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Atomic physics at T~eV

Electron

0K 0K

The Cosmic Microwave Background links atomic physics to
cosmology at temperature T~eV




Nuclear physics at T~MeV
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Big bang nucleosynthesis links nuclear physics to cosmology
at temperature T~MeV




Phase transition at T~-100 GeV?

Possibly, the electroweak phase transition drove the Universe out-of-
equilibrium. This would provide a link to current particle physics
experiments.



Electroweak phase transition

gravitational

J baryogenesis
waves -~




Electroweak symmetry breaking

The Mexican hat potential is designed to lead to a finite Higgs
vacuum expectation value (VEV) and break the electroweak
symmetry

V(h) =2 (k2 —2?)”
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Electroweak symmetry breaking

[Weinberg '74]

At large temperatures the symmetry is restored

V(h,T) = % (h2 — '02)2 4 const x h*T? + details

Wi<h=>) at T == 100 3eV
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Electroweak symmetry breaking

Depending on the details, the phase transition can be very
weak or even a cross over

Wi<h=>) at T »>=>= 100 ZeV
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Electroweak symmetry breaking

It can also be a strong phase transition if a potential barrier

seperates the new phase from

Wi<h=) at

N

the old phase

T == 100 3FeV

J..
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Electroweak symmetry breaking

It can also be a strong phase transition if a potential barrier
seperates the new phase from the old phase
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Electroweak phase transition

In the SM

The effective potential is

the standard tool to study

phase transition at finite
temperature.

Lattice studies show that
there Is a crossover In
the SM.

A light Higgs would lead
to a 1st-order PT.
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Singlet extension

The Standard Model only features a
electroweak crossover.

A potential barrier and hence first-order
phase transitions are quite common in
extended scalar sectors:

V(h,s) = % (h? — %)

+m25% + \g5* + Ams2h?

The singlet field has an additional 7, symmetry and is a
viable DM candidate.

The phase transition proceeds via
(h,S) — (va) — (has) — (’U,O)
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First-order phase transitions

* first-order phase transitions proceed by
bubble nucleations

* in case of the electroweak phase
transition, the "Higgs bubble wall”
separates the symmetric from the broken
phase

* this is a violent process (v,,q;; =~ O(c¢))
that drives the plasma out-of-equilibrium
and sets the fluid into motion



Gravitational waves

During the first-order phase transitions, the
nucleated bubbles expand. Finally, the colliding
bubbles break spherical symmetry and generate
stochastic gravitational waves.



Observation

[Grojean&Servant '06]

The produced gravitational waves can be observed
with laser interferometers in space
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transition at T ~ 100 GeV



Observation

[Grojean&Servant '06]

... or on the ground
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Strong phase transition at larger temperatures produce
the same energy fraction of gravitational waves but at
higher frequencies.



GWs from PTs

ArXiv activity:

inspire hep - gravitational waves inspire hep - GWs & PTs
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GWs from PTs
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Sources of GWs from PTs

During and after the phase transition, several sources of
GWs are active

© Collisions of the scalar field configurations / initial fluid
shells

© Sound waves after the phase transition
(long-lasting — dominant source)

© Turbulence
~ Magnetic fields

In the last 10 years, simulations became the main tool
to incorporate all these effects.



GWs from cosmological phase

transitions
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[Hindmarsh, Huber, Rummukainen, Weir '15]




Back of the envelope

There are several quantities that can enter in the
determination of the GW spectrum:

The temperature of the phase transition T.
The (inverse) duration of the phase transition

P ocexp(Bt)  and typically 3/H ~ O(100)

The wall velocity v

The amount of latent heat A that is transformed into
Kinetic energy K in the plasma:

K

Ptot

AN— K, a=




Back of the envelope

There are several quantities that can enter in the
determination of the GW spectrum:

The temperature of the phase transitio@
The (inverse) duration of the phase transition

P x exp(pt) and typically O(100)

The wall velocity@

The amount of latent heat A that is transformed into
Kinetic energy K In the plasma:




Back of the envelope

The Weinberg formula determines how stochastic
gravitational waves are produced

dEGW 2 % " %
= 2 17,lm k)T k7 Lim k7 )
dowd$) GNw A 75l ( ) z]( w) l ( w)

And generally the energy fraction in GWs scales as
2
dEaw K
o (A () A/ va)

B Etotd log W Ptot
The length (time) scale A has to be of order of the Hubble
parameter H for observable GWSs. This is given by the
oubble size, the duration of the phase transition or the
ifetime of the fluid motion.

aw (W)



Back of the envelope

The peak frequency at production is linked to the bubble
size or the duration of the phase transition

wpeak — B — 0(100) H

After the redshift, this amounts to

6] T
100 H 100GeV

mHz

Wpeak =

Since GWs behave as radiation, {2y is only redshifted
after the transition to matter domination.



Observation
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Observation
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Observation
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Observation
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State-of-the-art: simulations

[Hindmarsh, Huber , Rummukainen, Weir '13, '15, '17]

[Weir '16] [Gould, Sukuvaara,Weir '21] [Cutting, Hindmarsh, Weir '18&’19]
[Cutting, Escartin, Hindmarsh, Weir '20]

Depending on the context, the system can be descibed using
hydrodynamics (fluid + Higgs) or just a scalar field

The produced GW
spectrum can be read
off from the simulation.

on @ o gy N
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Really robust results,
not many a priori
assumptions.

But very costly.

How to exirapolale to
7 other models and
) parameters?
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State-of-the-art:

semi-analytic methods

detonation detonation
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Semi-analytical approaches: For example:
Try to understand the dynamics of the [Kosowsky, Turner and Watkins '92]
scalar field / fluid. [Kosowsky and Turner ‘93]
[Huber and TK '08]
model the system in different regimes: [Hindmarsh '16]
[TK '17]
- envelope approximation [Jinno and Takimoto 17, '19]
- bulk flow model [Hindmarsh and Hijazi '19]
- sound shell model [Lewicki, Pujolas and VVaskonen '21]

_— [Megevand and Membiela '21]



State-of-the-art

detonation detonation
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Semi-analytical approaches:
Pros:

- fast, many models & parameters
can be studied

- better analytical understanding
of the resulting spectrum

Cons:
- relies on assumptions

(e.g. importance of sound waves
underestimated for a long time)

7.200
I 6.775

6.350

I5.925
5.500

Hydrodynamic simulations:
Pros:

- less a priori assumptions
- robust numerical results

Cons:
- costly, only few selected simulations

- model dependence (Higgs potential)
- extrapolation of the wall thickness



Bubble wall thickness

The main challenge in the hydrodynamic simulation is to cover very
different length scales.

In the physical phase transition

wall thickness <<<<<<< fluid shell thickness < bubble size
1/100GeV % of Hubble radius

In simulations:

grid spacing < (wall thickness < fluid shell thickness < bubble size) < DOX Size

detonation detonation
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Higgsless simulations

In order to avoid this issue, we want to perform simulations that are
agnostic about the wall thickness. This would resemble an =~ 7
where the Higgs field was integrated out.

However, this requires a New High-Resolution Central Schemes
hydrodynamic numerical for Nonlinear Conservation Laws and
framework that can deal with Convection-Diffusion Equations
Sh OCkS an d Oth er Alexander Kurganov* and Eitan Tadmort

* Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109;

d iSCO nti n u iti eS : and tDepartment of Mathematics, UCLA, Los Angeles, California 90095

E-mail: *kurganov@math.lsa.umich.edu, ttadmor @ math.ucla.edu

Received April 8, 1999; revised December 8, 1999

Central schemes may serve as universal finite-difference methods for solving non-
linear convection—diffusion equations in the sense that they are not tied to the specific
eigenstructure of the problem, and hence can be implemented in a straightforward
manner as black-box solvers for general conservation laws and related equations gov-
erning the spontaneous evolution of large gradient phenomena. The first-order Lax—
Friedrichs scheme (P. D. Lax, 1954) is the forerunner for such central schemes. The
central Nessyahu—Tadmor (NT) scheme (H. Nessyahu and E. Tadmor, 1990) offers
higher resolution while retaining the simplicity of the Riemann-solver-free approach.
The numerical viscosity present in these central schemes is of order Q((Ax)? [/ At).
In the convective regime where At ~ Ax, the improved resolution of the NT scheme
and its generalizations is achieved by lowering the amount of numerical viscosity
with increasing r. At the same time, this family of central schemes suffers from
excessive numerical viscosity when a sufficiently small time step is enforced, e.g.,
due to the presence of degenerate diffusion terms.

In this paper we introduce a new family of central schemes which retain the sim-



Simulation of cosmological

dhase transitions

We recently developed a highly efficient scheme to simulate
relativistic hydrodynamics during cosmological first-order
phase transitions.
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These simulations allow to extract GW spectra from the
phase transition in a few hours instead of weeks

(factor 2000 speed improvement compared to former
approaches)



The setup allows to run many simulations a day and to
extract the GW spectra as functions of the PT properties:

wall velocity v., PT strength a
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The spectra have two features due to the bubble size and the

shell thickness.
[Jinno, TK, Rubira, Stomberg 2022]
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Model-dependence

The Weinberg master formula determines how stochastic
gravitational waves are produced

dEGW 2 A A .
dwdf) 20 AZJ’lm(k)TZJ(kvw)ﬂm( , W),

And generally the energy fraction in GWs scales as

Qows(f) o< K?

where K denotes the kinetic energy fraction in the fluid
after the phase transition that is where the mocdel-
dependence will enter for most parts.
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The Weinberg master formula determines how stochastic
gravitational waves are produced

dEGW 2 A A .
dwdf) 20 AZJ’lm(k)TZJ(kvw)ﬂm( , W),

And generally the energy fraction in GWs scales as
2 t of
Qe (f) o< K <

where K denotes the kinetic energy fraction in the fluid
after the phase transition that is where the mocdel-
dependence will enter for most parts.




Kinetic energy

The bulk kinetic energy depends on the enthalpy w and the
fluid velocity v and can be determined from an isolated
spherical bubble before collision

K:’OlC : pkm:v/dVUQWQw.
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Bag model

[Kosowsky, Turner , Watkins, '92]
[Espinosa, TK, No, Servant '20]

The kinetic enregy fraction has been calculated in the bag
model

es=a T +¢€ e =a T,

bag
constant

The strength of the phase transition is characterized by

€
a+ T4

o =



Kinetic energy fraction
and efficiency coefficient

deflagrations | \
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How to match to other models?

Fitting functions of these results are used in phenomenological
analysis but what is the strength parameter in a general
models? In particular if only quantities at nucleation

temperature are used?
DX = (X, (T},) — Xp(Th))

a o< Dp If the pressure difference vanishes, the
bubble becomes static

o o< De The energy difference fuels the kinetic
motion of the bulk fluid

The trace difference is the bag

a o< DO oc (De — 3Dp) constant in the bag model and
also comes about naturally in
lattice simluations



A model comparison

[Giese, TK, van de Vis '20]

model /method M1 M2 M3 M4 M35 M6
SMy 0.00143 4.99% | 3.55 % | -88.45 % | 713.34 %
SMo 0.00401 1.70 % | -0.72 % | -66.69 % | 351.90 %
SM3 0.00014 1.37 % | 0.94% |-89.16 % | 779.35 %
SM, 0.00039 0.42 % | -0.32 % | -67.85 % | 405.11 %
2step 0.00036 13.61 % | 17.39 % | -89.52 % | 945.17 %
2steps 0.00563 15.68 % | 21.90 % | -50.01 % | 366.20 %
2steps 0.00070 35.97 % | 47.28 % | -89.85 % | 1235.34 %
2stepy 0.01576 40.05 % | 58.29 % | -41.80 % | 485.16 %

Table 4:

Relative errors of the methods M2-M6 compared to the fully numerical result

M1. The model parameters are given in Table andand a wall velocity of &, = 0.9 was

used.

/4

new approach

A0

A0

Ap

methods used in the
literature

Ae




The matching equation

detonation detonation

O i 4 | | |
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The matching equation

[Giese, TK, van de Vis '20]
The temperature T can be eliminated using

po(Ty) —po(T-)  dpp/dT
€b(T_|_) — Bb(T_) - deb/dT

This then leads to
vi _ (vgv_ /2 = 1) + (De = Dp/c?) Jw,

Y

o- " (vrv_j = 1)+ vsv_(De — Dp/c2) w;
DX = (X,(T},) — Xp(T7))

This motivates the following definition of the
strength parameter in terms of the pseudotrace
Do

2 _
c—p/el, ag=go .

= C, .
Ty

2
S

0



The matching equation

[Giese, TK, van de Vis '20]
The temperature T can be eliminated using

po(Ty) —po(T-)  dpyp/dT
€b(T_|_) — eb(T_) - deb/dT T, @
This then leads to
v (viv_ /2 — 1)+ (De— Dp/d) w,
-~ (vr0_/ — 1) + vyv_(De — Dp/2)jws
DX = (Xs(Tn) — Xb(Tn))

This motivates the following definition of the
strength parameter in terms of the pseudotre

K should only
depend on

these two
guantities!




A sound argument to go beyond

the bag model

[Leitao and Megevand '14] y)-model

1 1
pS:_a"|‘T4_€7 6S:CL-I-CZ_A_I_Ga Cs =
3 v —1
1 4 1 v
= —-a_T", ep = —a_(v—1)T",
3 3
model /method M1 M2 :
SM; 0.00143 || 0.45 %
SMo, 0.00401 || 0.43 %
SM; 0.00014 || 0.04 % | < ...
SM, 0.00039 || 0.04 % | =
2step, 0.00036 || -0.21 % |
2steps 0.00563 || -0.80 %
2steps 0.00070 | -0.77 % | "1 | | | |
2stepy 0.01576 || -3.52 % e
Table 4: Relative errors of the methods M2-M6 compared to the fully numerical result

M1. The model parameters are given in Table andand a wall velocity of &, = 0.9 was
used.



Coding the kinetic energy fraction

01 | import numpy as np

02 | from scipy.integrate import odeint
03 | from scipy.integrate import simps
04
05 | def kappaNuModel(cs2,al,vp):

06 nu = 1./cs2+1.

07 tmp = 1.-3.*xal+vp**2%(1./cs2+3.*al)

08 disc = 4*xyp**2x(1.-nu)+tmp**2

09 if disc<0:

10 print("vp too small for detonation")
11 return O

12 vm = (tmp+np.sqrt(disc))/2/(nu-1.)/vp
13 wm = (-1.+3.xal+(vp/vm)*(-1.+nu+3.%*al))
14 wm /= (-1.+nu-vp/vm)

15

16 def dfdv(xiw, v, nu):

17 Xxi, w = xiw

18 dxidv = (((xi-v)/(1.-xi*v))**2x(nu-1.)-1.)
19 dxidv *= (1.-v*xi)*xi/2./v/(1.-v**2)

20 dwdv = nux(xi-v)/(1.-xi*v)*w/(1.-v**2)

21 return [dxidv,dwdv]

22

23 n = 501 # change accuracy here

24 vs = np.linspace((vp-vm)/(1.-vp*vm), O, n)
25 sol = odeint(dfdv, [vp,1.]1, vs, args=(nu,))
26 xis, ws = (sol[:,0],-sol[:,1]*wm/al*4./vp**3)
27
28 return simps(ws*(xis*vs)**2/(1.-vs**2), xis)

Table 5: Python code to calculate s in the v-model as a function of the speed of sound
squared c2, the strength of the phase transition aj and the wall velocity &,.



Ground based experiments

Observation of black hole merges put GW
astrophysics and multi-messanger astronomy
firmly on the physics landscape. But what can we
learn in particle physics and cosmology?

Stochastic backgrounds are limited by BBN
constraints (N_.). Ground based experiments are

barely competitive right now, but this might improve
In the future.



Future space telescopes

The LISA Project

Space based experiments are sensitive to smaller
frequencies where stochastic backgrounds GWs are easier
to detect and can provide a link to EW physics.

Anticipated launch in 2030s.



IPTAS: a tentative hint
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There is a tentative hint of a stoachastic
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correlations.
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An interpreation in terms of phase
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- shape disfavors PTs as an explanation ? *

- phase transition temperature is close to T il
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- CMB impact through p-distorsions
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Summary |

The observation of Gravitational Waves started a new era
In astro physics.

The main appeal of these observations in cosmology is
that one can probe the era before clectromagnetic
decoupling.

In principle, laser interferometers as LISA/LIGO/DECIGO
allow to test phase transitions (and hence particle

physics) from EVW scales up to very high scales ~ 10°
GeV.

LISA will fly in the 2030s and cover a large range of
cosmological phase transitions in terms of strength and
temperatures close to electroweak scales.



Summary Il

Most robust predictions for GWs from PTs come from
simulations and Higosless simulations are very cost
efficient.

To extrapolate the results from hydrodynamic
simulations to other models one needs the energy
fraction of a single expanding bubble.

In the literature this is typically done by matching the
bag model where the energy fraction is known (as a fit).
This leads to errors of order O(1) or O(10).

A model-independent approach suggests to use the
speed-of-sound in the broken phase and the pseudo-
[race In the strength parameter of the matching.

This reduces the error to O(few %).



Putting it all together

The different sources and the relation to particlue physics model building is discussed
in publications by the LISA cosmology working group on GWs from cosmological
phase transitions:

web-tool by David Weir

Science with the space-based http://www.ptplot.org
interferometer eLISA. lI: Gravitational

waves from cosmological phase R AT 0T
transitions 10t

Caprini et al.
arxiv/1512.06239
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Detecting ravitational waves from
cosmological phase transitions with
LISA: an update

Caprini et al. R |
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singlet portal model
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dark photon

*  Dark photon benchmark points (Breitbach et al.) "‘"H-._‘_
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