) =2

F
1

(1� �, 1 + �, 2,�⇢2) . (3.32)
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for a wide range of values of p consistent with (3.36). We can similarly find a bound

for the brane flux q by noting that it induces a D3-brane charge due to the CS term of

the D5-brane action (3.13). Therefore it contributes to the five form Bianchi identify as

[25]: T
5
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which should be small compared to the D3-brane contribution T
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⇢N D3
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, so

we require, similar to (3.35) that
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Therefore we arrive at the constraint
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Therefore, once we choose a value for p that satisfies (3.36), we need to choose q such that

(3.39) holds. As we will see there is a large parameter space where these conditions can be

satisfied, giving rise to a successful period of inflation with large and small turning rates.

4 Fat D5-brane inflation in the warped resolved conifold

We now have all we need to study explicitly the multifield D5-brane inflationary evolution,

where a probe D5-brane moves inside the WRC along the radial and an angular directions:

(r, ✓) (from now on, we drop the subindex 2 in the angular coordinate). Due to the

complexity of the system, we solve all equations numerically.

4.1 E↵ective 4D action and cosmological equations

Our starting action is given by (see eq. (3.24))
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where the four dimensional metric is the FRW metric (2.2), gij is defined in (3.25) and the

full expression for the scalar potential is given by (see (3.25), (3.31), (3.33)):
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Therefore, once we choose a value for p that satisfies (3.36), we need to choose q such that
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4 Fat D5-brane inflation in the warped resolved conifold
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where a probe D5-brane moves inside the WRC along the radial and an angular directions:

(r, ✓) (from now on, we drop the subindex 2 in the angular coordinate). Due to the

complexity of the system, we solve all equations numerically.
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Our starting action is given by (see eq. (3.24))
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As we explained in the previous section, the coe�cients a
0

, a
1

, b
1

are arbitrary, but small

(in [25] a
1

= 0). We have also introduced a constant piece V
0

, which we tune in order

to downlift the de Sitter minimum of the potential to Minkowski. The reasons behind

are twofold. This term encodes any unknown physics that may shift these minima to

Minkowski. For example, due to the explicit stabilisation mechanism of the closed string

moduli, which we haven’t included. Moreover, the recently proposed dS swampland con-

jectures [5–7] exclude dS minima in string theory, if correct, while Minkowski minima are

allowed.

Finally, the four dimensional Planck mass, M
Pl

after compactification is given by (see

(3.1))

M2

Pl

& �2

10

Vol (T 1,1)

Z u

0

y5H(y) ⇠ Nu2

4(2⇡)3gs`4s
. (4.6)

where we used that Vol (T 1,1) = 16⇡3/27 and assumed that most of the volume comes from

the throat, approximating H ⇠ L4/⇢4. For concreteness, for the cosmological solutions we

fix M
Pl

to the lower bound.

Analysis of parameters

Before looking into the full numerical analysis of multifield inflationary solutions to (4.1),

let us pause here to discuss the parameters’ values that we consider, taking into account

our approximations. First of all, for the string weak coupling approximation to be valid we

need gs ⌧ 1. Next, we require a large number of D3-branes N � 1 so that backreaction

of the probe D5-brane is under control. As we mentioned before, in the WRC, the u

parameter is the natural length of the throat, so that we can take [25] rUV = u and it

should be larger than `s, that is u > `s. We also need to keep in mind the hierarchy of

scales that needs to be satisfied in order for our approximations to be valid during 4D

inflation [54, 55]. That is, M
Pl

& Ms & Mc � H, where Mc is the compactification

scale and H is the Hubble parameter defined as H ⌘ ȧ/a. Taking these considerations

into account, we fix the parameters gs, N, u to ensure that this hierarchy holds and vary

the parameters p, q, keeping track of the backreaction constraints (3.36), (3.39). We then

choose the coe�cients a
0

, a
1

, b
1

(⌧ 1) in the potential (4.2) such that the amplitude of the

scalar perturbations matches with observations. As we will see, there is a large range of

values for the parameters p, q, a
0

, a
1

, b
1

giving di↵erent types of inflationary solutions, in

particular, fat slow-roll natural inflation.

As pointed out in [25] we can expect the potential (4.2) to drive single field natural

inflation once the radial coordinate is fixed to its minimum, r = rmin and so long as the

decay constant, f , takes superplanckian values consistent with the approximations above.
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Therefore, once we choose a value for p that satisfies (3.36), we need to choose q such that

(3.39) holds. As we will see there is a large parameter space where these conditions can be

satisfied, giving rise to a successful period of inflation with large and small turning rates.
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where a probe D5-brane moves inside the WRC along the radial and an angular directions:
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9
(r2 + 3u2)2 + (⇡`2sq)

2 (4.3)

�� =
5

72

⇥
81

�
9⇢2 � 2

�
⇢2 + 162 log (9

�
⇢2 + 1

�
)� 9� 160 log(10)

⇤
(4.4)

18

 
M2

Pl = Vw

✓
1

2
(2⇡)7g2s`

8
s

◆�2
!

D5-BRANE FAT INFLATION: THE ACTION



for a wide range of values of p consistent with (3.36). We can similarly find a bound

for the brane flux q by noting that it induces a D3-brane charge due to the CS term of

the D5-brane action (3.13). Therefore it contributes to the five form Bianchi identify as

[25]: T
5

⇢pq D5

3

which should be small compared to the D3-brane contribution T
3

⇢N D3

3

, so

we require, similar to (3.35) that
T
5

⇢pq D5

3

T
3

⇢N D3

3

⌧ 1 . (3.37)

Here [25]

⇢N D3

3

= N
�(6)(⌃

0

)p
det g

6

, ⇢pq D5

3

= p q(⇡↵0) sin ✓
1

�(4)(⌃
2

)p
det g

6

. (3.38)

Therefore we arrive at the constraint

pq ⌧ T
3

T
5

N

⇡`2s sin ✓1
=

4⇡N

sin ✓
1

. (3.39)

Therefore, once we choose a value for p that satisfies (3.36), we need to choose q such that

(3.39) holds. As we will see there is a large parameter space where these conditions can be

satisfied, giving rise to a successful period of inflation with large and small turning rates.

4 Fat D5-brane inflation in the warped resolved conifold

We now have all we need to study explicitly the multifield D5-brane inflationary evolution,

where a probe D5-brane moves inside the WRC along the radial and an angular directions:

(r, ✓) (from now on, we drop the subindex 2 in the angular coordinate). Due to the

complexity of the system, we solve all equations numerically.

4.1 E↵ective 4D action and cosmological equations

Our starting action is given by (see eq. (3.24))

S
4

=

Z
d4x

p
�g


M2

Pl

2
R

4

+
1

2
gijv

ivj � V (r, ✓)

�
(4.1)

where the four dimensional metric is the FRW metric (2.2), gij is defined in (3.25) and the

full expression for the scalar potential is given by (see (3.25), (3.31), (3.33)):

V (r, ✓) = V
0

+ 4⇡pT
5

H�1

⇥
F1/2 � `2s⇡qgs

⇤
+ �

⇥
�� + �h

⇤
, (4.2)

where � = 4⇡2`2spqT5

gs and (see (3.24),(3.25))

F =
H
9
(r2 + 3u2)2 + (⇡`2sq)

2 (4.3)

�� =
5

72

⇥
81

�
9⇢2 � 2

�
⇢2 + 162 log (9

�
⇢2 + 1

�
)� 9� 160 log(10)

⇤
(4.4)
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V (r, ✓)

V (r, ✓) = V (r) +W (r) cos ✓

gij = diag(grr(r), g✓✓(r))
With
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p

g✓✓(r)

Instantaneous decay constant 

non-trivial field space curvature 
R 6= 0



V (r, ✓)

Parameters and constraints 

๏ String theory models of inflation relay on 
4D LEEFT, weakly coupled, perturbative 
string expansion  

gs < 1 , L/`s > 1

๏ For a 4D effective field theory description to be valid during 
inflation, requires compactification scale smaller than string 
scale       

. MKK . Ms . MPl

๏ Thus we require the hierarchy:

(Lc/`s > 1)
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V (r, ✓)

Parameters and constraints 

๏ String theory models of inflation relay on 
4D LEEFT, weakly coupled, perturbative 
string expansion  

gs < 1 , L/`s > 1

๏ For a 4D effective field theory description to be valid during 
inflation, requires compactification scale smaller than string 
scale       

Minf . H for light inflation. MKK . Ms . MPl

๏ Thus we require the hierarchy:

(Lc/`s > 1)
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๏ Thus we require the hierarchy:

V (r, ✓)

Parameters and constraints 

๏ String theory models of inflation relay on 
4D LEEFT, weakly coupled, perturbative 
string expansion  

gs < 1 , L/`s > 1

H . Minf for fat inflation. MKK . Ms . MPl

๏ For a 4D effective field theory description to be valid during 
inflation, requires compactification scale smaller than string 
scale       (Lc/`s > 1)
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V (r, ✓)

Parameters and constraints 

๏ The parameters      are the D5-brane wrapping and flux 
numbers, and     is the number of D3-branes sourcing the RC 
geometry.  Backreaction constraints require 

๏ The parameter,  , is the natural length of 
the throat, so u > `s

u

๏ The constants                  appearing in the 
potential are undetermined but small. 

(a0, a1, b1)

indep. solutions of the Laplace equation on the RC)
(Coefficients of

(p, q)
N

⇣
H�1/2

min = H�1/2
tip

⌘
N � 1 , p ⌧ 12N(2⇡)2H�1/2 `

2
s

r2
, pq ⌧ 4⇡N

[Becker, Leblond, Shandera, ’07; 
Kooner, S. Parameswaran, IZ, ’15]
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๏ We fix the parameters           to ensure hierarchy of 
scales:  

๏ Vary the parameters   , keeping track of the 
backreaction constraints.  

๏ We then choose the coefficients          such that the 
amplitude of the scalar perturbations matches with 
observations.

(gs, N, u)

(p, q)

(a0, a1, b1)

and the Christo↵el symbols are computed with respect to the scalar metric gij, which we

recall here

grr = 4⇡pT
5

F1/2 r
2 + 6u2

r2 + 9u2

, g✓✓ = 4⇡pT
5

F1/2 r
2 + 6u2

6
. (4.10)

We now look at di↵erent explicit inflationary solutions. As we mentioned before, we

start by presenting an explicit example of fat natural inflation with large turning rate ⌦/H.

4.2 Fat D5-brane inflation with large turning rate

We now present an explicit set of parameters which realises fat slow-roll inflation where

the dimensionless turning rate ⌦/H is large while the dimensionful ⌦ remains small (in

Planck units).

We solve the full equations of motion (4.7), (4.8) numerically19 with the values of the

parameters shown in Table 1. We fixed the flux number q, while we vary the wrap number

p. However, this is not the only possibility and there is a wider range of p, q values that

can be chosen to obtain successful slow-roll fat inflation with the smallest eigenvalue of

the scalar mass squared satisfying � > H2. Note that once we fix (N, gs, u) the string

and compactification scales are fixed. For the values in Table 1, the string scale is Ms ⇠
2 ⇥ 10�3Mp, while the compactification scale is set by V1/6

6

⇠ 13 `s, which gives, for the

parameters in Table 1, Mc ⇠ 1.53 ⇥ 10�4M
Pl

. On the other hand, the scale of inflation

turns out to be H ⇠ 10�5M
Pl

for the 5 choices of p we take (see Table 2).

N gs `s u q a
0

a
1

b
1

1000 0.01 501.961 50`s 1 0.001 0.0005 0.001

Table 1. Parameter’s values for the slow-roll fat inflation example discussed in the text. Note
that `s is given in Planck units.

Although both fields are evolving and thus a decay constant for the angular variable

cannot be defined, we can define an instantaneous decay constant f by

f =
p
g✓✓. (4.11)

It remains approximately constant during the first 60-50 efolds (before the end) of inflation

with f
60

/f
50

⇠ 0.9902 and grows to about f
60

/fend ⇠ 0.8665 by the end of inflation. In

Table 2 we give the values of the (average value between N = (60 � 50)) instantaneous

decay constant for five di↵erent choices of p for the parameters’ choice in Table 1. We

also give the initial conditions for the angular and radial fields as well as the total number

of e-folds achieved. In Figure 2 we show the potential in Planck units for the parameter

19It is convenient to solve the equations of motion (4.7), (4.8) by rewriting them using the number of
e-folds as independent variable dN = Hdt.

21

Mc . Ms . MPl

(Ms ⇠ 10�3MPl, Mc ⇠ 10�4MPl, H ⇠ 10�5MPl)
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f =
p

g✓✓(r)

values in Table 1. The minima are located at (rmin, ✓min) = (21.414, (2n+1)⇡), n 2 Z and

are independent of the wrapping number p. The minima of the potential are positive and

thus we use V
0

to shift this dS minimum to Minkowski as discussed before.

Figure 2. The scalar potential for the parameter values in Table (1). The value of the minimum
does not change when we change p. The minimum of the potential is located at rmin = 21.414,
✓ = (2n+ 1)⇡, n 2 Z. The potential and r coordinate are given in Planck units.

p f/M
Pl

✓initial Ntot

7 7.49 1.15 90.79
6 6.89 1.10 83.19
5 6.22 0.95 83.47
4 5.51 0.76 84.33
3 4.71 0.55 83.05

Table 2. Instantaneous decay constants (4.11) for di↵erent values of the wrapping number p for
the case study with rmin = 21.414 and ✓min = ⇡, using values of the parameters in Table 1 (here
f is the average value between 60-50 e-folds before the end of inflation). The initial conditions
used for ✓ and total number of e-folds achieved are also given and in all cases rinitial = 4.

In figure 3 we show the scalar fields’ trajectories along the full inflationary evolution

for the case with f ' 6.22 and other parameter values in Tables 1 and 2. The radial field

quickly settles to its displaced minimum at V (✓initial, rdisp) and follows it throughout the

evolution, as the angular coordinate evolves. Both fields eventually reach their minimum

and start oscillating around it. For all values of p, the turning rate ⌦/H > 1 as shown in

figure 4. In all the examples, the dimensionful turn is small and of order ⌦ ⇠ 10�4M
Pl

.

The Hubble parameter on the other hand is of order H ⇠ 10�5M
Pl

as expected for natural

inflation. As we discussed above, the minimum eigenvalue of the mass matrix is larger

than the Hubble scale and for all examples it is �/H ⇠ 10. The slow-roll parameters are

shown in figure 5 for the f ' 6.22 example. We finally show in figure 6 the value of rV/V

22
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๏ Distinguishable from single field via non-Gaussianity

[Kaiser, Mazenc, Sfakianakis, '12]

Figure 7. The (ns, r) plane for the D5-brane multifield fat inflation model discussed in the text
with parameters given in Tables 1 and 2. The shaded regions are the Planck 95%CL regions as
indicated. The single field natural inflation predictions are indicated by the cyan dashed curve,
while the fat D5-brane predictions follow the continuous curve. The e↵ect of the heavy inflatons
and large turns move the predictions to the best fit region, even with cs ' 1 (see main text).

Primordial Non-Gaussianity f local
NL

We now compute the local type non-Gaussianity, f local
NL

, associated with the previous fat

inflationary trajectories 22. We follow the covariant �N formalism of [59] for inflationary

models on a curved manifold, where the non-linear parameter f local
NL

takes the standard

form

f
NL

= �5

6

N,iN,jN
;ij

(N,kN,k)2
, (4.17)

where i refers to {r, ✓}, comma and semicolon denote the partial and covariant derivatives

with respect to the scalar fields {r, ✓} and the scalar-field metric gij. Notice that we have

removed the label local for convenience.

In order to calculate fNL numerically, we use the method of finite di↵erences for the

derivatives (e.g. N,r = (N(r+�r, ✓)�N(r��r, ✓))/(2�r), etc.), and integrate N(r, ✓) from

the horizon crossing of the relevant mode, N⇤, to the end of inflation, Nend, defined where

✏ = 1. We choose modes in the range from N⇤ = 50 to N⇤ = 70 prior to the end of inflation.

Given that the final result for fNL is very sensitive to tiny values of (�r,�✓) at horizon

crossing, we average over a few possible larger values (�r ⇡ O(10�1) and �✓ ⇡ O(10�3)),

making sure that their dispersion is roughly two orders of magnitude smaller than the

resulting fNL. Moreover, we have also checked that slight di↵erences in the definition of

the end of inflation do not change the final value of fNL.

22See [60] where an analytical expression for the equilateral non-Gaussianity for a simple two-field
inflation model is presented.
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Figure 8. (Left) |fNL| as a function of the number of e-folds N for the five di↵erent cases of
decay constants and initial conditions presented in Table 2, with error bars (as the standard
deviation of the averaged value for fNL using 9 di↵erent combinations of (�r,�✓)) of the order
of 10�2. (Right) |fNL| vs ns for the same decay constants. All values of fNL for these fat inflation
realisations are negative, and deviate from from the single field consistency condition (brown solid
line).

In figure 8 we show the results for fNL for the five decay constants discussed ealier, and

find that they are all negative and of order O(1), falling within the most recent bounds

by Planck, f local
NL

= �0.9± 5.1 [61]. Furthermore, once comparing our fNL results with the

single clock consistency relation fNL = 5

12

(1� ns) [62], they clearly depart from the single

field model (see the right plot in figure 8).

4.3 D5-brane inflation with a light field: small turns

We now present an example of a choice of parameters where the turning rate is smaller

than one and one of the field’s is lighter that the Hubble parameter. That is, a “standard”

hierarchy for the mass of the fields holds: M
1

. H < M
2

. In particular, M
1

/H ⇠ 0.35 at

N⇤ = 60� 50 and in this case, rV/V is slightly smaller than in the fat inflation example

above with rV/V & 0.1 at at N⇤ ⇠ 60 for the f ⇠ 6.54 case (see left plot in figure 6). This

example illustrates the di↵erences between the two types of inflationary evolution that can

arise in multifield models.

The parameters’ values are shown in Table 3. Instantaneous decay constant, initial con-

ditions, and total number of e-folds achieved are given in Table 4. The instantaneous decay

constant in this case remains almost unchanged during the whole inflationary evolution

with f
60

/fend ⇠ 0.9998. In figure 9 we show the turning rates for this set of parameters and

in figure 10 we show the predictions for the spectral tilt and the tensor-to-scalar ratio. As

it is clear from the plot, the multifield D5-brane inflation is indistinguishable from single

field natural inflation at linear order in perturbations. In this example too the mass of the

28
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Figure 10. The (ns, r) plane for the D5-brane multifield inflation model with small turning rate
with parameters given in Tables 3 and 4. The shaded regions are the Planck 95%CL regions as
indicated. The predictions fall exactly along the single field natural inflation curve (cyan dashed
curve).

We finally compute the non-Gaussianity parameter for this example following the same

procedure as before. The results are shown in figure 11 (the value of fNL we find is negative

also in this case). In this case, as it is clear from the plot, although the predictions for

(ns, r) are indistinguishable from single filed, the non-Gaussianity parameter is large and

falls outside the most recent constraints from Planck. It is interesting that for smaller

turns, the non-linear parameter turns out to be much larger. We do not have an intuition

for this result and would be interesting to explore this further. Let us note only that in

[59], it was found that very di↵erent values for fNL are obtained as the trajectory of the

inflatons changes.
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adiabatic mode is small w.r.t. H, while M � H and Meff ⇠ M , so that cs ⇠ 1. Finally,

the adiabaticity condition (4.12) in this case gives A ⇠ 10�3.

N gs q u `s a
0

a
1

b
1

1000 0.01 70 50ls 501.961 0.1 0.0001 0.0001

Table 3. Parameter’s values. Note that `s is given in Planck units. That is, Ms = 2⇥ 10�3M
Pl

.

p f/M
Pl

rinitial ✓initial Ntot

90 7.07 400 105.873 81.83
77 6.54 410 105.973 79.24
65 6.01 430 106.073 75.62
55 5.52 500 106.173 73.06
46 5.05 380 106.373 80.70
37 4.53 410 106.473 75.64

Table 4. Decay constants for di↵erent values of the wrapping number p for the case study with
rmin = 456.797 and ✓min = 33⇡, using values of the parameters in Table 1. The initial conditions
used for (r, ✓) and total number of e-folds achieved are also given.

Figure 9. Turning rate comparison during the first 10 e-folds for the examples in Table 4 (left)
and turning rate for the full inflationary evolution for the case f ' 6.54 (right). In these examples
⌦ ⇠ 10�5M

Pl

.

29

values in Table 1. The minima are located at (rmin, ✓min) = (21.414, (2n+1)⇡), n 2 Z and

are independent of the wrapping number p. The minima of the potential are positive and

thus we use V
0

to shift this dS minimum to Minkowski as discussed before.

Figure 2. The scalar potential for the parameter values in Table (1). The value of the minimum
does not change when we change p. The minimum of the potential is located at rmin = 21.414,
✓ = (2n+ 1)⇡, n 2 Z. The potential and r coordinate are given in Planck units.

p f/M
Pl

✓initial Ntot

7 7.49 1.15 90.79
6 6.89 1.10 83.19
5 6.22 0.95 83.47
4 5.51 0.76 84.33
3 4.71 0.55 83.05

Table 2. Instantaneous decay constants (4.11) for di↵erent values of the wrapping number p for
the case study with rmin = 21.414 and ✓min = ⇡, using values of the parameters in Table 1 (here
f is the average value between 60-50 e-folds before the end of inflation). The initial conditions
used for ✓ and total number of e-folds achieved are also given and in all cases rinitial = 4.

In figure 3 we show the scalar fields’ trajectories along the full inflationary evolution

for the case with f ' 6.22 and other parameter values in Tables 1 and 2. The radial field

quickly settles to its displaced minimum at V (✓initial, rdisp) and follows it throughout the

evolution, as the angular coordinate evolves. Both fields eventually reach their minimum

and start oscillating around it. For all values of p, the turning rate ⌦/H > 1 as shown in

figure 4. In all the examples, the dimensionful turn is small and of order ⌦ ⇠ 10�4M
Pl

.

The Hubble parameter on the other hand is of order H ⇠ 10�5M
Pl

as expected for natural

inflation. As we discussed above, the minimum eigenvalue of the mass matrix is larger

than the Hubble scale and for all examples it is �/H ⇠ 10. The slow-roll parameters are

shown in figure 5 for the f ' 6.22 example. We finally show in figure 6 the value of rV/V

22

m
1

/H & 60, while the heaviest is thousand times heavier m
3

/H & 4500. The sidetrack

models, where there is a transition from a standard slow-roll trajectory with a light and a

heavy field, to a fat slow-roll trajectory, with both scalar fields having larger masses than

the Hubble scale.

In sections 3, 4, we presented an explicit example of fat inflation using a probe D5-

brane moving in the warped resolved conifold of a type IIB flux compactification. The fat

inflatons correspond to the scalar fields associated to the radial and one angular directions.

The brane is assumed to be fixed along the other two angular directions and we assumed

also that the closed string moduli can be stabilised using a combination of fluxes and

non-perturbative terms. The scalar potential for the two-fields has a cosine dependence on

the angular direction, which can be used to realise natural inflation [25]. We defined an

instantaneous, field dependent decay constant as f =
p
g✓✓(r), which took superplanckian

values realising a fat natural inflation model. The cosmological parameters di↵er slightly

from single field natural inflation as we showed in figure 7. As we discussed, the speed

of sound remains basically one and the di↵erence in the predictions w.r.t. to single field

can be understood by the di↵erent behaviour of the slow-roll parameters (or the potential)

along the inflationary trajectory when fat fields drive inflation. For comparison, we also

presented an example of a set of parameters which gives a standard hierarchy of masses

in 4.3. In this case, the predictions coincide with the single field case as shown in figure

10 and thus would be impossible to distinguish between the two cases using only (ns, r).

In both examples, fat and standard inflation, the inflationary trajectory deviates from a

geodesic, which is measured by the turning rate ⌦/H (see section 2) which is order one

for the standard case and order ten in the fat case (see figures 4, 9). The scalar curvature

is negative and large in the fat and standard examples (R ⇠ �104M�2

Pl

, R ⇠ �102M�2

Pl

respectively). However no geometric destabilisation is triggered. In both examples too,

the mass of the entropic mode is well above the Hubble scale.

We have used the results in [59] to compute the local non-Gaussianity, which would be

a useful tool to distinguish multifield model predictions from the single field case. For the

fat inflationary case, we found that the non-Gaussianity is of order one (see fig. 8) and

can therefore constitute a powerful tool to distinguish this model from single field, which

predicts a negligible level of non-Gaussianity. The standard example with small turning

rate on the other hand gives a much larger value for the fNL parameter (see fig. 11) and

would be ruled out by current bounds. Although we do not have a clear intuition for this

result, it has been shown in [59] how di↵erent trajectories can give completely di↵erent

values for the non-Gaussian parameter. Although the inflation model studied in [59] has

tiny turning rates (O(10�3 � 10�4)), it holds that also in that case, for the trajectory with

larger value of ⌦/H, the non-Gaussian parameter is smaller and viceversa. It would be

interesting to study this behaviour in more detail, as it could be important to distinguish

among single and multifield models of inflation.

Let us finally comment on the challenges of the D5-brane model. As we have discussed,
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adiabatic mode is small w.r.t. H, while M � H and Meff ⇠ M , so that cs ⇠ 1. Finally,

the adiabaticity condition (4.12) in this case gives A ⇠ 10�3.

N gs q u `s a
0

a
1

b
1

1000 0.01 70 50ls 501.961 0.1 0.0001 0.0001

Table 3. Parameter’s values. Note that `s is given in Planck units. That is, Ms = 2⇥ 10�3M
Pl

.

p f/M
Pl

rinitial ✓initial Ntot

90 7.07 400 105.873 81.83
77 6.54 410 105.973 79.24
65 6.01 430 106.073 75.62
55 5.52 500 106.173 73.06
46 5.05 380 106.373 80.70
37 4.53 410 106.473 75.64

Table 4. Decay constants for di↵erent values of the wrapping number p for the case study with
rmin = 456.797 and ✓min = 33⇡, using values of the parameters in Table 1. The initial conditions
used for (r, ✓) and total number of e-folds achieved are also given.

Figure 9. Turning rate comparison during the first 10 e-folds for the examples in Table 4 (left)
and turning rate for the full inflationary evolution for the case f ' 6.54 (right). In these examples
⌦ ⇠ 10�5M

Pl

.
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and the Christo↵el symbols are computed with respect to the scalar metric gij, which we

recall here

grr = 4⇡pT
5

F1/2 r
2 + 6u2

r2 + 9u2

, g✓✓ = 4⇡pT
5

F1/2 r
2 + 6u2

6
. (4.10)

We now look at di↵erent explicit inflationary solutions. As we mentioned before, we

start by presenting an explicit example of fat natural inflation with large turning rate ⌦/H.

4.2 Fat D5-brane inflation with large turning rate

We now present an explicit set of parameters which realises fat slow-roll inflation where

the dimensionless turning rate ⌦/H is large while the dimensionful ⌦ remains small (in

Planck units).

We solve the full equations of motion (4.7), (4.8) numerically19 with the values of the

parameters shown in Table 1. We fixed the flux number q, while we vary the wrap number

p. However, this is not the only possibility and there is a wider range of p, q values that

can be chosen to obtain successful slow-roll fat inflation with the smallest eigenvalue of

the scalar mass squared satisfying � > H2. Note that once we fix (N, gs, u) the string

and compactification scales are fixed. For the values in Table 1, the string scale is Ms ⇠
2 ⇥ 10�3Mp, while the compactification scale is set by V1/6

6

⇠ 13 `s, which gives, for the

parameters in Table 1, Mc ⇠ 1.53 ⇥ 10�4M
Pl

. On the other hand, the scale of inflation

turns out to be H ⇠ 10�5M
Pl

for the 5 choices of p we take (see Table 2).

N gs `s u q a
0

a
1

b
1

1000 0.01 501.961 50`s 1 0.001 0.0005 0.001

Table 1. Parameter’s values for the slow-roll fat inflation example discussed in the text. Note
that `s is given in Planck units.

Although both fields are evolving and thus a decay constant for the angular variable

cannot be defined, we can define an instantaneous decay constant f by

f =
p
g✓✓. (4.11)

It remains approximately constant during the first 60-50 efolds (before the end) of inflation

with f
60

/f
50

⇠ 0.9902 and grows to about f
60

/fend ⇠ 0.8665 by the end of inflation. In

Table 2 we give the values of the (average value between N = (60 � 50)) instantaneous

decay constant for five di↵erent choices of p for the parameters’ choice in Table 1. We

also give the initial conditions for the angular and radial fields as well as the total number

of e-folds achieved. In Figure 2 we show the potential in Planck units for the parameter

19It is convenient to solve the equations of motion (4.7), (4.8) by rewriting them using the number of
e-folds as independent variable dN = Hdt.

21

R� 3⇥ 104M�2
Pl

fNL ⇠ O(10)fNL ⇠ O(1)

Fat natural inflation Light natural inflation 

��/H
2 ⇠ 10 �1/H

2 ⇠ 0.1

! ⇠ 10 ! ⇠ 0.4



MULTIFIELD D-BRANE INFLATION
Multifield inflation has new inflationary attractor with 
(strongly) non-geodesic trajectories.  
Light fields are not needed, all fields can be heavy. 
Avoid 𝜂V-problem  

Fat D5-brane model has challenges that would need 
to be addressed in a more complete model (moduli 
stabilisation, heaviest inflaton a bit too heavy ) 
Fat trajectories in D3-anti-D3-brane multi-field inflation 
seem difficult 
Transient large turns ➠ interesting pheno (PBHs, GWs)?

 [sugra case: Bhattacharya, IZ, ’22]



Late time  
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vacua  



CONCORDANCE 𝛬CDM MODELDE SITTER SPACE
Cosmological constant problem 
aside, de Sitter space in string theory 
and pure supergravity challenging to 
find

⇤ < 0 ⇤ > 0⇤ = 0

AdS dSMinkowski

-1 1
φ

V(φ)

-1 1
φ

V(φ)

-1 0 1
φ

V(φ)



DS VACUA IN STRING THEORY 

•1) Fluxes generate a potential for 
dilaton and complex structure moduli 

•2) Add non-perturbative terms to 
stabilise Kähler moduli: only adS can 
be obtained 

•3) Uplift the minimum to a dS, positive 
vacuum energy by adding an anti-D3-
brane

DS VACUA IN STRING THEORY: KKLT 
[Kachru, Kallosh, Linde, Trivedi, ’03]

Flux compactification in type IIB: N=1 sugra 
[Giddings, Kachru, Plochinski, ‘01]

4

and the low-energy theory is pure N = 1 supersymmet-
ric SU(Nc) gauge theory. This theory undergoes gluino
condensation, which results in a nonperturbative super-
potential

Wgauge = Λ3
Nc

= Ae
2πiρ
Nc (10)

where ΛNc is the dynamical scale of the gauge theory,
and the coefficient A is determined by the energy scale
below which the the SQCD theory is valid (There are also
threshold corrections in general, these contribute sub-
leading effects.) We see that this leads to an exponential
superpotential for ρ similar to the one above (but with a
fractional multiple of ρ in the exponent, since the gaug-
ino condensate looks like a fractional instanton effect in
W ).

So effects 1) and 2) have rather similar consequences
for our analysis; we will simply assume that there is
an exponential superpotential for ρ at large volume. In
our companion paper [14], we investigate some interest-
ing possibilities for cosmology if there are multiple non-
Abelian gauge factors. Using the fourfolds in [27], it is
easy to construct examples (with h1,1(X) = 2) which
could yield gauge groups of total rank up to ∼ 30. The
results of [39] suggest that much larger ranks should be
possible.

One important comment is in order before we proceed.
Besides corrections to the superpotential of the kind dis-
cussed above, there are also corrections to the Kähler
potential (see e.g. [40] for a calculation of some lead-
ing corrections). In our analysis we will ensure that the
volume modulus is stabilized at values which are para-
metrically large compared to the string scale. This makes
our neglect of Kähler corrections self consistent.

C. Supersymmetric AdS Vacua

Here, we show that the corrections to the superpoten-
tial considered above can stabilize the volume modulus,
leading to a susy preserving AdS minimum. We perform
an analysis of the vacuum structure just keeping the tree-
level Kähler potential

K = −3 ln[−i(ρ− ρ)] (11)

and a superpotential

W = W0 + Aeiaρ . (12)

W0 is a tree level contribution which arises from the
fluxes. The exponential term arises from either of the
two sources above, and the coefficient a can be deter-
mined accordingly. In keeping with the fact that the
complex structure moduli and the dilaton have received a
mass (5), we have set them equal to their VEVs and con-
sider only the low-energy theory of the volume modulus.
To avoid the need to worry about additional open-string
moduli, we assume the tadpole condition (1) has been

solved by turning on only flux, i.e. with no additional
D3 branes.

At a supersymmetric vacuum DρW = 0. We simplify
things by setting the axion in the ρ modulus to zero, and
letting ρ = iσ. In addition we take A, a and W0 to be all
real and W0 negative. The minimum then lies at

DW = 0 → W0 = −Ae−a σcr (1 +
2

3
aσcr) (13)

The potential, V = eK
(

GρρDρWDρW − 3|W |2
)

, at
the minimum is negative and equal to

VAdS = (−3eKW 2)AdS = −
a2A2e−2 a σcr

6 σcr
(14)

We see that we have stabilized the volume modulus while
preserving supersymmetry. It is important to note that
the AdS minimum is quite generic. Any corrections to
the Kähler potential will still result in a susy minimum
which solves (13).

A few comments are in order before we proceed. A
controlled calculation requires that σ ≫ 1, this ensures
that the supergravity approximation is valid and the α′

corrections to the Kähler potential are under control. It
also requires that aσ > 1 so that the contribution to
the superpotential from a single (fractional) instanton is
reliable. Generically, if the fluxes break supersymmetry,
W0 ∼ O(1), and these conditions will not be met. How-
ever it is reasonable to expect that by tuning fluxes one
can arrange so that W0 ≪ 1. In these circumstances we
see from (13) that aσ > 1. Taking a < 1, one can then
ensure that σ ≫ 1, as required.

As an illustrative example we consider W0 = −10−4,
A = 1, a = 0.1. This results in a minimum at σcr ∼ 113.

100 150 200 250 300 350 400

-2

-1.5

-1

-0.5

0.5
V

σ

FIG. 1: Potential (multiplied by 1015) for the case of expo-
nential superpotential with W0 = −10−4, A = 1, a = 0.1.
There is an AdS minimum.

Another possibility to get a minimum at large vol-
ume is to consider a situation where the fluxes preserve
susy, and the superpotential involves multiple exponen-
tial terms, i.e. “racetrack potentials” for the stabilization
of ρ [41]. Such a superpotential could arise from multiple
stacks of seven branes wrapping four cycles which cannot

susy adS
6

100 150 200 250 300 350 400

0.2

0.4

0.6

0.8

1

1.2

V

σ

FIG. 2: Potential (multiplied by 1015) for the case of ex-
ponential superpotential and including a D

σ3 correction with

D = 3 × 10−9 which uplifts the AdS minimum to a dS mini-
mum.

It is important to mention that the value of the volume
modulus shifts only slightly in going from the AdS mini-
mum to the new dS minimum. This means if the volume
was large in the AdS minimum to begin with, it will con-
tinue to be large in the new dS minimum, guaranteeing
that our approximations are valid.

If one wants to use this potential to describe the
present stage of acceleration of the universe, one needs
to fine-tune the value of the potential in dS minimum to
be V0 ∼ 10−120 in units of Planck density. In principle,
one could achieve it, e.g., by fine tuning D. However,
the tuning we can really do by varying the fluxes etc. in
the microscopic string theory is limited, though it may
be possible to tune quite well if there are enough three-
cycles in M .

IV. HOW STABLE IS THE DS VACUUM?

The radial modulus σ = Im ρ has a kinetic term
3

4σ2 (∂σ)2 which follows from the Kähler potential (3).
For cosmological purposes it is convenient to switch to

the canonical variable ϕ =
√

3
2 lnσ =

√

3
2 ln(Im ρ),

which has a kinetic term 1
2 (∂ϕ)2. In what follows we

will use the field ϕ and it should not be confused with
the dilaton, φ.

A. General theory

The dS vacuum state ϕ0 corresponding to the local
minimum of the potential with V0 > 0 is metastable.
Therefore it may decay, and then the universe will roll to-
wards large values of the field ϕ and decompactify. Here
we would like to address two important questions:

1) Do our dS vacua survive for a large number of
Planck times? For instance, if we fine tune to get a small
cosmological constant, is the dS vacuum sufficiently sta-

ble to survive during the 1010 years of the cosmologi-
cal evolution? If the answer is positive, one can use the
dS minimum for the phenomenological description of the
current stage of acceleration (late-time inflation) of the
universe.

2) Is the typical decay time of the dS vacuum longer
or shorter than the recurrence time tr ∼ eS0 , where
S0 = 24π2

V0
is the dS entropy [43]? If the decay time

is longer than tr ∼ eS0 , one may need to address the
issues about the consistency of the stringy description of
dS space raised in [2, 5, 8].

We will argue that the lifetime of the dS vacuum in our
models is not too short and not too long: it is extremely
large in Planck times (in particular, one can easily make
models which live longer than the cosmological timescale
∼ 1010 years), and it is much shorter than the recurrence
time tr ∼ eS0 .

In order to analyse this issue we will remember, fol-
lowing Coleman and De Luccia [44], basic features of the
tunneling theory taking into account gravitational effects.

To describe tunneling from a local minimum at ϕ = ϕ0

one should consider an O(4)-invariant Euclidean space-
time with the metric

ds2 = dτ2 + b2(τ)(dψ2 + sin2 ψ dΩ2
2) . (17)

The scalar field ϕ and the Euclidean scale factor (three-
sphere radius) b(τ) obey the equations of motion

ϕ′′ + 3
b′

b
ϕ′ = V,ϕ, b′′ = −

b

3
(ϕ′2 + V ) , (18)

where primes denote derivatives with respect to τ . (We
use the system of units Mp = 1.)

These equations have several instanton solutions
(ϕ(τ), b(τ)). The simplest of them are the O(5) invari-
ant four-spheres one obtains when the field ϕ sits at one
of the extrema of its potential, and b(τ) = H−1 sin Hτ .
Here H2 = V

3 , and V (ϕ) corresponds to one of the ex-
trema. In our case, there are two trivial solutions of this
type. One of them describes time-independent field cor-
responding to the minimum of the effective potential at
ϕ = ϕ0, with V0 = V (ϕ0). Another one is related to the
maximum of the potential at ϕ = ϕ1, with V1 = V (ϕ1).

Coleman-De Luccia (CDL) instantons are more com-
plicated. They describe the field ϕ(τ) beginning in a
vicinity of the false vacuum ϕ0 at τ = 0, and reaching
some constant value ϕf > ϕ1 at τ = τf , where b(τf ) = 0.
It is tempting to interpret CDL instantons as the tunnel-
ing trajectories interpolating between the different vacua
of the theory. However, one should be careful with this
interpretation because the trajectories ϕ(τ) for CDL in-
stantons do not begin exactly in the metastable minimum
ϕ0 and do not end exactly in the absolute minimum of
the effective potential. We will discuss this issue later.

According to [44], the tunneling probability is given by

P (ϕ) = e−S(ϕ)+S0, (19)

susy dS

+ D3

⇢

⇢



REVISITING KKLT STEP 1

Here gs denotes the string metric. We have also defined the combined three-flux, G(3) =

F(3) − τH(3), where as usual τ = C(0) + ie−φ, and

F̃(5) = F(5) −
1

2
C(2) ∧ H(3) +

1

2
B(2) ∧ F(3) . (2.2)

The term Sloc is the action of localized objects, such as branes, which will become important

shortly. The condition F̃(5) = ∗F̃(5) must as usual be imposed by hand on the equations of

motion.

We will be considering compactifications arising from F-theory, so it is particularly useful

to reformulate the action in an SL(2,Z) invariant form by defining the Einstein metric

gMN = e−φ/2gsMN , whence the action becomes

SIIB =
1

2κ10
2

∫
d10x

√
−g

{

R− ∂Mτ∂M τ̄

2(Im τ)2
− G(3) · G(3)

12 Im τ
−

F̃ 2
(5)

4 · 5!

}

+
1

8iκ10
2

∫ C(4) ∧ G(3) ∧ G(3)

Im τ
+ Sloc . (2.3)

Henceforth we use the Einstein metric throughout. Invariance under the SL(2,Z) transform

τ → aτ + b

cτ + d
, (2.4)

together with the transformation

G(3) →
G(3)

cτ + d
(2.5)

is readily checked.

Our interest is in warped metrics maintaining four-dimensional Poincaré symmetry, with

convenient parameterization

ds2
10 = e2A(y)ηµνdxµdxν + e−2A(y)g̃mndymdyn (2.6)

in terms of four-dimensional coordinates xµ and coordinates ym on the compact manifold

M6. The axion/dilaton will be allowed to vary over the compact manifold,

τ = τ(y) , (2.7)

and since we will consider D7-branes, monodromies of the form (2.4) will be allowed. To

maintain Poincaré invariance only compact components of G(3) are present, and furthermore,

with monodromies (2.5), these will transform in a non-trivial bundle over M6:

G(3) ∈ σ(Ω3 ⊗ L) , (2.8)

5

Calabi−Yau

D3

p−3

D3

y

4D

Warped Throat

Dp

F3, H3

• Kähler metric for deformation modulus  is 
corrected due to strong warping.

• Near the conifold point, 6D metric well approximated 
by Klebanov-Strassler warped deformed conifold 
solution [Klebanov-Strassler, ’00]

[Giddings-Maharana ’05; Douglas-Shelton-Torroba, ’07;   
Frey-Torroba-Underwood-Douglas, ’08]
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DS VACUA IN STRING THEORY 

• Deformation conifold modulus, S, becomes light and 
might be destabilised by uplifting anti-D3 brane potential

[Bena, Dudas, Graña, Lüst, ’18; Blumenhagen, Kläwer, Schlechter, ’19; 
Bena, Buchel, Lüst, 19; Dudas, Lüst, '19; Randall, ’19; Crinò, Quevedo, Valandro, ’20]

The potential for the complex structure modulus S involves the fluxes M and K, while

it depends on the other fluxes only indirectly through the axion-dilaton ⌧ , whose vev is

determined by all fluxes. Furthermore, unlike the other “bulk” moduli, the potential for S

is highly a↵ected by the warp factor. Its functional form, derived in [16,17] is4

VKS =
⇡3/2


10

gs
(Im ⇢)3

"
c log

⇤3

0

|S| + c0
gs(↵0M)2

|S|4/3
#�1 ����

M

2⇡i
log
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0

S
+ i

K

gs

����
2

, (2.17)

where gs is the stabilized vev of the dilaton, Im ⇢ = (Vol
6

)3/2 (see Appendix A for more

details), c denotes the constant value of the warp factor at the UV and will not be relevant

here, whereas the constant c0, multiplying the term coming solely from the warp factor,

denotes an order one coe�cient, whose approximate numerical value was determined in [16]

to be

c0 ⇡ 1.18 . (2.18)

The potential VKS is plotted in Figure 1.

S

V(S)

Figure 1: The potential VKS of [16] for the complex structure modulus S of the Klebanov-

Strassler throat given in (2.17). The solid blue line corresponds to the full potential, while

the dotted orange line does shows the näıve potential that does not take into account the

e↵ects of warping (c0 = 0). Both potentials have the same supersymmetric minimum but

di↵er drastically at small S.

The potential (2.17) has a supersymmetric minimum, corresponding to @SW = 0, which,

for S ⌧ ⇤3

0

, is at

s
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We follow the Einstein frame conventions of [24] and use 22
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• Stability of anti-D3 uplifted  minimum requires large 
fluxes, threatening tadpole cancellation 

DS VACUA IN STRING THEORY 

• Deformation conifold modulus, S, becomes light and 
might be destabilised by uplifting anti-D3 brane potential

[Bena, Dudas, Graña, Lüst, ’18; Blumenhagen, Kläwer, Schlechter, ’19; 
Bena, Buchel, Lüst, 19; Dudas, Lüst, '19; Randall, ’19; Crinò, Quevedo, Valandro, ’20]

[Braun, Valandro, ’20;  Bena, Blåbäck, Graña, Lüst, '20-21]

The potential for the complex structure modulus S involves the fluxes M and K, while

it depends on the other fluxes only indirectly through the axion-dilaton ⌧ , whose vev is

determined by all fluxes. Furthermore, unlike the other “bulk” moduli, the potential for S

is highly a↵ected by the warp factor. Its functional form, derived in [16,17] is4

VKS =
⇡3/2
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, (2.17)

where gs is the stabilized vev of the dilaton, Im ⇢ = (Vol
6

)3/2 (see Appendix A for more

details), c denotes the constant value of the warp factor at the UV and will not be relevant

here, whereas the constant c0, multiplying the term coming solely from the warp factor,

denotes an order one coe�cient, whose approximate numerical value was determined in [16]

to be

c0 ⇡ 1.18 . (2.18)

The potential VKS is plotted in Figure 1.

S

V(S)

Figure 1: The potential VKS of [16] for the complex structure modulus S of the Klebanov-

Strassler throat given in (2.17). The solid blue line corresponds to the full potential, while

the dotted orange line does shows the näıve potential that does not take into account the

e↵ects of warping (c0 = 0). Both potentials have the same supersymmetric minimum but

di↵er drastically at small S.

The potential (2.17) has a supersymmetric minimum, corresponding to @SW = 0, which,

for S ⌧ ⇤3

0

, is at

s
KS
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0

exp

✓
�2⇡K

gsM

◆
. (2.19)

4
We follow the Einstein frame conventions of [24] and use 22

10 = (2⇡)7↵04
.

8

For N anti-D3 branes the potential is multiplied by N , and this is taken care by simply

replacing c00 ! c00N .

In Figure 2 we plot the D3-potential VD3

together with the superposition of VKS with

VD3

.

S

V(S)

Figure 2: The contribution VD3

(solid blue line) of an D3-brane placed in the Klebanov-

Strassler throat to the potential for S. The two other lines represent the original potential

VKS (dotted orange line) for the specific value
p
gsM = 6 as well as the superposition

VKS + VD3

(dashed green line).

3 The Total Potential

We consider the combined potential VKS + VD3

as illustrated in Figure 2. The analysis

simplifies considerably if one neglects the first term in the denominator of VKS in (2.17),

which can safely be done as long as

gs(↵0M)2

|S|4/3
� log

⇤3

0

|S| . (3.1)

In this regime of parameters V
D3

gives only a constant contribution to the numerator of VKS

and the critical points of the combined potential VKS + VD3

can be determined analytically.

They are given by
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•Orientifold compactifications contain O3/
O7-planes. Need to cancel tadpoles. 

•Fluxes contribute to the D3-brane charge 
as well as D7-branes. 

Calabi−Yau

D3

p−3

D3

y

4D

Warped Throat

Dp

F3, H3

TADPOLE CANCELLATION

N
flux

/
Z

CY

F3 ^H3

•Requiring to cancel total charges in the internal 
CY space from D-branes, O-planes and fluxes:

1

(2⇡↵)2↵0

Z

A
F3 = M

1

(2⇡↵)2↵0

Z

B
H3 = K

where D0
a is its image under the orientifold projection of Da.

When the D7 branes are on top of the O7 plane we have [Da] = [D0
a] = [DO7], this

simplifies the equation (2.26) to
P

aNa = 4. In this case there is a zero contribution from

the branes to the superpotential and the Kähler potential WD7 = 0 (see (4.57) in [? ]) and

KD7 = 0 (see (4.26) in [? ]) avoiding a mixture with CS moduli. The D3 brane tadpole

cancellation condition (2.24) reduces to

Nflux =
NO3

2
+
�(DO7)

2
� 2ND3. (2.27)

In what follows we assume for our study that by incorporating the necessary number

of D3-branes and by computing the Euler number of the divisors in the mirror quintic, it

is possible to cancel the tadpole (2.24) or (2.27) for any flux configuration.

2.3 Picard-Fuchs equations

In this section we write the Picard-Fuchs (PF) equations, which are fourth order di↵er-

ential equations, satisfied by the periods, in four di↵erent coordinates systems. Three of

those correspond to convenient coordinates near the critical points of the complex struc-

ture moduli space: the orbifold, conifold and large complex structure points. The other

coordinates system is defined near a regular point in the CS moduli space. This system

is convenient to study the periods close to the boundaries of convergence from the criti-

cal points patches. We describe the power series and logarithmic solutions in each of the

patches and the method to obtain the transition matrices to the integral symplectic basis

(2.9). This moduli space has been studied previously in [? ? ]. In [? ] the periods near

the conifold were obtained. Here we are interested in having the period series up to an

arbitrary order in all di↵erent patches, and for this we also compute the transition matrices

between all of those patches.

Let us start by looking at the PF equations on the vicinity of the LCS point. A change

of coordinates from  to  �5 in W /Z3
5 was used in [? ]. Here we instead use the variable

zM =  �55�5. We label the variable with a subindex M because the LCS ( = 1 i.e.

zM = 0) is a point of MUM. Using this variable, the PF equation takes the form

(✓4M � zM (✓M + a1)(✓M + a2)(✓M + a3)(✓M + a4))⇡M,i = 0, i = 1, 2, 3, 4, (2.28)

with ⇡M,i the solutions on the LCS basis, ✓M = zM@zM and ak = k/5, k = 1, 2, 3, 4.

The next change of variables we do is zO = 1/zM . We denote this as the orbifold basis

since the orbifold point is located at zO = 0. The PF equations in these coordinates read

(�zO/5
5✓4O + (a1 � ✓O)(a2 � ✓O)(a3 � ✓O)(a4 � ✓O))⇡O,i = 0, i = 1, 2, 3, 4, (2.29)

with ✓O = zO@zO and ⇡O,i the solutions in the orbifold basis.
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DS VACUA IN STRING THEORY 

The potential for the complex structure modulus S involves the fluxes M and K, while

it depends on the other fluxes only indirectly through the axion-dilaton ⌧ , whose vev is

determined by all fluxes. Furthermore, unlike the other “bulk” moduli, the potential for S

is highly a↵ected by the warp factor. Its functional form, derived in [16,17] is4

VKS =
⇡3/2


10

gs
(Im ⇢)3

"
c log

⇤3

0

|S| + c0
gs(↵0M)2

|S|4/3
#�1 ����

M

2⇡i
log

⇤3

0

S
+ i

K

gs

����
2

, (2.17)

where gs is the stabilized vev of the dilaton, Im ⇢ = (Vol
6

)3/2 (see Appendix A for more

details), c denotes the constant value of the warp factor at the UV and will not be relevant

here, whereas the constant c0, multiplying the term coming solely from the warp factor,

denotes an order one coe�cient, whose approximate numerical value was determined in [16]

to be

c0 ⇡ 1.18 . (2.18)

The potential VKS is plotted in Figure 1.

S

V(S)

Figure 1: The potential VKS of [16] for the complex structure modulus S of the Klebanov-

Strassler throat given in (2.17). The solid blue line corresponds to the full potential, while

the dotted orange line does shows the näıve potential that does not take into account the

e↵ects of warping (c0 = 0). Both potentials have the same supersymmetric minimum but

di↵er drastically at small S.

The potential (2.17) has a supersymmetric minimum, corresponding to @SW = 0, which,

for S ⌧ ⇤3

0

, is at

s
KS

' ⇤3

0

exp

✓
�2⇡K

gsM

◆
. (2.19)

4
We follow the Einstein frame conventions of [24] and use 22

10 = (2⇡)7↵04
.

8

whereas the positive sign correspondents to a local minimum and the negative sign to a local

maximum. Thus, the total potential for N anti-D3 branes has extrema only for5

p
gsM > M

min

with M
min

=
8

3

p
⇡c0c00 ⇡ 6.8

p
N . (3.3)

Otherwise the potential becomes monotonically increasing and the only minimum lies at

s = 0. This is illustrated in Figure 3, where we plot the combined potential for di↵erent

values of
p
gsM for a single anti-D3 brane, which we restrict to from now on since it gives the

least strong constraint on
p
gsM . As we will show, this minimum value for

p
gsM is in strong

tension with the tadpole cancelation condition and the requirement of a large hierarchy.

gs M = 7

gs M = 5

gs M = 12

S

V(S)

Figure 3: The combined potential VKS + VD3

for one anti-D3 brane and
p
gsM = 5, 7 and

12. All three graphs are drawn for the same ratio K/M = 5. A local minimum only exists

if M is larger than the threshold value M
min

⇡ 6.8.

3.1 de Sitter minima and hierarchy

Requiring the potential to have a critical point forces the lower bound
p
gsM & 6.8. On the

other hand, there is another bound on MK from above by the tadpole cancelation condition

(2.13)

MK  ��Qloc

3

�� . (3.4)

Of course, this bound can only be saturated if there is one complex structure modulus since

the flux required to stabilize additional moduli would contribute to the tadpole cancellation

5
The factor of

p
gs was missing in the first version of this paper and has been corrected in [28]. We thank

Ralph Blumenhagen for correspondence regarding this point. We furthermore corrected the numerical value

of Mmin with respect to the first version.
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MK & 500 MK & 100

[Bena, Blåbäck, Graña, Lüst, '20-21] [Crinò, Quevedo, Valandro, ’20]

[Bena, Dudas, Graña, Lüst, ’18]

adS dS

Strongly warped regime: deformation conifold potential 
runaway as adS ➠ dS 
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DS VACUA IN STRING THEORY 
NEW DS IN WEAKLY WARPED 
REGIME [Bento-Chakraborty-Parameswaran-IZ, ‘21]

How generic is this? What happens in the weakly 
warped regime? That is,
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Anti-D3 potential gets also modified (cD3 = 0, 1)



DS VACUA IN STRING THEORY 
NEW DS IN WEAKLY WARPED 
REGIME [Bento-Chakraborty-Parameswaran-IZ, ‘21]

Weakly warped regime: new dS solution, present also for 
small KM
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Weakly warped regime: new dS solution, present also for 
small KM
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DS VACUA IN STRING THEORY 
NEW DS IN WEAKLY WARPED 
REGIME [Bento-Chakraborty-Parameswaran-IZ, ‘21]Warped throats

It is a cone over the base 
, with 

singularity at the tip.
T1,1 ∼ S2 × S3

Smoothening done by replacing  
the singularity by a  of size , 
Deformed Conifold (DC), and 
replacing by  gives Resolved 
Conifold (RC)

S3 |S |

S2

Warping can be done by placing 
N- D3 branes or M D7 branes in 
the throat.

[Figure courtesy from D. Chakraborty]
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Weakly warped regime: new dS solution, present also for 
small KM
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DS VACUA IN STRING THEORY 
NEW DS IN WEAKLY WARPED 
REGIME [Bento-Chakraborty-Parameswaran-IZ, ‘21]Warped throats

It is a cone over the base 
, with 

singularity at the tip.
T1,1 ∼ S2 × S3

Smoothening done by replacing  
the singularity by a  of size , 
Deformed Conifold (DC), and 
replacing by  gives Resolved 
Conifold (RC)

S3 |S |

S2

Warping can be done by placing 
N- D3 branes or M D7 branes in 
the throat.

[Figure courtesy from D. Chakraborty]
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Weakly warped regime: new dS solution, present also for 
small KM
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Weakly warped regime: new dS solution, present also for 
small KM
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small shift of the GKP solution 

So long as β is large enough, there is always a solution.
Thus anti-brane does not destabilise the conifold modulus.  
Tadpole can be small



Volume can be stabilised in the large volume scenario  
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Volume can be stabilised in the large volume scenario  
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DS VACUA IN STRING THEORY 
NEW DS IN WEAKLY WARPED 
REGIME 

• A new dS solution arises in the weakly warped regime 
of the warped flux compactification.

• Small shift from GKP minimum, not destabilised by anti-
D3 brane! 

• Tadpole                     can be much smaller. Stronger 
bound comes from supergravity approximation (        )

gsM > 1

(MK = 32)
gs < 1



• GKP solution requires at least 3 types of fluxes to 
stabilise dilaton. Can these change results?

UPLIFTING RUNAWAYS IN THE 
MIRROR QUINTIC 

• In most works, dilaton has been assumed to be fixed; 
no concrete compact CY; focus on M, K fluxes. 

• Use concrete compact CY, the mirror quintic, to 
address these questions 

[w/Cabo-Bizet, Olguín-Trejo, Loaiza-Brito, in progress]



FLUX COMPACTIFICATIONS ON THE  
MIRROR QUINTIC 

[Candelas-de la Ossa-Green-Parkes, ’91]

๏ The mirror quintic is a compact CY, with a single CS    :

๏ It has three critical points: conifold, large complex 
structure and orbifold the singular points are located at:                               

h2,1 = 1, h1,1 = 101, b3 = 4

- the conifold: 

- the LCS: 

- the orbifold:

zC = 1

zC = 0

zC = 1

z

The quintic and its mirror

N.G.Cabo Bizet (U.Gto) Type IIB vacua near critical points October 2, 2015 15 / 30

zC = 1�  �5

{

four 3-cycles



We can turn on 3-form fluxes on the four 3-cycles to 
stabilise the dilation and complex structure

FLUX COMPACTIFICATIONS ON THE  
MIRROR QUINTIC 

Denote the fluxes as 

where the indices a, b denote the moduli fields, Ka¯b is the inverse metric in field space,

and DaW = @aW + @aKW is the supersymmetric covariant derivative of W .

The periods for the mirror quintic manifold have been calculated in [3]. We follow the

notation of [3], and denote the components of the periods and the fluxes as follows:
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2.1 Minkowski vacua

Since the flux GVW superpotential depends only on the dilaton and the complex structure

moduli, the scalar potential is positive definite and can be written as
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where indices run only over the axio-dilaton and the complex structure modulus since the

Kähler moduli1 cancel the negative contribution to (2.3) by setting Kmn̄DmWDnW �
3|W |2 = 0. Furthermore in (2.8) we have factorised the dimensions of W , and it is thus

now given in terms of the dimensionless fluxes defined above.

We now look for Minkowski non-supersymmetric solutions to the no-scale potential

(2.8). These can be obtained as follows [3]. We first require that D⌧W = 0, which gives

the relation:
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, (2.9)
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As mentioned in the introduction, we do not consider the stabilisation of the Kähler moduli in the

present work.
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Such that 

In our notation: 
F1 = M , H3 = K , H4 = K 0



We consider the modification of the Kähler potential by 
DST to stabilise the dilation and deformation modulus 
explicitly 

STRONGLY WARPED REGIME  ON THE  
MIRROR QUINTIC 

where

in our conventions F
1

= M , H
3

= K, H
4

= K 0. For more general flux configurations, the

solution for z is given by (2.20) and ⌧
0

given by (2.19).

A proposal for the e↵ective theory describing the conifold modulus z in warped com-

pactifications was given in [8, 9]. The final result, for the strongly warped regime gives

a correction to the Kähler potential, given by [1, 8, 10] (where we use the conventions of

[7]):
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where c0 = 0.093 ⇥ 8 ⇥ 22/3 ⇡ 1.18 (we take V
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= `6s below). On the other hand, the

superpotential (2.1) does not change.

For the mirror quintic hence, we take
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where we have written gs explicitly in terms of the axio-dilaton, since we are stabilising

both z and ⌧ (see [11] where the dilaton is also included). In the last term of K we absorb

all the constants in (3.6) in C:
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9 c0F 2
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(3.8)

where we used that ||⌦||2 = 8 and remember that we are not stabilising the volume, which

we consider as a parameter. Despite the strong warping correction and due to the form

of the Kähler potential for the Kähler moduli, the scalar potential for ⌧ and z preserves

approximately the no-scale structure eq. (2.8) [10, 12].

We use now (3.7) to look for Minkowski vacua near the conifold for the flux config-

urations we used in the diluted flux case in section 2. As expected, we find that there is

a small change in the value of z but the value of ⌧ remains basically unchanged. We can

see this in the examples in tables 2.1 and 2.2. We can understand this since regardless

of the extra term in D⌧W = @⌧W + K⌧W with the strong warping correction, near the

conifold this additional term is tiny. Hence, for general flux configurations, the position

of the minimum in ⌧ for V still satisfies eq. (2.9). To get solutions in the weak coupling

regime, gs < 1, the condition Im
⇣

F⌃⇧

H⌃⇧

⌘
> 1 must be satisfied. This condition simplifies

to Im
⇣
� F1⇧

0
3

H4⇧
0
2

⌘
> 1 with the minimal fluxes required for the stabilization of the dilaton

and complex structure modulus near the conifold, namely with just the fluxes F
1

, H
3

and

H
4

turned on (see Sec. 2.2). For the mirror quintic, using the explicit expressions for the

periods, we obtain F
1

/H
4

& 12. Hence, in the mirror quintic, and in order to get a value

of gs in the weak coupling regime near the conifold, |z| ⌧ 1, and minimal configuration

of fluxes, F
1

and H
3

must be both of order O(101). The contribution to tadpole due to

the fluxes will be of order O(102) (see table 2.1). Thus one can see that it is easier to

satisfy Im
⇣

F⌃⇧

H⌃⇧

⌘
> 1 and H

3

� H
4

to achieve gs < 1 near the conifold point, when all

the fluxes are on (see 2.2). In this case, the contribution to the tadpole can be made small

by choosing properly the value and signs of the fluxes (see examples in table 2.2).
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The indices I and J run from 0 to h2,1. With respect to this basis the CY periods are defined

as

⇧ =

✓
X I

FI

◆
=

✓ R
AI ⌦R
BI

⌦

◆
, (2.5)

and consequently, the holomorphic 3-form can be expanded as

⌦ = X I↵I � FI�
I . (2.6)

Similarly the Kähler potential for the complex structure moduli is given by

KCS = � ln
�
�i ⇧̄T ⌃⇧

�
, (2.7)

where ⌃ denotes the symplectic matrix, defined as

⌃ =

✓
0 k⇥k

� k⇥k 0

◆
,

with k = 1 + h2,1.

In the following we shortly review the integral symplectic basis (2.5) which is required for flux

quantization. This basis is the one employed through the paper in all the di↵erent patches in

the CS moduli space. Special geometry implies the existence of a holomorphic prepotential F ,

which is homogeneous of degree two in the X I . The FI are given as derivatives FI = @F
@XI

. The

prepotential determines the periods, the couplings, as well as the Kähler potential, see e.g. [39].

Mirror symmetry implies that at the large radius point of a CY 3-fold M3, corresponding to the

large complex structure (LCS) point on the mirror W3 the prepotential reads as follows [39, 40]

F = �
C0
ijkX iX jX k

3!X 0
+ nij

X iX j

2
+ ciX iX 0 � i

�⇣(3)

2(2⇡)3
(X 0)2 + (X 0)2f(q)

= (X 0)2 eF = (X 0)2
"
�
C0
ijkt

itjtk

3!
+ nij

titj

2
+ cit

i � i
�⇣(3)

2(2⇡)3
+ f(q)

#
, (2.8)

where i, j, k = 1, . . . , h2,1, qi = exp(2⇡iti), f(q) represents the instanton contributions, C0
ijk, cij , ni

and � are topological data of the manifold [34]. The integral basis for the periods at the LCS point

is then given by

⇧LCS =

0

BB@

X 0

X i

F0

Fi

1

CCA = X 0

0

BBB@

1
ti

2 eF � ti@i eF
@ eF
@ti

1

CCCA
= X 0

0

BBBB@

1
ti

C0
ijk

3! titjtk + citi � i�⇣(3)(2⇡)3 + f(q)

�C0
ijk

2 titj + nijtj + ci + @if(q)

1

CCCCA
. (2.9)

The mirror map reads ti = X i

X 0 = 1
2⇡i

�
log(zi) + ⌃i(z)

�
, i = 1, . . . , h2,1, where zi are the complex

structure moduli and ⌃i(z) are power series in zi. In Section 2.2 we describe such LCS point for

the CY 3-fold mirror of the quintic on P4 which is the compactification employed. For this case
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⇧ ⇠

0

BB@

A0 z
a0 + b0 z

c+ d z + a z ln z
a1 + b1 z

1

CCA ,

in our conventions F
1

= M , H
3

= K, H
4

= K 0. For more general flux configurations, the

solution for z is given by (2.20) and ⌧
0

given by (2.19).

A proposal for the e↵ective theory describing the conifold modulus z in warped com-

pactifications was given in [8, 9]. The final result, for the strongly warped regime gives

a correction to the Kähler potential, given by [1, 8, 10] (where we use the conventions of

[7]):

Kw =
`6s

⇡||⌦||2V
6

9 c0(gsF1

)2

(2⇡)4V2/3
|z|2/3, (3.6)

where c0 = 0.093 ⇥ 8 ⇥ 22/3 ⇡ 1.18 (we take V
6

= `6s below). On the other hand, the

superpotential (2.1) does not change.

For the mirror quintic hence, we take

K(z, z̄, ⌧, ⌧̄) = � ln [�i (⌧ � ⌧̄)]� ln [�i⇧̄T⌃⇧]� 2 ln [V] + C

(⌧ � ⌧̄)2
|z|2/3,

W (z, ⌧) = F
1

⇧
3

+ F
2

⇧
4

� F
3

⇧
1

� F
4

⇧
2

+ ⌧ (H
3

⇧
1

+H
4

⇧
2

�H
1

⇧
3

�H
2

⇧
4

) , (3.7)

where we have written gs explicitly in terms of the axio-dilaton, since we are stabilising

both z and ⌧ (see [11] where the dilaton is also included). In the last term of K we absorb

all the constants in (3.6) in C:

C ⌘ �4
9 c0F 2

1

8⇡(2⇡)4V2/3
(3.8)

where we used that ||⌦||2 = 8 and remember that we are not stabilising the volume, which

we consider as a parameter. Despite the strong warping correction and due to the form

of the Kähler potential for the Kähler moduli, the scalar potential for ⌧ and z preserves

approximately the no-scale structure eq. (2.8) [10, 12].

We use now (3.7) to look for Minkowski vacua near the conifold for the flux config-

urations we used in the diluted flux case in section 2. As expected, we find that there is

a small change in the value of z but the value of ⌧ remains basically unchanged. We can

see this in the examples in tables 2.1 and 2.2. We can understand this since regardless

of the extra term in D⌧W = @⌧W + K⌧W with the strong warping correction, near the

conifold this additional term is tiny. Hence, for general flux configurations, the position

of the minimum in ⌧ for V still satisfies eq. (2.9). To get solutions in the weak coupling

regime, gs < 1, the condition Im
⇣

F⌃⇧

H⌃⇧

⌘
> 1 must be satisfied. This condition simplifies

to Im
⇣
� F1⇧

0
3

H4⇧
0
2

⌘
> 1 with the minimal fluxes required for the stabilization of the dilaton

and complex structure modulus near the conifold, namely with just the fluxes F
1

, H
3

and

H
4

turned on (see Sec. 2.2). For the mirror quintic, using the explicit expressions for the

periods, we obtain F
1

/H
4

& 12. Hence, in the mirror quintic, and in order to get a value

of gs in the weak coupling regime near the conifold, |z| ⌧ 1, and minimal configuration

of fluxes, F
1

and H
3

must be both of order O(101). The contribution to tadpole due to

the fluxes will be of order O(102) (see table 2.1). Thus one can see that it is easier to

satisfy Im
⇣

F⌃⇧

H⌃⇧

⌘
> 1 and H

3

� H
4

to achieve gs < 1 near the conifold point, when all

the fluxes are on (see 2.2). In this case, the contribution to the tadpole can be made small

by choosing properly the value and signs of the fluxes (see examples in table 2.2).
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As shown in GKP, two stabilise the dilaton, we need to 
turn on at least three fluxes:                     (               )   

MODULI STABILISATION  ON THE MIRROR 
QUINTIC 

(F1, H3, H4) (M,K,K 0)

Next, we add the contribution from the anti-D3 brane 

Mass spectrum

IZ: complete

The mass hierarchies between the dilaton and z do not get inverted. That is, the

dilaton is lighter (or of the same order of magnitude) than the complex structure in most

of the flux configurations we studied. We can understand this behaviour from estimating

the masses near the conifold as follows.

3.1 D3-brane uplifted solutions

We have seen above that when only sets of three fluxes are turned on, it is in general

hard to ensure a solution for the dilaton in the weak coupling regime with a flux tadpole

contribution smaller than 102 (see Table 2.1). On the other hand, in all the examples

with perturbative gs, the product
p
gsF1

& 6.8. It was indeed argued in [1] that for flux

configurations with
p
gsF1

. 6.8 the minimum found above will disappear when adding

the contribution of an D3-brane placed at the tip of the warped throat, in order to uplift

the minimum of the potential from AdS to dS as in the KKLT [13] scenario.

In this section we would like to understand this statement when taking into account

the full stabilisation of the dilaton and the complex structure in the concrete CY flux

compactification on the mirror quintic for general fluxes. As we have discussed before,

the minima in this case are Minkowski, although it is in principle possible to obtain dS

minima, as found in [3].

We thus add the uplifting potential due to the addition of an anti-D3-brane4. This

contribution is given by (see [7] for the derivation and conventions we are using)

V
D3

=
M4

Pl

8⇡

(2⇡)4c00

(gsF1

)2
|z|4/3
V4/3

=
M4

Pl

8⇡
D |z|4/3(⌧ � ⌧̄)2 , (3.9)

where c00 = 2

1/3

I(0) ⇡ 1.75 (I(0) ⇡ 0.718) and

D ⌘ � (2⇡)4c00

4F 2

1

V4/3
, (3.10)

and in the last equality we wrote gs in terms of the axio-dilaton. We now can look for

minima of the potential computed in the previous sections, plus the anti-D3 contribution

above,

V
tot

=
M4

Pl

8⇡

✓
eK(Ki¯jDjWD

¯jW ) +
8⇡

M4

Pl

V
D3

◆
. (3.11)

with i, j = {z, ⌧}. We now consider the same configurations of fluxes as in the previous

sections and add the uplifting potential (3.9). The values of the minima are shown in

Tables 2.1 and 2.2 and are denoted with the subindex r
up

, etc. and correspond to the

values in the third lines. As we see, the value of the dilaton does not change, except in

the example 2, Tab. 2.2, where it shifts a tiny bit.

The most important thing to notice in the examples of Table 2.2 with general fluxes,

is that none of the minima are lost after including the potential of an anti-D3, including

all the examples where
p
gsF1

. 6.8. This is not surprising as we have seen that the value

4
This can also be done within linear supergravity by introducing a nilpotent superfield [14, 15].
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1 Tablas vaćıos

1.1 Todos los flujos

r
o

, r, r
f

✓
o

, ✓, ✓
f

t1 t2 ~F ,

~H ~F⌃

~H

1

7.95⇥ 10

�6

8.22⇥ 10

�6

�32.84
�32.90
�32.89

�4.36 3.58
(20, 6, 5,�5)

(2, 2, 30, 1)
606

7

1.71⇥ 10

�5

1.70⇥ 10

�5

1.64⇥ 10

�5
�106.05 �20.33 13.16

(24, 17, 13,�29)

(3, 3, 66, 1)
1649

9 No existe *

1.91276⇥ 10

�19

2.97⇥ 10

�15

1.29⇥ 10

�15

50.8579
51.65
51.65

6.96579 4.28415
(3, 9, 7,�6)

(0, 5, 5,�1)

36

12

1.04315 ⇤ 10�13

1.76209 ⇤ 10�11

1.13692 ⇤ 10�11

�6.7442
�6.8469
�6.8460

�1.61069 1.81676
(5,�6, 2, 4)
(�1,�9, 7, 0)

73

14

5.555 ⇤ 10�2

5.552 ⇤ 10�2

1.23 ⇤ 10�4

�124.53
�124.53
�124.61

7.984
7.981
6.673

2.071
2.075
3.211

(15, 3, 4,�5)

(12,�7, 204, 1)
3076

15

7.76 ⇤ 10�3

7.75 ⇤ 10�3

9.03 ⇤ 10�5

�142.74
�142.74
�142.85

7.78
7.78
7.01

2.41
2.41
3.05

(15, 3, 4,�5)

(12,�7, 234, 1)
3526

16

1.50 ⇤ 10�5

1.18 ⇤ 10�5

1.16 ⇤ 10�5

61.03
61.35
61.07

4.61
4.61
4.61

1.82
1.82
1.82

(40, 28,�3, 10)
(�5, 9, 128, 1)

5073

Table 1: Checking vacua till order 50. The case 9 is degenerated in the number of vacua

with the monodromies.
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Table 1: Checking vacua till order 50. The case 9 is degenerated in the number of vacua

with the monodromies.

1

3510

KM

5120

Very large tadpole required to keep solutions! 

[w/Cabo-Bizet, Olguín-Trejo, Loaiza-Brito, in progress]

(⌧ = C0 + e�� = t1 + it2)(z = rei✓) (gs = e�0)



• Compact uplifted dS solutions are possible 

• DST correction is valid at, and infinitesimally far from the 
GKP minimum (on-shell)

STRONG WARPING CORRECTION 
REVISITED

• Solutions with three fluxes (M,K,K’) alone, seem harder 
to obtain (require large tadpole)

• However, stability argument relies on features of off-
shell potential of the deformation modulus

• Understanding of the potential away from minimum is 
needed [Lüst, Randall, ‘22]



๏ Computed the potential for the deformation modulus 
for finite field displacements 

๏ Considered the additional constraints that arise in 
warped compactifications 

STRONG WARPING CORRECTION 
REVISITED [Lüst, Randall, ‘22]

A(ym, S) , g̃mn(y
m, S)

for one-parameter family of warp factors and Ricci-
flat metrics on the deformed conifold,

!SA = 1
8
!Sg̃ ,

www.advancedsciencenews.com www.fp-journal.org

itly. For example, the variations of the warp factor and the metric
change according to

!SA = "SA + "mAKm ,

!Sg̃mn = "Sg̃$% + ∇̃mK̃n + ∇̃nK̃m ,
(3.6)

where K̃m = g̃mnKm and ∇̃ denotes the covariant derivative of g̃mn.
Similar relations hold for all other fields in the theory. Note that
we have adopted the notation that !S denotes the variation of an
object with respect to S including the effect of the compensator
Km. In particular, !S takes the role of a covariant derivative with
respect to S that is invariant with respect to diffeomorphism on
the internal space.
Let us now return to the constraint equations on !SA and !Sg̃mn

that follow fromEinstein equations. Denoting the Einstein tensor
by GMN = RMN − 1

2
gMNR, the relevant components read[53,56 ]

!SG$% = "$"%S
(
4!SA − 1

2
gmn!Sg̃mn

)
+ (S2) + '$% [… ]

!SG$m = "$S
[
2"m!SA − 1

2
"m!Sg̃ − 8"mA!SA + "mA!Sg̃

−2"pA!Sg̃mn +
1
2
∇p!Sg̃mp

]
. (3.7)

In a sensible four-dimensional effective field theory S must be
allowed to fluctuate arbitrarily which means that the terms mul-
tiplying "$S or "$"%S lead to constraints. From the linear term in
the first equation and the observation that no compatible term
linear in "$"%S can come from the T$% components of the stress
energy tensor one finds that the first constraint reads

!SA = 1
8
!Sg̃ , (3.8)

where !Sg̃ = gmn!Sg̃mn. It hence couples the variation of the warp
factor and the trace of the internalmetric. This constraint implies
that the warped volume

Vw = ∫ d6y
√
g̃6e

−4A (3.9)

is conserved. This can be seen by noting that

!S
(√

g̃6e
−4A

)
= "S

(√
g̃6e

−4A
)
+ "m

(√
g̃6e

−4AK̃m
)
, (3.10)

and therefore "SVm = 0 up to a boundary term that vanishes on
a compact internal space.
From the second equation in (3.7) one obtains another con-

straint,

∇̃n
[
!Sg̃nm − g̃mn

(
!Sg̃ − 4!SA

)]

−2g̃nk "nA
[
!Sg̃km − g̃km

(
!Sg̃ − 8!SA

)]
= !STm, (3.11)

where !STm denotes a possible contribution from the T$m stress
energy tensor originating from the deformations of the additional
fields: in our context !SC2, !SB2 and !S(IIB. This means that if

these fields are kept constant, as in (3.2), one has !STm = 0. One
can use the first constraint (3.8) to eliminate the variation of the
warp factor !A from (3.11) to obtain

∇̃n
(
!Sg̃nm − 1

2
g̃mn!Sg̃

)
− 4g̃nk "nA !Sg̃km = !STm . (3.12)

In summary, we see that every deformation of the background
must necessarily satisfy two constraint equations, (3.8) and (3.11)
that relate !Sgmn and !SA.

4. Calabi-Yau Metrics on the Deformed Conifold

We eventually want to use the constraints summarized in the pre-
vious section to derive an effective potential for the modulus S in
the strongly warped Klebanov-Strassler geometry. However, be-
fore doing so we will first discuss the easier case in the absence
of fluxes in which S is a flat direction. This will serve as a warp-up
exercise on how to use the constraints.
The situation we are concerned with in this section is the com-

pactification on a six-dimensional manifold with metric gmn,

ds210 = '$%dx$dx% + gmndy
mdyn , (4.1)

and no background fluxes; in the IIB context this means F3 =
H3 = F5 = 0 and (IIB = const. The equations of motion imply
that gmn is Ricci flat. In combination with the requirement of
(partially) preserved supersymmetry this means that the internal
manifold is Calabi-Yau.
The deformations of a Calabi-Yau metric which give rise to

massless four-dimensional moduli fields are in principle well
known. Specifically, they are given by infinitesimal deformations
gmn → gmn + !gmn such that the background stays Ricci-flat,

Rmn(g + !g) = 0 . (4.2)

When A is zero the constraints (3.8) and (3.12) readily reduce to
the familiar gauge-fixing conditions[73 ]

∇m!gmn = 0 , gmn!gmn = 0 . (4.3)

often referred to as transverse (or harmonic) traceless gauge.
On Calabi-Yau manifolds the deformations !gmn come in two

different classes, Kähler and complex structure deformations.
They correspond to the two possible different index structures
!gi|̄ and !gij with respect to complex coordinates zi, i = 1,… , 3.
In the following we will mostly work only with real metrics, ig-
noring the existence of a complex structure, but revisit the dis-
tinction between Kähler and complex structure deformations in
Appendix B.
In the remainder of this section we discuss the conditions (4.3)

for the specific example of the deformed conifold. Here a further
subtlety arises because we are dealing with a non-compact ge-
ometry. Therefore, this setup would not give rise to an effective
four-dimensional graviational theory without a five-dimensional
cutoff. In the KKLT context this is implemented by the assump-
tion that the metric of the deformed conifold approximates the
metric of another compact Calabi-Yau geometry in a certain re-
gion. As described in Section 2 this is modeled by a sufficiently
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๏ Solved these constraints to compute directly the full 
off-shell potential for the conifold deformation 
parameter of the  KS geometry.
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Figure 3. (a) The inverse warp factor e−4A as a function of the radial coordinate ! for different values of S∕S0. (b) The integrand of the potential (5.23)
for different values of S∕S0. In both figures the IR-tip of the throat geometry is located at ! = 0 and ! → ∞ corresponds to its UV.

Figure 4. This plot compares previous results for the potential for the coni-
fold modulus S with ours. The solid lines are the flux potential (5.19) at
g1∕2s M = 10 and the dashed lines the contribution from the antibrane. The
potential computed by [51] is in blue and our potential in red. Their super-
position is illustrated in Figure 5.

warp factor at the position of the anti-brane, namely the IR end
of the Klebanov-Strassler throat.
The total potential for S consists then of two contributions, the

flux potential computed in the previous section and the antibrane
potential,

V(S) = Vflux(S) + VD3(S) , (6.3)

with Vflux(S) given in (5.23). While Vflux(S) has a minimum at
S = S0, the antibrane term VD3 is a monotonically increasing
function of S that is minimized at S = 0. Therefore, it will drive
S to smaller values and the minimum of the combined potential
will be at 0 ≤ S < S0. The magnitude of this shift and whether it
can destabilize the conifold all the way to the singular conifold at
S = 0 depends on two factors. Firstly, the flux potential (5.23) is
enhanced by a relative factor of gsM2 which is not present in the
antibrane potential. Therefore, if gsM2 ≫ ND3 the flux potential
is much larger than the antibrane contribution and the effect of
the latter on the stabilization of S can be ignored. On the other
hand, if gsM2 ∼ (ND3) the effect of the antibrane can be poten-
tially dangerous and can lead to a substantial shift in the vev of
S. This observation is compatible with the qualitative form of the
bound (2.10).

However, secondly, whether the shift in S is large enough such
that it can destabilize the conifold geometry also depends very
much on the slope and qualitative shape of the two potentials.
Both are mostly determined by the behavior of the warp factor
at the tip of the throat. For the antibrane potential this is imme-
diately apparent from (6.2). The faster e4A(0,S) shrinks for S → 0
the stronger the effect of the antibrane. Importantly, since the
integrand of (5.23) is approximatively localized in the IR region
around small values of ! (see Figure 3b), the flux potential is also
dominated by e4A(0,S). If e4A(0,S) for S → 0 tends towards zero fast
enough (e.g. polynomial) the warp factor will overcome the fluxes
and create anotherminimumat S = 0 as well as a localmaximum
somewhere in between. In this case, if gsM2 is small enough, the
combined potential (6.3) will not have aminimum at finite S any-
more but only at S = 0whereV = 0. This is the situation that was
assumed in the derivation of the potential (2.7) with e4A(0,S) ∼ S4∕3,
leading to the bound (2.10) on the existence of a runaway insta-
bility.
On the other hand, if e4A(0,S) does not go to zero for S → 0 but

stays finite, the flux potential goes to infinity and does not exhibit
any further critical points. Therefore, also the combined poten-
tial always has a minimum at S > 0 and there in this analysis
we see no runaway instability, independent on the value of gsM2.
This is the case for the potentials that we found in the previous
section.
The numerical result for the antibrane potential VD3(S) to-

gether with the flux-potential Vflux for S can be found in Figure 4.
This plot also contains the potentials that were used in [44] (in
blue) to argue that a D3 brane can destabilize S if the fluxes are
too small. We see that our flux-potential (in red) is not only more
stable but also that our antibrane-potential is shallower and hence
contributes less strongly to a potential destabilization for S. We
illustrate the superposition (6.3) of the two potentials in Figure 5
for different values of gsM2. We see that even at values of gsM2

close to the critical value (2.10) the shift in the vev of S is still rel-
atively small. Only if one goes to very small gsM2 would the effect
of the antibranes be non-negligible.

7. EFTs from Warped Compactifications

The existence of the conifold runaway instability critically de-
pends on the qualitative features of the flux potential Vflux in
the region between S = 0 and S = S0. The antibrane potential

Fortschr. Phys. 2022, 70, 2200103 © 2022Wiley-VCH GmbH.2200103 (11 of 19)
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๏ The resulting potential as it only has one critical point at 
the supersymmetric minimum
both with and without the 
anti-brane perturbation.

www.advancedsciencenews.com www.fp-journal.org

internal Calabi-Yaumetric gives an additional factor of−e−8A. The
relation (5.6) can be used to determine the warp factor e−4A in
(2.4) as the integral of ⋆̃6(B2 ∧ F3). For the KS-solution the latter
expression can be evaluated explicitly and leads to the integral
expression (5.2).
The integer M in (5.3) determines the amount of F3 flux over

the A cycle of the deformed conifold,

M = 1
(2#)2$′ ∫A

F3 . (5.7)

On the other hand, the B cycle of the deformed conifold stretches
along its non-compact direction. Therefore we need a UV cutoff
Λ0, see (2.6), to obtain a finiteH3 flux K over the B-cycle,

K = 1
(2#)2$′ ∫A

H3 =
1

(2#)2$′ ∫
%0

0
d% ∫S2

H3 ≈
gsM
2#

log

(
Λ3
0

S0

)

(5.8)

where in the last step we assumed that Λ3
0 ≫ S. Therefore, even

though we are in principle able to choose S freely, fixing M and
K as well as the UV cutoff Λ0 will create a potential for S with a
minimum at the value S0 given in (2.8).
To determine the potential for S we need first to establish

which parts of the ansatz to keep fixed and which to vary as we
change S. As already explained in Section 3, here we choose to
keep the two-form fields and the axio-dilaton exactly constant,

'SC2 = 'SB2 = 'S%IIB = 0 , (5.9)

but consider a one-parameter family of warp factors and Ricci-flat
metrics on the deformed conifold,

A = A(%, S) , g̃mn = g̃mn(%, S) . (5.10)

Importantly, we cannot choose the dependence of F5 (or equiva-
lently $, see (5.4)) on S freely. For constantB2 and F3 it is uniquely
determined by the action of the Hodge-⋆ operator in (5.5). More-
over, as discussed in Section 3, we should in principle also allow
for an additional compensator Km. Such a compensator, however,
would also enter the conditions (5.9). For example the variation
of C2 reads

'SC2 = (SC2 + KC2 , (5.11)

where  denotes the Lie-derivative. Therefore, (5.9) implies that
(SC2 = −KC2 and hence we can perform a coordinate redefini-
tion after which (SC2 = 0 and

Km = 0 . (5.12)

The same holds argument holds for B2 and %IIB. Such a change of
coordinates of course also affect the–so far undetermined–warp
factor A(%, S) and metric g̃mn but can be absorbed into their def-
inition. Therefore (5.10) represents the most general ansatz that
is compatible with (5.9).
We have seen in the previous section that a family of Ricci flat

Calabi-Yau metrics labeled by the complex structure parameter S

on the warped deformed conifold takes the form (4.14) up to an S-
dependent diffeomorphism of the radial coordinate %. A suitable
ansatz for g̃mn hence reads7

g̃mndy
mdyn = S2∕3

2
K
( (%, S))

[ (
(% )2

3K
( (%, S))3

[
d%2 + (g5)2

]

+ cosh2
( (%, S)

2

)[
(g3)2 + (g4)2

]

+ sinh2
( (%, S)

2

)[
(g1)2 + (g2)2

]
]
, (5.13)

where besides the conformal prefactor of S2∕3 the yet to be deter-
mined function  (%, S) encodes all the non-trivial S dependence
of g̃mn.
Our family of configurations (5.10) is thus reduced to two func-

tionsA(%, S) and  (%, S). The former two are not independent but
related by the constraint (3.11). To utilize this constraint we no-
tice that it can be rewritten as [53]

[
⋆̃6'S

(
⋆̃6de

−4A)]
m + e4A∇̃n('Sg̃nm − g̃mn'Sg̃

)
= 'STm . (5.14)

Moreover, the ansatz (5.13) for the metric satisfies

∇̃m'Sg̃mn − ∇̃n'Sg̃ = 0 , (5.15)

for any  (%, S) and the condition (5.9) implies 'STm = 0. There-
fore, (5.14) reduces to

'S
(
⋆̃6de

−4A) = 0 . (5.16)

We can use this relation to conclude that ⋆̃6de−4A remains con-
stant along the flow of S. Since the initial value of de−4A at S = S0
is given by (5.6), we find that

de−4A(S) = ⋆̃6

(
B2 ∧ F3

)
, (5.17)

and

$(%, S) = e4A(%,S) , (5.18)

for any value of S. We can understand (5.17) as an integrated ver-
sion of the constraint (5.14). Moreover, as also observed in [56],
the relations (5.17) and (5.18) reduce the potential to the familiar
expression

Vflux =
1

4)210 ∫ d6y e4A

Im %IIB

[
G3 ∧ ⋆̃6G3 + iG3 ∧G3

]
. (5.19)

The potential in (5.19) depends on S via the warp-factor e4A and
through the ⋆̃6-operator via the internal metric g̃mn.
For B2 and F3 given by the Klebanov-Strassler solution (5.3)

and (B.15) we can give an explicit expression for the integrated

7 For further comments on the generality of this ansatz see Appendix C.
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๏ However, it would be useful to have an explicit 
expression of the N=1 supersymmetry Kähler potential

STRONG WARPING CORRECTION 
REVISITED [Lüst, Randall, ‘22]

๏ The resulting potential as it only has one critical point at 
the supersymmetric minimum both with and without 
the anti-brane perturbation.

๏ Solved these constraints to compute directly the full 
off-shell potential for the conifold deformation 
parameter of the  KS geometry.

Kwarp(S, S̄)

to bring the new potential in the form of an N= 1 
supergravity with W

flux



STRONGLY WARPED REGIME  KÄHLER 
POTENTIAL 

[w/Cabo-Bizet, Olguín-Trejo, Loaiza-Brito, in progress]
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alone does not determines the stabilisation of z. The stabilisation/destabilisation of

the conifold modulus depends in general on the values of all the fluxes.

IZ: stress tadpole small if solutions are confirmed, if not stress tadpole of order

102, but who cares given next section ...

4 O↵-shell strongly warped regime

In the previous section 3 we have discussed flux vacua in the presence of strong warping,

using an on-shell correction to the Kähler and scalar potential computed in [8, 9], and

further developed recently in [1, 10] (see also [11, 16] for further recent work)

IZ: change if we find a di↵erent result

As we found in the previous section for general fluxes in the compact CY, in agreement

with the result of [1], the contribution from the anti-D3 potential energy gives rise to an

instability for the deformation modulus, when
p
gsF1

. 6.8. However, as noted recently in

[2], this result relies on the “o↵-shell” fetures of the scalar potential, while the correction

computed in [8, 9], is valid only in the infinitesimal vicinity of its minimum. In [2], Lüst

and Randall (LR) precisely address this problem, by explicitly computing the potential

for the deformation modulus for finite field displacements. They did this by considering

the additional constraints that arise when considering warped compactifications where the

infinite four-dimensions are multiplied by a warp factor, which depends on the coordi-

nates of the internal geometry [17]. They used these constraints to compute the e↵ective

potential for the conifold deformation parameter of the compactified KS geometry.

Although LR computed directly the flux potential, it would be useful to have an ex-

pression for the metric of the deformed conifold, as found in [8], which allows identification

of the o↵-shell warped Kähler potential. In this section we use the results of [2] to precisely

compute this potential in the limit ⌘ ! 0, that is, near the tip of the throat. We do this

by finding a suitable numerical fit of Kzz̄, which we can integrate to obtain an explicit

expression for K(z, z̄) in this regime. We use this result to compute the flux potential in

the compact CY, the mirror quintic, and reproduce the behaviour of the potential found in

[2]. In subsection 4.2, we then add the potential for the anti-D3-brane, using the modified

warp factor found in [2], near the tip of the throat.

4.1 O↵-shell Kähler potential

We can now compute the conifold contribution to the metric following the computations

in [8] as follows. The metric Kzz̄ for the KS solution [8] (see Appendix A of [7] for details)

Kzz̄ =
i

||⌦||2V
6

Z

conifold
h �S ^ �

¯S , (4.1)

where here h = 1 + e�4A(y)

V2/3 and for the KS metric, the (2,1)-form �S is given by

�S = g3 ^ g4 ^ g5 + d[F (⌘)(g1 ^ g3 + g2 ^ g4)]� id[f(⌘)(g1 ^ g2) + k(⌧)(g3 ^ g4)], (4.2)

and the functions f, k, F were computed in [6] and are given by

F (⌘) =
sinh ⌘ � ⌘

2 sinh ⌘
, f(⌘) =

⌘ coth ⌘ � 1

2 sinh ⌘
(cosh ⌘ � 1), k(⌘) =

⌘ coth ⌘ � 1

2 sinh ⌘
(cosh ⌘ + 1).

(4.3)
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We follow the procedure of DST to find an expression for 
the Kähler metric,      
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Kzz̄

Kzz̄ =
2

⇡||⌦||2V6

✓Z
d⌘

d

d⌘
{h [f + F (k � f)]}�

Z
d⌘

dh

d⌘
[f + F (k � f)]

◆
, h ⇡ e�4A

V2/3

Metric becomes

can use the warp factor found by LR
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constraint (5.17),

!"e−4A(",S) = 2
2
3
gs(#′M)2

|S| 43
" coth " − 1
sinh2 "

sinh 2" − 2"
(sinh 2 − 2 )2∕3 !" .

(5.20)

At S = S0, where  (", S0) = ", this consistently reduces to the
Klebanov-Strassler warp factor (5.2). Moreover, we have seen in
Section 4 that the metric of the deformed conifold stays asymp-
totically constant in the UV if

 (", S) → " − log S
S0

for " → ∞ . (5.21)

Inserting this into (5.20) shows that

!"e−4A(",S) → 2
gs(#′M)2

||S0||
4
3

e−4"∕3(" − 1) , (5.22)

for " → ∞. The right hand side does not depend on S but only on
S0 and so we find that also $SA → 0 in the UV. In other words, the
asymptotic behavior (5.21) ensures that both g̃mn and A fluctuate
with S only in the IR and that our fluctuated KS geometry can
still be embedded into a compact Calabi-Yau geometry along the
lines of [7].
By inserting the relation (5.20) back into the IIB action we

can explicitly compute the potential (5.19) and find the (relatively
bulky) expression

Vflux = T3
gsM2

32& ∫ d" e4A

!"
{
8
(" coth " − 1)2

sinh2 "

+ coth2 ( ∕2)
sinh2("∕2)
cosh6("∕2)

(sinh " + ")2

+ tanh2 ( ∕2)
cosh2("∕2)
sinh6("∕2)

(sinh " + ")2

+16
[
1 + 3 + 2" − 6t coth " + 3"2 csch2 "

sinh2 "

]
!"

+8
[
1 + 2 csch2  − 4 cosh 

sinh2  csch "

+
(" coth " − 1)2 + "2(1 + 2 csch2  )

sinh2 "

]
(
!" )2

}
. (5.23)

Here we used again the expressions (5.3) and (B.15) for the three-
form flux G3 in the KS solution. Also, when integrating over the
remaining five compact dimensions we had to account for the
correct numerical factor (A.5). As a consistency check it can be
verified that the integrand in (5.23) vanishes identically if  = "
and hence theminimum at S = S0 gives rise toMinkowski space.
To compute the four-dimensional potential Vflux(S) as a func-

tion of S from (5.23), it remains to determine  (", S) and A(", S).

This is done by exploiting also the first constraint (3.8). In our
case it yields the relation

2
S
+ $S

[
log

(
sinh2  + !" )

− 4A
]
= 0 , (5.24)

which can be directly integrated to obtain

e−4A(S)

e−4A(S0)

(
S sinh 
S0 sinh "

)2

!" = 1 . (5.25)

In combination with the other constraint (5.20) this relation
yields a system of differential equations for A and  that has to
be solved numerically. For example, we can use (5.25) to elimi-
nate e−4A from (5.20) to obtain an ordinary differential equation of
second degree for  at every value of S. When solving this differ-
ential equation initial conditions have to be imposed such that (", S) = 0 at " = 0 and such that it goes asymptotically towards
(5.21) at large ". Once  (", S) is determined one can solve (5.25)
for A(", S) and compute the potential by numerically integrating
(5.23).
The resulting profile of the warp factor is shown in Figure 3a.

We see that not only does the warp factor change only in the IR
where " is small, but also that in this region the dependence of
e−4A on S is much weaker than the naive expectation e−4A ∼ S−4∕3.
Around the minimum for S ≈ S0 and at the IR tip of the conifold
we can approximate it by

e−4A("=0,S) ∝
(
S0
S

)0.44

. (5.26)

Moreover, for S → 0 the warp factor appears to asymptote to a
constant value and does not diverge. Therefore, we expect the po-
tentialV(S) not to have any additional critical points and not to go
back to zero for S → 0. We confirm this expectation by inserting
the result for A(", S) into (5.23) and performing the d" integral
numerically. We illustrate the profile of the integrand for differ-
ent values of S∕S0 in Figure 3b. The resulting potential can be
found in Figure 4.

6. Effect on the Conifold Instability

Let us finally discuss the effect of the corrected potential for S
on the conifold instability found in [44–47]. As briefly summa-
rized in Section 2, adding an anti-brane in the IR of the Klebanov-
Strassler geometry gives an additional contribution to the poten-
tial for S. This potential can be computed from the antibrane ac-
tion

SD3 = SDBI + SCS = −T3 ∫ d4x
√
−g4 − T3 ∫ C4 , (6.1)

with T3 the D3-brane tension. In our case, where (5.18) holds, the
two terms give exactly the same contribution. By evaluating this
action in the IR at " = 0 where the antibrane sits we find

VD3(S) = 2ND3T3e
4A(0,S) , (6.2)

with ND3 the number of antibranes. This means that the func-
tional dependence of VD3 on S is just given by the behavior of the
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We therefore proceed by determining the variation of the met-
ric that corresponds to a change in S,

!Sgmn =
!gmn
!S

= 2
3S

gmn , (4.16)

Clearly, !Sgmn is just a rescaling of the metric and therefore satis-
fies ∇"!Sgmn = 0 but violates the second condition in (4.3),

gmn!Sgmn =
4
S
. (4.17)

To transform !Sgmn into a harmonic and traceless deforma-
tion we have to combine it with a suitable diffeomorphism. This
means we would like to find a compensating vector #m such that

$Sgmn ≡ !Sgmn + (#g)mn = !Sgmn + ∇m#n + ∇n#m (4.18)

satisfies the gauge fixing conditions (4.3). This results in two
equations on #m,

∇m#m = − 1
2S

,

∇m∇m#n = 0 ,
(4.19)

where in the last step we used the Ricc flatness of the metric.
Assuming that the corresponding change in coordinates should
involve only the radial coordinate % we employ the simple ansatz6

#m =
(
#% (%), 0, 0, 0, 0, 0

)
. (4.20)

The most general solution of the second order equation in (4.19)
with this ansatz reads

#% (%) = h1
sinh(2%) − 2% + h2

sinh2 %
, (4.21)

where h1 and h2 are two integration constants. The first equa-
tion in (4.19) fixes h1 = −1∕(2S) and regularity at % = 0 requires
h2 = 0.
The solution for #% (%) describes an infinitesimal coordinate

transformation for %. We would also like to find the correspond-
ing finite coordinate change

% →  (%, S) . (4.22)

Replacing % with  in the metric and varying with respect to S
gives exactly the term #g"& in (4.18) if

! (%, S)
!S

= #%
[ (%, S)] . (4.23)

After a simple change of variables the right-hand side of this dif-
ferential equation does not depend explicitly on S anymore,

!
!c

=
sinh(2 ) − 2
2 sinh2  , c = − logS . (4.24)

6 See Appendix B for a discussion of more general compensators with a
non-vanishing ' -component.

Figure 1. The radial coordinate  as a function of log S (for S0 = 1), where
S is the conifold deformation parameter.

and its solution is given by

 (%, S) = F−1
[
F(%) − log S

S0

]
, (4.25)

where F−1 is the inverse function of

F(t) = 1
2
log

[
sinh(2t) − 2t

]
. (4.26)

Here the constant of integration is chosen such that  (%, S0) = %.
We plot the evolution of the radial coordinate  (%, S) under a

change of S in Figure 1. To understand it further we can expand
it in the IR and the asymptotic UV. In the regime of small % (cor-
responding to the IR) we can approximate  (%, S) by

 (%, S) = %
(
S0
S

)2∕3

+ (%3) , (4.27)

i.e. it is given by a simple rescaling of %. This yields the following
expansion of the metric around % = 0,

ds26 = S2∕3

22∕3 × 31∕3

[
d%2 + 2(g3)2 + 2(g4)5 + (g5)2

]

+ %2
5 × 22∕3 × 31∕3 S2∕3

[
d%2 + 5

2
(g1)2 + 5

2
(g2)5 + 3

2
(g3)2

+3
2
(g4)5 + (g5)2

]
+ (%4) . (4.28)

Therefore, at the tip of the conifold the two-sphere spanned by g1

and g2 shrinks to zero-size while the three-sphere spanned by g3,
g4 and g5 stays finite with a radius proportional to S1∕3. We also
see the dramatic effect of the gauge-compensator that gives rise
to an inverse power of S in the %2-term.
For % → ∞ (the UV), on the other hand, we find

 (%, S) → % − log S
S0

. (4.29)
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with 

(⌘ ⌘ ⌧)

of F
1

alone does not determines the stabilisation of z. The stabilisation/destabilisation of

the conifold modulus depends in general on the values of all the fluxes.

IZ: stress tadpole small if solutions are confirmed, if not stress tadpole of order

102, but who cares given next section ...

4 O↵-shell strongly warped regime

In the previous section 3 we have discussed flux vacua in the presence of strong warping,

using an on-shell correction to the Kähler and scalar potential computed in [8, 9], and

further developed recently in [1, 10] (see also [11, 16] for further recent work)

IZ: change if we find a di↵erent result

As we found in the previous section for general fluxes in the compact CY, in agreement

with the result of [1], the contribution from the anti-D3 potential energy gives rise to an

instability for the deformation modulus, when
p
gsF1

. 6.8. However, as noted recently in

[2], this result relies on the “o↵-shell” fetures of the scalar potential, while the correction

computed in [8, 9], is valid only in the infinitesimal vicinity of its minimum. In [2], Lüst

and Randall (LR) precisely address this problem, by explicitly computing the potential

for the deformation modulus for finite field displacements. They did this by considering

the additional constraints that arise when considering warped compactifications where the

infinite four-dimensions are multiplied by a warp factor, which depends on the coordi-

nates of the internal geometry [17]. They used these constraints to compute the e↵ective

potential for the conifold deformation parameter of the compactified KS geometry.

Although LR computed directly the flux potential, it would be useful to have an ex-

pression for the metric of the deformed conifold, as found in [8], which allows identification

of the o↵-shell warped Kähler potential. In this section we use the results of [2] to precisely

compute this potential in the limit ⌘ ! 0, that is, near the tip of the throat. We do this

by finding a suitable numerical fit of Kzz̄, which we can integrate to obtain an explicit

expression for K(z, z̄) in this regime. We use this result to compute the flux potential in

the compact CY, the mirror quintic, and reproduce the behaviour of the potential found in

[2]. In subsection 4.2, we then add the potential for the anti-D3-brane, using the modified

warp factor found in [2], near the tip of the throat.

4.1 O↵-shell Kähler potential

We can now compute the conifold contribution to the metric following the computations

in [8] as follows. The metric Kzz̄ for the KS solution [8] (see Appendix A of [7] for details)

Kzz̄ =
i

||⌦||2V
6

Z

conifold
h �S ^ �

¯S , (4.1)

where here h = 1 + e�4A(y)

V2/3 and for the KS metric, the (2,1)-form �S is given by

�S = g3 ^ g4 ^ g5 + d[F (⌘)(g1 ^ g3 + g2 ^ g4)]� id[f(⌘)(g1 ^ g2) + k(⌧)(g3 ^ g4)], (4.2)

and the functions f, k, F were computed in [6] and are given by

F (⌘) =
sinh ⌘ � ⌘

2 sinh ⌘
, f(⌘) =

⌘ coth ⌘ � 1

2 sinh ⌘
(cosh ⌘ � 1), k(⌘) =

⌘ coth ⌘ � 1

2 sinh ⌘
(cosh ⌘ + 1).

(4.3)
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We therefore proceed by determining the variation of the met-
ric that corresponds to a change in S,

!Sgmn =
!gmn
!S

= 2
3S

gmn , (4.16)

Clearly, !Sgmn is just a rescaling of the metric and therefore satis-
fies ∇"!Sgmn = 0 but violates the second condition in (4.3),

gmn!Sgmn =
4
S
. (4.17)

To transform !Sgmn into a harmonic and traceless deforma-
tion we have to combine it with a suitable diffeomorphism. This
means we would like to find a compensating vector #m such that

$Sgmn ≡ !Sgmn + (#g)mn = !Sgmn + ∇m#n + ∇n#m (4.18)

satisfies the gauge fixing conditions (4.3). This results in two
equations on #m,

∇m#m = − 1
2S

,

∇m∇m#n = 0 ,
(4.19)

where in the last step we used the Ricc flatness of the metric.
Assuming that the corresponding change in coordinates should
involve only the radial coordinate % we employ the simple ansatz6

#m =
(
#% (%), 0, 0, 0, 0, 0

)
. (4.20)

The most general solution of the second order equation in (4.19)
with this ansatz reads

#% (%) = h1
sinh(2%) − 2% + h2

sinh2 %
, (4.21)

where h1 and h2 are two integration constants. The first equa-
tion in (4.19) fixes h1 = −1∕(2S) and regularity at % = 0 requires
h2 = 0.
The solution for #% (%) describes an infinitesimal coordinate

transformation for %. We would also like to find the correspond-
ing finite coordinate change

% →  (%, S) . (4.22)

Replacing % with  in the metric and varying with respect to S
gives exactly the term #g"& in (4.18) if

! (%, S)
!S

= #%
[ (%, S)] . (4.23)

After a simple change of variables the right-hand side of this dif-
ferential equation does not depend explicitly on S anymore,

!
!c

=
sinh(2 ) − 2
2 sinh2  , c = − logS . (4.24)

6 See Appendix B for a discussion of more general compensators with a
non-vanishing ' -component.

Figure 1. The radial coordinate  as a function of log S (for S0 = 1), where
S is the conifold deformation parameter.

and its solution is given by

 (%, S) = F−1
[
F(%) − log S

S0

]
, (4.25)

where F−1 is the inverse function of

F(t) = 1
2
log

[
sinh(2t) − 2t

]
. (4.26)

Here the constant of integration is chosen such that  (%, S0) = %.
We plot the evolution of the radial coordinate  (%, S) under a

change of S in Figure 1. To understand it further we can expand
it in the IR and the asymptotic UV. In the regime of small % (cor-
responding to the IR) we can approximate  (%, S) by

 (%, S) = %
(
S0
S

)2∕3

+ (%3) , (4.27)

i.e. it is given by a simple rescaling of %. This yields the following
expansion of the metric around % = 0,

ds26 = S2∕3

22∕3 × 31∕3

[
d%2 + 2(g3)2 + 2(g4)5 + (g5)2

]

+ %2
5 × 22∕3 × 31∕3 S2∕3

[
d%2 + 5

2
(g1)2 + 5

2
(g2)5 + 3

2
(g3)2

+3
2
(g4)5 + (g5)2

]
+ (%4) . (4.28)

Therefore, at the tip of the conifold the two-sphere spanned by g1

and g2 shrinks to zero-size while the three-sphere spanned by g3,
g4 and g5 stays finite with a radius proportional to S1∕3. We also
see the dramatic effect of the gauge-compensator that gives rise
to an inverse power of S in the %2-term.
For % → ∞ (the UV), on the other hand, we find

 (%, S) → % − log S
S0

. (4.29)
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We therefore proceed by determining the variation of the met-
ric that corresponds to a change in S,

!Sgmn =
!gmn
!S

= 2
3S

gmn , (4.16)

Clearly, !Sgmn is just a rescaling of the metric and therefore satis-
fies ∇"!Sgmn = 0 but violates the second condition in (4.3),

gmn!Sgmn =
4
S
. (4.17)

To transform !Sgmn into a harmonic and traceless deforma-
tion we have to combine it with a suitable diffeomorphism. This
means we would like to find a compensating vector #m such that

$Sgmn ≡ !Sgmn + (#g)mn = !Sgmn + ∇m#n + ∇n#m (4.18)

satisfies the gauge fixing conditions (4.3). This results in two
equations on #m,

∇m#m = − 1
2S

,

∇m∇m#n = 0 ,
(4.19)

where in the last step we used the Ricc flatness of the metric.
Assuming that the corresponding change in coordinates should
involve only the radial coordinate % we employ the simple ansatz6

#m =
(
#% (%), 0, 0, 0, 0, 0

)
. (4.20)

The most general solution of the second order equation in (4.19)
with this ansatz reads

#% (%) = h1
sinh(2%) − 2% + h2

sinh2 %
, (4.21)

where h1 and h2 are two integration constants. The first equa-
tion in (4.19) fixes h1 = −1∕(2S) and regularity at % = 0 requires
h2 = 0.
The solution for #% (%) describes an infinitesimal coordinate

transformation for %. We would also like to find the correspond-
ing finite coordinate change

% →  (%, S) . (4.22)

Replacing % with  in the metric and varying with respect to S
gives exactly the term #g"& in (4.18) if

! (%, S)
!S

= #%
[ (%, S)] . (4.23)

After a simple change of variables the right-hand side of this dif-
ferential equation does not depend explicitly on S anymore,

!
!c

=
sinh(2 ) − 2
2 sinh2  , c = − logS . (4.24)

6 See Appendix B for a discussion of more general compensators with a
non-vanishing ' -component.

Figure 1. The radial coordinate  as a function of log S (for S0 = 1), where
S is the conifold deformation parameter.

and its solution is given by

 (%, S) = F−1
[
F(%) − log S

S0

]
, (4.25)

where F−1 is the inverse function of

F(t) = 1
2
log

[
sinh(2t) − 2t

]
. (4.26)

Here the constant of integration is chosen such that  (%, S0) = %.
We plot the evolution of the radial coordinate  (%, S) under a

change of S in Figure 1. To understand it further we can expand
it in the IR and the asymptotic UV. In the regime of small % (cor-
responding to the IR) we can approximate  (%, S) by

 (%, S) = %
(
S0
S

)2∕3

+ (%3) , (4.27)

i.e. it is given by a simple rescaling of %. This yields the following
expansion of the metric around % = 0,

ds26 = S2∕3

22∕3 × 31∕3

[
d%2 + 2(g3)2 + 2(g4)5 + (g5)2

]

+ %2
5 × 22∕3 × 31∕3 S2∕3

[
d%2 + 5

2
(g1)2 + 5

2
(g2)5 + 3

2
(g3)2

+3
2
(g4)5 + (g5)2

]
+ (%4) . (4.28)

Therefore, at the tip of the conifold the two-sphere spanned by g1

and g2 shrinks to zero-size while the three-sphere spanned by g3,
g4 and g5 stays finite with a radius proportional to S1∕3. We also
see the dramatic effect of the gauge-compensator that gives rise
to an inverse power of S in the %2-term.
For % → ∞ (the UV), on the other hand, we find

 (%, S) → % − log S
S0

. (4.29)
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We can perform the integral numerically for different 
values of the deformation modulus 

STRONGLY WARPED REGIME  ON THE  
MIRROR QUINTIC REVISITED

We perform a suitable fit of this function to find the 
Kähler metric in the (off-shell) strong regime   

with 

z = S/`3s
�
`2s = (2⇡)2↵0�

I = �
Z

d⌘
de�4A(z,⌘)

d⌘
[f + F (k � f)]

Using this, Kzz̄ becomes

Kzz̄ =
1

||⌦||2V
6

2

64⇡4

Z
h d⌘ ^

 
Y

i

gi
!

d

d⌘
[f + F (k � f)]

=
2

64⇡4||⌦||2V
6

 Z Y

i

gi
!Z

d⌘ h
d

d⌘
[f + F (k � f)]

=
2

⇡||⌦||2V
6

✓Z
d⌘

d

d⌘
{h [f + F (k � f)]}�

Z
d⌘

dh

d⌘
[f + F (k � f)]

◆
, (4.4)

where we used

�S ^ �
¯S = � 2i

64⇡4

d⌘ ^
 
Y

i

gi
!

d

d⌘
[f + F (k � f)], (4.5)

and
R Q

i g
i = 64⇡3.

We see that the first term in the integral is just a boundary term, so it su�ces to

evaluate h [f +F (k�f)] at ⌘ ! 0 and ⌘ ! ⌘
⇤

(where we can think of ⌘
⇤

� 1 and use the

approximations for ⌘ ! 1). It is useful to recall the warp factor for the deformed conifold,

now written in terms of the complex structure s = |S| = ✏2 At ⌘ ! 0, I(0) ⇡ 0.718 and

f + F (k � f) = 0, and at ⌘ ! ⌘
⇤

, in the bulk, h ⇡ 1 and

Kzz̄ =
8(2)2/3`6s
⇡|⌦|2V

6

(gsF1

)2

(2⇡)4V2/3

⇣ A

|z|4/3 +
B

|z
0

|4/3
⌘
e
�a

|z0|
2/3

|z|2/3 (4.6)

A = 0.151421 (4.7)

B = 0.456719 (4.8)

a = 1.87543 (4.9)

4.2 D3-brane uplifted solutions

5 Discussion
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geometŕıa, dualidades y aprendizaje de mı́aquina” and UG Project CIIC 264/2022 ”Ge-
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Kähler potential can now be obtained by integration

A = 0.151421 , B = 0.456719 , a = 1.187543

[w/Cabo-Bizet, Olguín-Trejo, Loaiza-Brito, in progress]



The Kähler potential can now be obtained by integration 
and we can use it to stabilise the deformation modulus 
and dilation in the strongly warped regime 
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Figure 7: Addtion of an D3 to the potential with the new Kähler in example 7 of table 1.

6 Ejemplos sin mı́nimo con D
3

y torroba ahora

6.1 Ejemplo 13 de primera tabla

8

DST GKPour

K(z, z̄, ⌧, ⌧̄) = � ln [�i (⌧ � ⌧̄)]� ln [�i ⇧̄T⌃⇧]� 2 ln [V] +Kwarp(z, z̄, ⌧, ⌧̄),

W (z, ⌧) = F1⇧3 + F2⇧4 � F3⇧1 � F4⇧2 + ⌧ (H3⇧1 +H4⇧2 �H1⇧3 �H2⇧4) ,

The anti-D3 potential get’s modified  
according to 

VD3 =
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(gs F1)2
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I(0, z)

M4
Pl

V4/3

I(0, z) = a
⇣z0
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⌘b
, b ⇠ 0.44

[w/Cabo-Bizet, Olguín-Trejo, Loaiza-Brito, in progress]



DS AT THE TIP OF THE THROAT 

• Tadpole can be small, no instability triggered. 
Constraint of flux            no longer applies.

p
gsM

• Could instability appear farther away from the minimum?

• Further constraints, relax of assumptions, etc?

• dS vacua a la KKLT remain an interesting possibility 

• First step to write the off-shell potential in terms of N = 1 
supergravity   



Gravitational tests



GRAVITY AT THE TIP OF THE THROAT 
[Bento-Chakraborty-Parameswaran-IZ, ‘22]

๏ Warped throats have open new possibilities for 
cosmology and phenomenology

๏ For example, our universe can confined on a D-brane 
at the tip of a warped throat

๏ It is thus interesting to study its effects on the 
gravitational sector of the 4D EFT.

๏ As a first step, we focus on the corrections to the 
Newtonian potential, which can be compared to 
observations across diverse scales 



GRAVITY AT THE TIP OF THE THROAT 
[Bento-Chakraborty-Parameswaran-IZ, ‘22]

๏ Consider type IIB supergravity in 10D, compactify on a 
warped CY 3-fold

๏ We use these results to compute the corrections to the 
Newtonian gravitational potential due to the massive 
tower and compare these predictions with current 
experimental constraints.

๏  Find the corresponding KK tower of tensor modes, 
which describes an infinite set of massive spin-2 fields 
in 4D

[Gravitational waves & Extra dimensions (past 5 years): Reinoud Jan Slagter '17; Andriot, Lucena Gómez, '17; 
Chakraborty, Chakravarti, Bose, SenGupta, '17; Megías, Nardini, Quirós, '18; Kwon, Lee, Tolla, '19; Andriot, Tsimpis, '19; 

Du, Tahura, Vaman, Yagi, '20; Andriot, Marconnet, Tsimpis, '21; Ferko, Satishchandran, Sethi, '21



GRAVITY AT THE TIP OF THE THROAT 
[Bento-Chakraborty-Parameswaran-IZ, ‘22]
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Figure 2. The internal space consists of a 6d compact manifold with a warped region described
by the Klebanov-Strassler solution (i.e. a warped deformed conifold). We split the bulk into two
different pieces: one piece is a generic CY3 and the other takes the metric of an unwarped deformed
conifold and serves as a transition between the warped throat and the CY3 (with τc < τ < T , where
τ is the radial coordinate in the deformed conifold metric (2.21)).

consistency implies that the modes must vanish at the point where these two regions meet.
We will motivate further this boundary condition below.

This means, however, that we cannot take the interesting limit where there is no
warping and the whole internal space is the CY3 whose metric we do not know, since the
wavefunctions will be identically zero. In order to consider this regime, we may split the
bulk region into two different pieces: one piece is the generic CY3 and the other takes the
metric of an unwarped deformed conifold and serves as a transition (with τc < τ < T )
between the warped throat and the CY3 (see figure 2). While we still solve the equation
in the CY3 with Φk = 0, we can now have a non-vanishing wavefunction in the piece of
the bulk described by the unwarped deformed conifold. While τc determines the size of the
warped throat, T determines the portion of the bulk in which the wavefunctions do not
vanish (more precisely, T − τc determines the extension of the wavefunction into the bulk).
Notice that a fully warped conifold corresponds to the limit τc → T and an unwarped
conifold corresponds, roughly, to τc → 0.10

Therefore we will write (3.5) explicitly using the metric (2.21) in terms of the warp
factor Hτc(τ). We consider splitting the 6d coordinates ym into a radial coordinate τ and
angular coordinates θa, a = 1, . . . , 5 (these are related to the 1-forms gi in the conifold
metric). This will split the Laplacian into two pieces, one for τ and one along the angular

10Strictly speaking, the unwarped limit corresponds to H(τ) = 1 for all τ , whereas when τc = 0, H(0) = 2.
At τc = 0, the second term in (2.34) becomes of the same order as the first, marking the boundary between
a warped and an unwarped regime.
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Consider a braneworld scenario, with the 
Standard Model localised on a D3-brane 
at      in the warped compact space asyb

Our paper [2204.02086]

I. R. Klebanov and M. J. Strassler [hep-th/0007191]

In the paper we work with

1. Minkowski 4d

2. Trivial angular solutions (𝜙𝑘 = 𝜙𝑘 𝜏 ) 

3. Unwarped conifold transition (𝜏𝑐 < 𝜏 < T)

4. Vanishing boundary conditions on CY3 (𝜏 = T)

5. (3+1)-brane somewhere in the throat (𝜏 < T)
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warping and the whole internal space is the CY3 whose metric we do not know, since the
wavefunctions will be identically zero. In order to consider this regime, we may split the
bulk region into two different pieces: one piece is the generic CY3 and the other takes the
metric of an unwarped deformed conifold and serves as a transition (with τc < τ < T )
between the warped throat and the CY3 (see figure 2). While we still solve the equation
in the CY3 with Φk = 0, we can now have a non-vanishing wavefunction in the piece of
the bulk described by the unwarped deformed conifold. While τc determines the size of the
warped throat, T determines the portion of the bulk in which the wavefunctions do not
vanish (more precisely, T − τc determines the extension of the wavefunction into the bulk).
Notice that a fully warped conifold corresponds to the limit τc → T and an unwarped
conifold corresponds, roughly, to τc → 0.10

Therefore we will write (3.5) explicitly using the metric (2.21) in terms of the warp
factor Hτc(τ). We consider splitting the 6d coordinates ym into a radial coordinate τ and
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Consider a braneworld scenario, with the 
Standard Model localised on a D3-brane 
at      in the warped compact space asyb
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hierarchy between the fundamental scale and the brane is given by the warp factor (2.36)
on the brane,

Hτc(τb) = 1 + I(τb)
I(τc)

. (4.26)

For string theory, the natural scale in the UV is the string scale ms. Let Mb be the scale
on the brane. Using (2.39), we can write it in terms of the known Planck scale MP ,

Hτc(τb)−1/4 = v

v0
= Mb

ms
= Mb

MP

√
4πVw

gs
, (4.27)

where MP = 2.14 × 1018GeV. This implies that the hierarchy between the known scales
Mb and MP ,

H ≡ Hτc(τb)−1/4 gs√
4πVw

, (4.28)

depends on the volume and string coupling, as well as the warp factor Hτc(τb). If we
choose Mb = 1TeV, trying to solve the hierarchy problem, the hierarchy takes the value
H ∼ 10−15.

Using this in (4.25), we find

α = (2π)2
(gsM)3

2A(τb, τc, T )
I(τc)3/2

Hτc(τb)−1/2 g
2
s

H2 , (4.29a)

λ−1 = H
21/6

2π√
gsM

Hτc(τb)1/4
I(τc)1/4

µ(τc, T )
lp

. (4.29b)

The free parameters in (4.29) are (τc, T, gs,M,H, τb), six in total. We should remem-
ber that H is keeping the dependence on Vw, which is fully determined by the choice of
(τc, τb, gs,H) through (4.28) — one should check that a choice of these parameters is consis-
tent with the supergravity requirement Vw ≫ 1. Note also that τc is determined by the de-
formation modulus |z| = ϵ2/l3s , which means we can think of a choice of τc as representing a
choice of |z| (which in turn depends on the flux parameter K via z ∼ e− 2πK

gsM [51, 52, 65–68]).
We will fix the H and τb, the position of the brane, which leaves four free parameters. In
principle, the position of the brane should also be determined dynamically, since it becomes
a modulus that experiences a potential due to several different ingredients [69–71]. In this
work we will assume that the position can be fixed to a certain value due to the balance
between these ingredients, without addressing the issue explicitly.

In figure 9 we show a sample of predictions (λi,αi) for different choices of these pa-
rameters, divided in three main groups: the fully warped limit, with τc = T ; the unwarped
conifold limit, with τc = 0; and a mid-regime with τc = T/2 — in this regime we see the
competition between the throat trying to localise the modes and the bulk trying to spread
them evenly throughout the compact space, since they are not forced to vanish in the bulk
as in the fully warped case (see discussion on boundary conditions in section 3.1). The
hierarchy is fixed to H = 10−15 and gs = 0.2 in all parameter sets. Tables 1–3 summarize
the parameter choices and the relevant quantities for each set of examples.

The first thing to note is that none of these examples lies within the excluded region
of parameter space, both due to the small couplings and small length scales — this means
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Figure 11. The shaded triangles correspond to the allowed regions of parameter space for the fully
warped limit τc → T , for different choices of τb and fixed H = 10−15. All points (A,B,C) have
gs = 0.2,M = 20. The upper right bounds on each region follow from (4.37) and gs < 1, while the
left bounds follow from (4.35b) and gsM > 1. The lower lines in each triangle represent the lower
bound on (4.38) with M < 32, 100, 1000 (with larger values giving weaker bounds, i.e. lower lines).
Figure adapted from [23, 64], with the shaded area indicating the excluded region of parameter
space at 95% confidence level.

expense of also moving to lower α — this gives rise to the diagonal dashed line in figure 11,
which is an upper bound for the allowed regions which never crosses the excluded region.

The upper right bounds on each region follow from (4.37) and gs < 1, while the left
bounds follow from (4.35b) and gsM > 1. The lower lines in each triangle represent the
lower bound on (4.38) with M < 32, 100, 1000 (with larger values giving weaker bounds,
i.e. lower lines).

4.4 Unwarped deformed conifold

The unwarped deformed conifold corresponds to the limit τc → 0. In this limit, the solution
pair (Êk,Φk) only depends on T , so that A(τb, τc, T ) = A(τb, T ) and µ(τc, T ) = µ(T ). In
particular, we know from the analytical approximations (confirmed using the numerical
solutions) that

Êk ≈ e−T/3ek , ek = 25/6
31/2

{
πk + 3π

4

}
. (4.39)

Notice that we must always have τb < T since our boundary condition Φk(T ) = 0 would
imply vanishing countributions to a brane at τb ≥ T . In this limit

H ≈ gs√
4πVw

. (4.40)
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Do we see the extra dimensions?
We can compare our predictions with the available experimental constraints

Strength Range 

Observational constraints from J. Murata, S. Tanaka [1408.3588]
J. A. R. Cembranos, A. L. Maroto, and H. Villarrubia-Rojo [1706.07818]
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[Observational constraints: Murata, Tanaka, '14]  
[Cembranos, Maroto,Villarrubia-Rojo, '17]



String theory warped compactifications offer rich new 
avenues to explore cosmological questions  

In particular for early and late time acceleration: 
inflation and dark energy  

Future is bright in terms of test of cosmological as well 
as gravitational implications! 

Several questions still open! 

SUMMARY





MULTI FIELD INFLATION AND THE 
SWAMPLAND

๏ If inflation occurs along strongly non-geodesic 
attractor, the first condition can be satisfied, while 
second condition may or not be satisfied

Recently proposed asymptotic dS conjectures require  

In multi field inflation, these conditions can be satisfied: 

& O(1)

driving inflation. In the standard lore, such hierarchy of masses cannot drive a period of

successful inflation, since large contributions to the masses of the inflatons might spoil the

required flatness and therefore slow-roll conditions required for inflation. However, we have

seen that fat inflation works with large masses when the turning rates are large. Therefore,

previous statements on inflation bases on light inflatons need to be revisited In particular,

in supergravity inflationary constraints were discussed long ago in [41], assuming the need

for light fields. We leave for future work a detailed analysis of these constraints and more

generally of fat inflation and large turns in supergravity.

2.2 Fat Inflation and the Swampland

We conclude this section by making a connection between fat inflation and the recently

proposed dS conjectures13 [5–7], which require that

rV

V
� c

M
Pl

or (2.30)

min(rarbV )

V
 � c0

M2

Pl

(2.31)

where rV ⌘
p
gabVaVb and c, c0 are some O(1) constants. It was shown in [42] that in

multifield inflation, the first condition can be satisfied, so long as the turning rate ⌦/H is

su�ciently large. This can easily be seen as follows. Generalising the potential slow-roll

parameter (2.15) to the multifield case we have

✏V ⌘ M2

Pl

2

V aVa

V 2

= ✏T +
⌦2

9H2

✏ , (2.32)

that is:

✏V = ✏

✓
✏T
✏
+

⌦2

9H2

◆
. (2.33)

When ✏T ' ✏, one arrives at the relation presented in [42, 43]:

✏V ' ✏

✓
1 +

⌦2

9H2

◆
, (2.34)

and therefore, one sees that in a multifield inflationary model, where ⌦ 6= 0, for su�ciently
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turns, a su�cient condition is to consider models where

H2 ⌧ �  VTT , (2.35)

that is, multifield fat field inflation. Clearly in this case, the second condition (2.31) is not

satisfied.

Let us also comment on another conjecture, the Distance Swampland Conjecture (DSC)

[44]. Roughly, it claims that the geodesic displacement between two points in field space

is bounded, again by an order one number in Planck units, that is:

�� . c̃MP l , (2.36)

with c̃ ⇠ O(1). Otherwise a tower of light states emerges which would spoil the low

energy e↵ective description. A recent discussion on multifield inflation and the DSC has

appeared in [45]. So here we simply stress that inflationary trajectories with large turning

rates ⌦/H & 1 di↵er strongly from a geodesic and thus (2.36) does not apply. Moreover,

an almost geodesic trajectory requires a very small turning rate value ⌦/H ⌧ 1. (See

appendix A for a concrete example).

In the next two sections we discuss an explicit example of of fat inflation where a probe

D5-brane moves along the angular and radial directions of a warped resolved conifold in a

type IIB string theory compactification.

3 D5-brane Inflation supergravity set-up

In this section we present the supergravity set-up where we study a concrete example of

fat D5-brane inflation. In the next section we will use the results discussed here to study

the full cosmological evolution and predictions of this model.

Consider a flux compactification of type IIB string theory on an orientifold Calabi-Yau

threefold [46], where the use of internal fluxes generates a warped throat in the internal

space.

The low energy 10D action of type IIB supergravity, together with local sources in the

Einstein frame, is given by

SIIB = � 1
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where ⌧ = C
0

+ ie�� is the axio-dilaton and the three-form flux, G
3

= F
3

� ⌧H
3

, is a

combination of the Ramond-Ramond (RR) and Neveu-Schwarz–Neveu-Schwarz (NS-NS)

three-form fluxes: F
3

= dC
2

, H
3

= dB
2

and F̃
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! � 1 and first condition may be satisfied
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condition is satisfied 
[w/Chakraborty et al. ’19; 

w/Aragam, Chivoloni, Paban, Rosati, ’21]



DE SITTER SWAMPLAND CONJECTURE

[Danielsson, Van Riet ’18;  
Obied, Ooguri, Spodyneiko, Vafa ’18; 

 Garg, Krishnan ’18; Ooguri, Palti, Shiu, Vafa ’18]

• The scalar potential in the LEEFT of any consistent quantum 
gravity must satisfy either:
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 for some universal constants c, c′ > 0 of order 1. 


