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Introduction

â The physics of quantum fields in de Sitter is important:
â Observations suggest that the cosmological constant in our

Universe is positive.
à Our Universe is asymptotically de Sitter.

â We believe that the very Early Universe underwent a period of
exponential expansion, the inflationary period, where the
description was also quasi-de Sitter.

à In slow-roll inflation, many of the cosmological observables are
well-approximated by QFT in a fixed dS background.
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QFT in de Sitter

â Weakly coupled QFT in a fixed de Sitter background has been
studied through the years.

â It is well-known that light fields, m� H exhibit infrared
divergences at loop order. [Starobinski (1984) ...]

â The meaning and implications of these IR divergences are still
debated [Starobinski, Yokohama, Ford, Antoniadies, Iliopoulos, Tomaras, Tsamis, Woodard, Weinberg, Burgess, Marolf,

Morisson, Zaldariaga, Senatore, Sundrum, Polyakov ....].
â In this work we aim to use holography to discuss strongly

coupled QFTs in a fixed de Sitter background.
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Holographic cosmology

â This work is conceptually distinct from dS/CFT and holographic
cosmology. [Strominger (2001)], [Maldacena (2002) ... [McFadden, KS (2009)] ....

â In dS/CFT one seeks to describe a dSd+1 Universe with
dynamical gravity via d-dimensional CFT with no gravity.

â Here we want to describe a d dimensional strongly couple QFT
on fixed de Sitter background using AdS gravity in d+ 1
dimensions.
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Conformal boundary

â There are many common misconceptions about the conformal
boundary of AdS.

â Many assume that if you write the metric as

ds2 =
dr2

r2
+

1

r2

(
g(0)ij(x) +O(r)

)
dxidxj

then the boundary is at z = 0 and the boundary metric is
g(0)ij(x).

â In general, this is not correct.

â If the r=constant slices are non-compact then part of the
conformal boundary is located at each value of r.
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Boundary conformal boundary

â What is correct is that if the metric takes the form

ds2 =
dr2

r2
+

1

r2

(
g(0)ij(x) +O(r)

)
dxidxj

AND
the r=constant slices are compact
THEN
the boundary is at r = 0 and g(0)ij(x) is a representative of the
boundary conformal structure.

â The conformal boundary does not depend on which coordinates
we are using.
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AdS and its conformal structure
The metric in global coordinates is given by

ds2 =
1

sin2 r̄

(
−dT 2 + dr̄2 + cos2 r̄dΩ2

d−1

)
where 0 < r̄ ≤ π/2.

â The r̄=constant slices are compact.
(What we usually call AdS is the universal cover of AdS. The time
variable in AdS is compact −π < T < π.)

â The conformal boundary of AdSd+1 is at r̄ = 0 and the boundary
is the Einstein Universe R× Sd−1.

â The bulk metric divergences there: there is a second order pole.
So there is no well-defined boundary metric.

â There is however a well-defined conformal structure, i.e. a metric
up to a Weyl transformation.
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The boundary conformal structure
â To obtain a boundary metric we use a defining function, i.e. a

function ω(x) which is positive in the interior but has a single zero
at the boundary. We then define

g(0) = lim
r̄→0

ω2g

This limit exits because the second order pole in g is canceled by
the second order zero of ω2.

â However, any other ω′(x) = ω(x)eσ(x) is as good, so what is
well-defined here is the conformal class

g(0) ∼ e2σ(x)g(0)

â For AdS we may pick ω = sin r̄, and this leads to the
representative:

ds2
0 = −dt2 + dΩ2

d−1

This metric is conformally flat and any other conformally flat
metric is as good.
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Different representatives of conformal structure
â Modulo issues that are associated with the holographic

conformal anomaly, any representative is as good.
â One can change representative by doing a bulk diffeomorphism.
â A conformally flat conformal structure can represented by

â Minkowski metric: Poincaré coordinates
â AdS metric: AdS slicing of AdS
â dS metric: dS slicing of AdS
â FRW metric: FRW slicing of AdS [Giatagianas, Tetradis]

â This does not change the boundary of AdS, which is always the
Einstein Universe R× Sd−1.

à Different representatives describe the same boundary in different
ways.

â A CFT is invariant under Weyl transformations (module
conformal anomalies), so in AdS/CFT it does not matter which
representative one is using.
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dS3 slicing of AdS4

â The dS-slicing of AdS is given by

ds2 = dz2 + e−2z

(
1− H2

4
e2z

)2

ds2
dS3

where

ds2
dS3

= −dt2 + e2Htd~y2 =
−dη2 + d~y2

H2η2

where −∞ < η < 0.
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Map to Poincaré and global coordinates

â The coordinate transformation

z = log

(
− r

Hτ

2τ2 − 2
√
τ4 − r2τ2

r2

)
, η = τ

τ2 − r2 −
√
τ4 − r2τ2

τ2 −
√
τ4 − r2τ2

maps the metric to Poincaré coordinates

ds2 =
1

r2
(dr2 − dτ2 + d~y2)

â and the further transformation

r =
sin r̄

cosT + cos θ cos r̄
, τ =

sinT

cosT + cos θ cos r̄
, R =

sin θ cos r̄

cosT + cos θ cos r̄

where d~y2 = dR2 +R2dΦ2, maps to global coordinates

ds2 =
1

sin2 r̄

(
−dT 2 + dr̄2 + cos2 r̄dΩ2

2

)
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Boundary and global issues

I+(dS3)

I−(dS3)

T = π

T = 0

T = −π
θ = 0 θ = π

N
or

th
p

ol
e

S
o
u

th
p

o
le

Inflationary
patch

â Boundary R× S2 is at r̄ = 0.
Azimuthal angle is suppressed.

â dS3 is conformal to a portion of
R× S2

â The spacelike conformal boundaries
of dS are shown in red.

â As Y ≡ sinT
sin r̄ → −∞ we get the blue

square region.
â As Y →∞ we get the white square

region.
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Penrose diagram

Y
=
−1

Y
=
−
1

Y
=

1

Y
=

1

Y = 0

Y
→

+
∞

Y
→
−
∞

← I+ (dS3)

← I− (dS3)

â Each point is an S2 which shrinks to
zero size at the origin of coordinates
indicated by the dashed line.

â Lines are level sets of Y (= sinT/ sin r̄)

â Blue line corresponds to the blue square
area of the boundary.

â The green shaded region shows the
development of data prescribed in the
blue dS3 region at the boundary.
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From CFT to QFT
â A CFT is Weyl invariant, so it is the same in all conformally

related spacetimes.
â We would like to deform the CFT by a mass term:

S = SCFT +

∫
ddx

√
−det gmO(x).

â Since m breaks conformal symmetry there is no longer a relation
to vacuum QFT on Minkowski spacetime under a Weyl
transformation.

â Instead a massive theory in dS is equivalent to QFT on
Minkowski spacetime in the presence of a spacelike defect:
The Weyl tranformation to Minkowski spacetime yields

S = SCFT +

∫
ddx

m

−Hη O(x).

à The future conformal boundary of dS3 is described by a singular
spacelike source function in R1,2.
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Holographic implementation

â It is well-known how to deform a CFT holographically from the
studies of holographic RG flows in the early days of AdS/CFT
[Boonstra, KS, Townsend (1998)] [Girardello etal (1998)][Freedman etal (1999)] [KS, Townsend (1999)].....

â We need to turn on the scalar φ that is dual to O
â Look for dS-sliced asymptotically AdS domain-wall solutions

ds2 = dz2 − P (z)ds2
dS3

, φ = φ(z)

â As z →∞
â the metric should approach that of AdS is dS-sliced coordinates
â the scalar should behave as a sources, φ→ e(d−∆)zm
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The model

â Following [Buchel (2017)], we consider a free massive field in AdS:

S =
1

2κ2

∫
M4

√
−Gd4x

(
R+ 6− 1

2
(∂φ)

2
+ φ2

)
,

â The field φ is dual to a dimension ∆ = 2 operator.
â One can solve the field equations perturbatively in m.

P = −e−2z

1 −
H2

4
e
2z

2

−
(−144 + 112Hez − 32H2e2z + 4H3e3z +H4e4z)

1152
(
1 + H

2
ez
)2 m

2
+ O(m

4
)

φ̄ =
ez(

1 + H
2
ez
)2 m − e2z(40 + 12Hez + 14H2e2z +H3e3z)

576H
(
1 + H

2
ez
)6 m

3
+ O(m

5
).

This solution was first obtained (in different coordinates) in
[Buchel (2017)].
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Global solution

â One may transform to global coordinates

ds2 = Ω(Y )2 1

sin2 r̄

(
−dT 2 + dr̄2 + cos2 r̄dΩ2

2

)
,

φ̄ = F (Y )

with

Ω
2
(Y ) = 1 −

1

12(Y − 1)2

m2

H2
−

5

432(Y − 1)3

m4

H4
+ O(m)

6
,

F (Y ) =
1

1 − Y

m

H
+

3 − 5Y

72(Y − 1)3

m3

H3
+
−175 + 619Y − 645Y 2 + 129Y 3

51840(Y − 1)5

m5

H5
+ O(m)

7
,
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Penrose diagram
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Location of singularity at finite m

0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y −∗

m/H

←perturbation theory O(m)

â The null Y = 1 singularity
splits into a spacelike and
timelike singularity for finite m.

â Perturbatively in m:

Y ±∗ = 1± 1

2
√

3

m

H
+O(m)2

â At finite m, we obtained the
solution using the shooting
method (source m at
Y = −∞, regular at Y = −1)
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One-point functions
â Correlators can be extracted as usual using holographic

renormalization.
â One-point functions take the form dictated by dS-invariance and

Ward identites:

〈O〉0 =
H2

2κ2
F
(m
H

)
,

〈Tµν〉0 = −H
3

2κ2

m

3H
F
(m
H

)
gdSµν ,

â For small m/H:

F = −m
H
− 5

72

m3

H3
+

43

17280

m5

H5
+O(m)7

â As m/H →∞:

F = Fasy
m2

H2
Fasy ' −0.37
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Non-perturbative evaluation of F

-8 -6 -4 -2 0 2 4

-5

0

5

log(−F)

logm/H

small m perturbation theory→

← leading large m behaviour
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2-point functions

â These are computed using the methodology developed for
holographic RG flows [Bianchi, Freedman, KS (2001)] ....

â We need to solve linearised equations around the background:

Gab = GDWab (z) +Hab(z, x), φ = φ̄(z) +Hφ(z, x)

â Decomposition

Hzz = X

Hzµ = P (z)(∂µV + Vµ)

Hµν = P (z)(−2ψgdSµν + 2∇dS(µ ∂ν)χ+ 2∇dS(µ ων) + γµν)

Hφ = S

γµν is TT and ωµ, Vµ are divergence-less w.r.t. gdSµν

Kostas Skenderis Holography for QFTs in de Sitter



Introduction
Conformal boundary of AdS spacetimes

QFT in dS from AdS
Toy model: free fermions in dS

Conclusions

Using dS isometries

â Gauge redundancy

Hab → Hab + 2∇(aξb), Hφ → Hφ + ξa∂aφ̄

à Take X = V = Vµ = 0 we go to the FG gauge. Leftover
redundancy solved with gauge invariant variables.

â We further use the dS isometries to decompose as:

∂jΦ = ikjΦ, 2dS3Φ = λΦ

⇒ Φ = Φk,λ(z)ηJν(kη)eikiy
i

, λ = H2(1− ν2)

where we work with conformal time:

ds2
dS3

=
−dη2 + d~y2

H2η2

â So the dynamical equation to be solved is the radial equation
involving Φk,λ(z).
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Tensors

â Decomposition:

γ0i = −hiJν(kη)eikyγ(z)

γij = 1
k2η2 (η∂η − 2)(ηJkν(kη))∂(ie

ikyhj)γ(z)

where hi is a constant polarization vector satisfying: hiki = 0.
â Equation: γ′′ + 3

2
P ′

P γ
′ − λ

P γ = 0, is solved order by order in m.
â 2-point function:

〈Tµν(ν1, k1)Tρσ(ν2, k2)〉 = ΠµνρσA(ν1, k1)

where Πµνρσ is TT projector and

A(ν, k) =
H3

2κ2

[
ν(ν

2 − 1) +
3ν2 + 8ν − 19

24(ν − 2)

m2

H2
+

( 35

864
−

23

1536(ν − 2)
+

3

256(ν − 2)2

)m4

H4
+ O(m)

6
]

â A(ν1, k1) contains a polynomial in ν and poles in (ν − 2).
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Resummation
â Resummation yields single poles corresponding to normalisable

modes:
νtn = n+O(m2), n = 2, 3, 4 . . .

where we computed the corrections though m6. For example,

ν
t
2 = 2 +

1

32

m2

H2
−

103

36684

m4

H4
+

50929

212336640

m6

H6
+ O(m)

8
,

â The resummation reads:

A(ν, k) =
3H3

2κ2

(
ν

3
(ν2 − 1) +

ν

24

m2

H2
+

∞∑
j=2

rtj
ν − νtj

)
− 7

12
m〈O〉0

with residues

r
t
2 = −

m2

8H2
(1 −

23

576

m2

H2
−

14477

6635520

m4

H4
+

66506857

1337720832000

m6

H6
+ O(m)

8
),

r
t
3 = . . .

. . .
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Scalars

â Gauge invariant variables:

ζ = −ψ + P ′

2P
S
φ̄′
, φ̂ = −

(
S
φ̄′

)′
, ν̂ = χ′ + S

Pφ̄′

â The Hamiltonian and momentum constraint equations give:

φ̂ = 2H2P
P ′ ν̂ − 2P

P ′ ζ
′, ν̂ = − 2(3H2+λ)P ′

Qλ
ζ +

Q−3H2

H2Qλ
ζ ′

â Dynamical equation

φ̂′′ +
(
− 4φ̄

φ̄′
+ 2H2

P ′ − 2P
P ′ −

φ̄2P
3P ′ −

Pφ̄′2

6P ′

)
φ̂′ +(

− 10− φ̄2 − 8φ̄2

φ̄′2
+ 40H2φ̄

φ̄′P ′
− 40φ̄P

φ̄′P ′
− 20φ̄3P

3φ̄′P ′
− 10φ̄P φ̄′

3P ′ − λ
P

)
φ̂ = 0

which is solved pertrubatively in m.
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Scalar 2-point function
â 2-point function:

〈Oν1
(k1)Oν2

(k2)〉 = a(ν1, k1)δν1,ν2
δ(2)(k1 + k2)

â After resummation only single poles at the location of
normalizable modes:

〈Oν(k)Oν(−k)〉 = H

(
ν +

rs1
ν − νs1

+
∑
±

rs2,±
ν − νs2,±

+

∞∑
j=3

rsj
ν − νsj

)
where the normalisables modes are [Buchel (2017)]

νsn = n+O(m2), n = 1, 2, 3, 4 . . .

again computed through order m6. E.g.

ν
s
1 = 1 +

1

12

m2

H2
−

1

54

m4

H4
+

1591

622080

m6

H6
+ O(m)

8
,

and residues:
rs1 = m2

6H2

(
1 − 1

4
m2

H2 + 109
4536

m4

H4 + 109672267
100590033600

m6

H6 + O(m)8
)
, rs2 = ...
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A simple representation of conformal correlators

â When m2 = 0 the 2-point should reduce to a CFT correlator:

〈Oν1
(~k1)Oν2

(~k2)〉 ∼ ν1δν1,ν2
δ(2)(~k1 + ~k2)

where ν1 is the index of the Bessel function.
â This is a surprising simple representation of the CFT correlator
â No explicit momentum dependence, apart from the momentum

conserving delta function.
â If we define

a~k =
1√
|ν|
Oν(~k), a†~k = a−~k

Then all conformal scalar 2-point functions are that of free
harmonic oscillators:

〈a~ka
†
~k
〉 = 1

Kostas Skenderis Holography for QFTs in de Sitter
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Comparing with position and momentum space
â In position space, the 2-point function for dimension ∆ = 2

operator is

〈O(t′, x′)O(t, x)〉 =
1

(−(t− t′)2 + (x− x′)2)2

â In momentum space and in d = 3:

〈O(ω1, k1)O(ω2, k2)〉 ∼
√
|k2

1 − ω2
1 |δ(ω1 + ω2)δ(2)(k1 + k2)

â The fact that the expression in the Bessel basis agrees with the
above follows from a decomposition of eiωt in terms of Bessel
functions [Hansen (1843)]:

e−iωt =

∞∑
ν=−∞

aνJν(kt), ω =
a2 − 1

2a
ik

â Similar results hold for any ∆ and d with 2∆− d odd.
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2-point functions in AdS/CFT

â Let G2(t− t′, ~x− ~x′) = 〈O(t, ~x)O(t′, ~x′)〉 the 2-point function of a
dimension 2 operator in d = 3 and

G̃2(ω,~k) =

∫
d2xdteiωt−i

~k·~xG2(t, x)

it’s Fourier transform.
â The 2-point function in AdS/CFT is encoded in

Φ(~x, t) = rφ(0)(t, ~x)+. . .+r2

∫
dd−1x′dt′φ(0)(t

′, ~x′)G2(t− t′, ~x− ~x′)

â Taking the source to be a plane wave, φ(0)(t, ~x) = e−iωt+i
~k·~x

,yields
Φ(~x, t) = e−iωt+i

~k·~x
(
r + . . .+ r2G̃2(ω,~k)

)
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â In the Bessel basis

Φν(~k) = ei
~k·~x
(
rJν(kt) + . . .+ r2

(
−ν
t
Jν(kt)

))
â We need to consider a linear superposition such that the source

becomes a plane wave

Φ(t, x) =

∞∑
ν=−∞

cν(ω,~k)Φν(~k) = e−iωtei
~k·~xr + · · ·

â It turns out the appropriate coefficients are

cν = aν , ω =
a2 − 1

2a
ik

â Then the vev part gives:
∞∑

ν=−∞
cν

(
−ν
t
Jν(kt)

)
= e−iωt

√
|k2 − ω2|
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Model for dual QFT

â We deformed the CFT with an operator O of dimension 2.
â In d = 3 a free massless fermion ψ is a CFT and has an operator

of dimension 2, namely a mass term O = ψ̄ψ

â Thus a free massive fermion in dS has some of the features of
the dual QFT.
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Conformal perturbation theory

â We can use conformal perturbation theory in Minkowski with a
singular source for O and then Weyl transform to de Sitter.

â In the free-fermion CFT:

〈O(x1)〉0 = 0

〈O(x1)O(x2)〉0 =
1

8π2

1

|x12|4
〈O(x1)O(x2)O(x3)〉0 = 0

〈O(x1)O(x2)O(x3)O(x4)〉0 = non− zero

where the subscript 0 indicates that the computation was done in
the massless theory.
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1-point function

â Computing in MInkowski

〈O(x1)〉 = 0−
∫
d3x2m(x2)〈O(x1)O(x2)〉0 +O(m2) =

m

4Hτ2
1

+O(m2)

and transforming to de Sitter

〈O〉dS3
= −H2 1

4

m

H
+O(m2)

which matches the holographic result, up to a constant.

â Note that in λφ4 theory in dS4 [Bunch, Davies (1978)]:

〈φ2〉dS4 ∼
H4

m2
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2-point function

â Two-point functions up to O(m2)

〈O(x1)O(x2)〉 = 〈O(x1)O(x2)〉0 −
∫
ddx3m(x3)〈O(x1)O(x2)O(x3)〉0

+
1

2

∫
ddx3d

dx4m(x3)m(x4)〈O(x1)O(x2)O(x3)O(x4)〉0

which yields

〈O(x1)O(x2)〉 = 〈O(x1)O(x2)〉0 +O(m2)

which is also in agreement with the holographic result: no order
m contribution.
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Conlusions

â We studied strong coupled QFTs in dS3 via holography.
â We found no signs of IR instabilities. Perhaps this is unsurprising

given that the QFT was a deformation of a CFT.
â 2-point functions are expressed in a spectral representation as a

sum over simple poles.
â The poles correspond to normalizable modes.
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Outlook

â Extend the work to dS4 and FRW, and general potential.

â Make connection with cosmological observables.

â Explore the novel Bessel basis for CFT correlators.
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