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outer crust 0.3-0.5 km

Dense QCD challenge: can we gt jons, electrons

understand the composition and
macroscopic properties of NSs using
only first-principles field theory tools
and robust observational data?
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Link between micro and macro from
GR and Equation of State (EoS):

Radius (km)
‘U\g (r) _ drr2e(r), [Ozel et al., Ap) 820 (2016)]
dp(r)  Ge(r)M(r) (1 +p(r)/e(r)) (1 + 4mrp(r) /M (r))
dr r2 1 —2GM(r)/r

e(p) = M(R)
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Rest of the talk:

NS matter basics: what do we know about the composition
of NSs from nuclear physics?

Lessons from (ultra)high density: what can pQCD do for you?
NS observations: from masses and radii to NS mergers

Putting it all together: how far can model-independent
approaches take us right now?

Future directions: what is to be expected in near future?



Rest of the talk:

l. NS matter basics: what do we know about the composition
of NSs from nuclear physics?

|. Lessons from (ultra)high density: what can pQCD do for you?
Il. NS observations: from masses and radii to NS mergers

V. Putting it all together: how far can model-independent
approaches take us right now?

V. Future directions: what is to be expected in near future?

Recurring theme: where can holography make a difference?
Please interrupt with questions and comments!



NS matter: from dilute crust to ultradense core
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Proceeding inwards from the crust: e D

* Ug increases gradually, starting from ug.

* Baryon/mass density increase beyond
saturation density ~ 0.16/fm?

e Composition changes from ions to nuclei
to neutron liguid and beyond

* Good approximations: T = 0 = n,

-#—— electrons, neutrons, nuclei

outer core ~ 9 km
neutron-proton Fermi liquid
few % electron Fermi gas

Beyond neutron drip point NN interactions
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yuter crust 0.3-0.5 km

Proceeding inwards from the crust: ;
O ions, electrons

* Ug increases gradually, starting from ug.

* Baryon/mass density increase beyond
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uter crust 0.3-0.5 km

Proceeding inwards from the crust: outer crust 03-05
O ions, electrons

* Ug increases gradually, starting from ug.

* Baryon/mass density increase beyond
saturation density ~ 0.16/fm?

e Composition changes from ions to nuclei
to neutron liguid and beyond

* Good approximations: T = 0 = n,

-#—— electrons, neutrons, nuclei

outer core ~ 9 kn
neutron-proton Fermi liquid
few % electron Fermi gas

At high density, asymptotic freedom =

weakening coupling and deconfinement

e State-of-the-art pQCD EoS at partial
NNNLO, with purely soft sector fully
determined [Gorda et al., PRL 127 (2021)]

e Still remaining from full a3 result: “purely

p/Prp

0.2!

hard” and “mixed” contributions 0.0!
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Proceeding inwards from the crust:

* Ug increases gradually, starting from ug.
* Baryon/mass density increase beyond

saturation density ~ 0.16/fm?

e Composition changes from ions to nuclei

to neutron liguid and beyond

* Good approximations: T = 0 = n,

. Low- and high-density limits under control

but extensive no-man’s land at intermed.

densities. Have to work with:

1) Astrophysical observations
2) Thermodynamic relations

3) Subluminality: ¢, < 1

Barring of course a new ab-initio approach!
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Possible way to proceed: build large
ensembles of randomly generated
interpolators with piecewise basis functions
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Possible way to proceed: build large
ensembles of randomly generated
interpolators with piecewise basis functions

Require for all individual EoSs:

1) Smooth matching to nuclear and quark
matter E0Ss

2) Continuity of p and ng with at most one
exception (1t order transition)

3) Subluminality: ¢ < 1

4) Stellar models constructed with
interpolated EoSs agree with robust
measurements of NS properties

[Kurkela et al., ApJ 789 (2014), Gorda et al., PRL 120 (2018); etc.]
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Possible way to proceed: build large
ensembles of randomly generated
interpolators with piecewise basis functions

Require for all individual EoSs:

1)

2)

Smooth matching to nuclear and quark
matter E0Ss

Continuity of p and ng with at most one
exception (1t order transition)
Subluminality: ¢, < 1

Stellar models constructed with
interpolated EoSs agree with robust
measurements of NS properties

[Kurkela et al., ApJ 789 (2014), Gorda et al., PRL 120 (2018); etc.]
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pQCD at high density and zero temperature:
Hard (but not really) Thermal Loops
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1 a a n
Loop = ZFMVFMV + Vi (Vu Dy + mi — p1i70) i

At high uand T = 0, several changes:
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1 a a n
Loop = ZFMVFMV + Vi (Vu Dy + mi — p1i70) i

At high uand T = 0, several changes:

 Sum-integrals get replaced by four-dimensional continuous integrals,
with fermionic py = py — iU
o Simplification from vanishing of diagrams with no fermion loops

o Technical challenge: how to deal with fermionic p, integrals in a
systematic manner?
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At high uand T = 0, several changes:

Sum-integrals get replaced by four-dimensional continuous integrals,

with fermionic py = py — iU

o Simplification from vanishing of diagrams with no fermion loops

o Technical challenge: how to deal with fermionic p, integrals in a
systematic manner?

IR sensitive modes no longer three-dimensional: all bosonic (Euclidean)

four-momenta satisfying |P| S my~gug need special treatment

o Correct effective theory for IR modes: Hard Thermal Loops (HTL)
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At high uand T = 0, several changes:

Sum-integrals get replaced by four-dimensional continuous integrals,

with fermionic py = py — iU

o Simplification from vanishing of diagrams with no fermion loops

o Technical challenge: how to deal with fermionic p, integrals in a
systematic manner?

IR sensitive modes no longer three-dimensional: all bosonic (Euclidean)

four-momenta satisfying |P| S my~gug need special treatment

o Correct effective theory for IR modes: Hard Thermal Loops (HTL)

No correct answer from lattice!



Up to state-of-the-art O(a2), three types of contributions to the pressure:
1) Hard modes (scale ug) and their interactions: naive loop expansion up to

and including four loops
2) Soft modes (scale mg~gug) and their interactions: one- and two-loop

graphs in HTL effective theory
3) Mixing of soft and hard modes
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Up to state-of-the-art O(a2), three types of contributions to the pressure:
1) Hard modes (scale ug) and their interactions: naive loop expansion up to

and including four loops
2) Soft modes (scale mg~gug) and their interactions: one- and two-loop

graphs in HTL effective theory
3) Mixing of soft and hard modes

o p =|prp + Plas+psa;  pyo
+ pras|+ pias

(iii) m 3
/ m / _|_ pli% Q S
ﬂ P3
()— p3 -
Known since 1970’s [Freedman, MclLerran,

PRD 16 (1977)]
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Up to state-of-the-art O(a2), three types of contributions to the pressure:
1) Hard modes (scale ug) and their interactions: naive loop expansion up to

and including four loops
2) Soft modes (scale mg~gug) and their interactions: one- and two-loop

graphs in HTL effective theory
3) Mixing of soft and hard modes
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Up to state-of-the-art O(a2), three types of contributions to the pressure:
1) Hard modes (scale ug) and their interactions: naive loop expansion up to

and including four loops
2) Soft modes (scale mg~gug) and their interactions: one- and two-loop

graphs in HTL effective theory
3) Mixing of soft and hard modes

o p = prp + Plas+psa; + pyo]
+ pras|+ pias

ﬂ D3
Sk

Gorda, Kurkela, Paatelainen, Sappi, AV, PRL 127
(2021); Fernandez, Kneur, 2109.02410 -



Up to state-of-the-art O(a2), three types of contributions to the pressure:
1) Hard modes (scale ug) and their interactions: naive loop expansion up to

and including four loops
2) Soft modes (scale mg~gug) and their interactions: one- and two-loop

graphs in HTL effective theory
3) Mixing of soft and hard modes

p = prp + plas+phaZ + pha?
+ phal + pia

m <

(ii)
(iii) 3
% >® p§ QED: Gorda, Kurkela, Osterman, Paatelainen,

Sappi, Seppanen, Schicho, AV, 2204.11893
QCD: Underway; results in 2022 29



Up to state-of-the-art O(a2), three types of contributions to the pressure:
1) Hard modes (scale ug) and their interactions: naive loop expansion up to

and including four loops
2) Soft modes (scale mg~gug) and their interactions: one- and two-loop

graphs in HTL effective theory
3) Mixing of soft and hard modes

Also underway; no concrete
promises of timescale
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Up to state-of-the-art O(a2), three types of contributions to the pressure:

1) Hard modes (scale ug) and their interactions: naive loop expansion up to
and including four loops

2) Soft modes (scale mg~gug) and their interactions: one- and two-loop
graphs in HTL effective theory

3) Mixing of soft and hard modes
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Up to state-of-the-art O(a2), three types of contributions to the pressure:
1) Hard modes (scale ug) and their interactions: naive loop expansion up to

and including four loops
2) Soft modes (scale mg~gug) and their interactions: one- and two-loop

graphs in HTL effective theory
3) Mixing of soft and hard modes

Effect of soft
contributions on
the EoS:
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Up to state-of-the-art O(a2), three types of contributions to the pressure:
1) Hard modes (scale ug) and their interactions: naive loop expansion up to

and including four loops

2) Soft modes (scale mg~gug) and their interactions: one- and two-loop

graphs in HTL effective theory
3) Mixing of soft and hard modes

Effect of mixed
contributions and
large-N¢
resummation on
EoS of cold and
dense QED:
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What do we know from NS observations?
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Radius (and combined MR) measurements more problematic, but

recently important progress through X-ray observations:
Cooling of thermonuclear X-ray bursts provide radii to ~ + 400m [Nattils

Mass M (M..)

et al., Astronomy & Astrophysics 608 (2017), ...]
Pulse profiling (NICER) = nontrivial lower bounds for two stellar radii,
including PSR J0740+6620 with M = ZMQ [Miller et al., Astrophysical Journal Letters

918 (2021),...]
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Gravitational wave breakthrough: First observed
binary NS merger GW170817 by LIGO & Virgo in
2017 (and many since then)

Three types of potential inputs:

1) Tidal deformabilities of the NSs during inspiral
— good measure of stellar compactness

2) Ringdown pattern — sensitive to EoS (also at
T # 0), but frequency too high for LIGO/Virgo

3) EM counterpart: indirect information on
merger product

o
[\
SN

6

Frequency (Hz)

[LIGO and Virgo collaborations, PRL 119 (2017), PRL 121 (2018)]
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Tidal deformability: How large of a quadrupolar moment a star’s
gravitational field develops due to an external quadrupolar field

Qij = —AE;;

Substantial effect on observed GW waveform during inspiral phase
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[Read et al., PRD 88 (2013)]
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Tidal deformability: How large of a quadrupolar moment a star’s
gravitational field develops due to an external quadrupolar field

Qij = —AE&y;

LIGO & Virgo bound 70 < A(1.4M5) < 580 at 90% credence using low
Spin prior [LIGO and Virgo, PRL 121 (2018)]: useful test for EoSs

20001

X 2 ,\\.
\ Less Compact \ %,
47 N
SN
\ N

1500 1 lore Compact N
\
\}

< 10001_

f)‘”li \\\
500 v N\«
N S

0 ~
0 250 500 750 1000 1250

39



Gravitational wave breakthrough: First observed
binary NS merger GW170817 by LIGO & Virgo in
2017 (and many since then)

Three types of potential inputs: Nomalized amplitude
1) Tidal deformabilities of the NSs during inspiral ———————==
— good measure of stellar compactness
2) Ringdown pattern — sensitive to EoS (also at
T # 0), but frequency too high for LIGO/Virgo
3) EM counterpart: indirect information on
merger product
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[LIGO and Virgo collaborations, PRL 119 (2017), PRL 121 (2018)]
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Ringdown pattern: Unlike in BH mergers, binary NS mergers expected to

feature complex period of relaxation characterized by GW spectrum
sensitive to both initial NS masses and the EoS

M/M_...,,q~1
binary (< 1kHz) black hole + torus (5 — 6kHz) black hole (6 — 7TkHz)

#

binary (< 1kHz) ~ HMNS/SMNS (2 — 4kHz)  black hole + torus(5 — 6kHz) black hole(6 — 7kHz)

- rot.)(1 — 2kHz) black hole/ NS?

#
Q?

Scenario 1: prompt collapse
2 1

Scenario 2: collapse during hyper-
massive phase (differential L5
rotation)

Scenario 3: collapse during supra-
massive phase (uniform rotation) 1 T

Scenario 4: no collapse

[1ms —15] [1—10%s]
[Baiotti, Rezzolla, Rept.Prog.Phys. 80 (2017)]



Post-merger dynamics can be studied with relativistic hydrodynamics
simulations, showing marked sensitivity to first-order phase transitions,
but frequency range (currently) too high for LIGO and Virgo

H4-q10-M1275 H4-q10-M1300 ’ H4-q10-M1325 H4-q10-M1350

m |
i 'f \MJ‘ | '

h x 10% [50 Mpc]

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
T

SLy-q10-M1250

SLy-q10-M1275 _ bLy—ql(LM 1300 SLV |1(H\1 13')

WnW_

[Takami, Rezzolla, Baiotti, PRD 91 (2015)]
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Gravitational wave breakthrough: First observed
binary NS merger GW170817 by LIGO & Virgo in
2017 (and many since then)

Three types of potential inputs: Nomalized amplitude
1) Tidal deformabilities of the NSs during inspiral ———————==
— good measure of stellar compactness
2) Ringdown pattern — sensitive to EoS (also at
T # 0), but frequency too high for LIGO/Virgo
3) EM counterpart: indirect information on
merger product

(=)

Frequency (Hz)

[LIGO and Virgo collaborations, PRL 119 (2017), PRL 121 (2018)]
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In GW170817, short gamma-ray burst _

1,600
<

1.7s after GWs, followed by optical signal:
Delayed collapse to a BH

M / MTOV qg~1
A binary (< 1kHz) black hole + torus (5 — 6kHz) black hole (6 — 7kHz)

0® @

binary (< 1kHz) ~ HMNS/SMNS (2 — 4kHz)  black hole + torus (5 — 6kHz) black hole(6 — 7kHz)

°° & :

binary (< 1kHz) SMNS (diff. rot.)(2 — 4kHz) SMNS (unif: rot.)(1 — 2kHz) black hole/N87

° 8 O o

[106 — 107 y1| [1ms —15] [1—10%s]

1.5




In GW170817, short gamma-ray burst N
1.7s after GWs, followed by optical signal: » ..
Delayed collapse to a BH

GW170817

Constraints for maximal (TOV) mass of
stable NSs from scenarios 2 and 3:
2) Differentially-rotating hypermassive

M/Myoy, g1
NS Mremnant > Mcrlt - supra A l()]n y<1m black hole + torus (5 — 6kHz) black hole (6 — 7kHz)
(HMNS-hyp below) 27 d
3) Uniformly-rotating supramassive NS: — e
Mremnant = Mcrit — MTOV (BH-hyp) 1.5 “ 4
binary (< 1kHz)  SMNS (diff. rot.)(2 — 4kHz) it Tot.)(1 — 2kHz) black hole/NS?
1H © é
" 1 ne

[106 = 107 yr] [1 ms —1 S] []. — 104 S] 45



In GW170817, short gamma-ray burst N
1.7s after GWs, followed by optical signal: |
Delayed collapse to a BH

GW170817

Constraints for maximal (TOV) mass of
stable NSs from scenarios 2 and 3:
2) Differentially-rotating hypermassive

NS Mremnant > Mcrlt - Supra A bn y (< 1kHz) black hole + torus (5 — 6kHz) black hole (6 — 7kHz)

(HMNS-hyp below) 27 d

3) Uniformly-rotating supramassive NS:

(< 1kHz) HMNS/SMNS (2 — 4kHz) black hole + torus (5 — 6kHz) black hole(6 — 7kHz)
Mremnant = Mcrit — MTOV (BH-hyp) Lo “ 4
HMNS-scenario more likely due to short ST I
delay between GW and EM signals; gives 1@y & , g?
stronger constraints [Rezzolla et al, Ap) 852 (2018)] _ 1 1 1 ' =
[106 — 107 y1| [1ms —15] [1—10%s] 46



Interpolation: combining all available information,
what can we say about the EoS and the
composition of massive NSs?



Useful strategy: Implement interpolation starting from speed of sound and
classify results in terms of maximal value ¢ reaches at any density [Annala et al.,
Nature Physics (2020) and PRX (2022)]
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Useful strategy: Implement interpolation starting from speed of sound and
classify results in terms of maximal value ¢ reaches at any density [Annala et al.,
Nature Physics (2020) and PRX (2022)]

Interesting because of tension between standard lore in nuclear physics and
experience from other contexts
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Useful strategy: Implement interpolation starting from speed of sound and
classify results in terms of maximal value ¢ reaches at any density [Annala et al.,
Nature Physics (2020) and PRX (2022)]

Interesting because of tension between standard lore in nuclear physics and
experience from other contexts

PHYSICAL REVIEW D 80, 066003 (2009)
Bound on the speed of sound from holography

Aleksey Cherman® and Thomas D. Cohen’
Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA

Abhinav Nellore*
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA
(Received 12 May 2009; published 3 September 2009)

We show that the squared speed of sound v? is bounded from above at high temperatures by the
conformal value of 1/3 in a class of strongly coupled four-dimensional field theories, given some mild
technical assumptions. This class consists of field theories that have gravity duals sourced by a single-
scalar field. There are no known examples to date of field theories with gravity duals for which v? exceeds
1/3 in energetically favored configurations| We conjecture that v = 1/3 represents an upper bound for a |

| broad class of four-dimensional lheories.l

DOI: 10.1103/PhysRevD.80.066003 PACS numbers: 11.25.Tq, 11.15.Pg
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In addition to the usual low- and high-
density limit, always require:

* EoS must support 2M, stars

* LIGO/Virgo 90% tidal deformability

limit must be satisfied
[Annala et al., Nature Physics (2020)]
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In addition to the usual low- and high-
density limit, always require:

* EoS must support 2M, stars

* LIGO/Virgo 90% tidal deformability

limit must be satisfied
[Annala et al., Nature Physics (2020)]

In recent work, also take into account:
 NICER data for PSR J0740+6620:

o R(2Mg) > 11.0km (95%)

o R(2Mg) > 12.2km (68%)
e BH formation in GW170817 via

o Supramassive or hypermassive NS

[Annala et al., PRX 12 (2022)]
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In addition to the usual low- and high-
density limit, always require:

* EoS must support 2M, stars

* LIGO/Virgo 90% tidal deformability

limit must be satisfied
[Annala et al., Nature Physics (2020)]

In recent work, also take into account:
 NICER data for PSR J0740+6620:

o R(2Mg) > 11.0km (95%)

o R(2Mg) > 12.2km (68%)

 BH formation in GW170817 via
o Supramassive or hypermassive NS

[Annala et al., PRX 12 (2022)]
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In addition to the usual low- and high-
density limit, always require:

* EoS must support 2M, stars

* LIGO/Virgo 90% tidal deformability

limit must be satisfied
[Annala et al., Nature Physics (2020)]

In recent work, also take into account:
 NICER data for PSR J0740+6620:

o R(2Mg) > 11.0km (95%)

o R(2My) > 12.2km (68%)
e BH formation in GW170817 via

o Supramassive or hypermassive NS

[Annala et al., PRX 12 (2022)]
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In addition to the usual low- and high-
density limit, always require:
* EoS must support 2M, stars

* LIGO/Virgo 90% tidal deformability

limit must be satisfied
[Annala et al., Nature Physics (2020)]

In recent work, also take into account:
 NICER data for PSR J0740+6620:

o R(2Mg) > 11.0km (95%)

o R(2Mg) > 12.2km (68%)

 BH formation in GW170817 via
o Supramassive or hypermassive NS

[Annala et al., PRX 12 (2022)]
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In addition to the usual low- and high-
density limit, always require:

* EoS must support 2M, stars

* LIGO/Virgo 90% tidal deformability

limit must be satisfied
[Annala et al., Nature Physics (2020)]

In recent work, also take into account:
 NICER data for PSR J0740+6620:

o R(2Mg) > 11.0km (95%)

o R(2Mg) > 12.2km (68%)

 BH formation in GW170817 via
o Supramassive or hypermassive NS

[Annala et al., PRX 12 (2022)]
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In particular the low-c, EoSs suggest a two-phase structure

Distinguishing feature between phases: polytropic index (logarithm. slope)

Yy =

dlnp
dlne

~ 1 in nearly conformal QM, ~2.5 in sub-ng nuclear matter
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Detailed comparison of interpolated EoSs with nuclear matter models and
pQCD limit reveals M, centres to reside closer to quark than nuclear-matter
limit. Large QM -like cores for moderate latent heats and max(c2).

This conclusion was significantly strengthened by new data in our 2022 PRX.

[Annala et al., Nature Physics (2020); Annala et al., PRX 12 (2022)] e
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Detailed comparison of interpolated EoSs with nuclear matter models and
pQCD limit reveals M, centres to reside closer to quark than nuclear-matter
limit. Large QM -like cores for moderate latent heats and max(c2).

This conclusion was significantly strengthened by new data in our 2022 PRX.

[Annala et al., Nature Physics (2020); Annala et al., PRX 12 (2022)] .



p/pFD(Mmax) = 0-395i8:8§g

Quark-matter probability: 0%
W 0.3 Quark-matter probability: 11.9%
Q\_ Quark-matter probability: 85.5%
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In addition to y and ¢, normalized trace anomaly A = o has been
€ €

suggested as useful measure of conformality. [Fujimoto et al., 2207.06753)

To be conservative, demand thatin QM y < 1.75, p/Pfree > 0.4 & |A] < 1/6.
Even then, likelihood of QM cores in M, stars currently ~0.9!

[Annala, Gorda, Hirvonen, Komoltsev, Kurkela, Nattila, AV, In preparation] 60



Future directions?



In near future, expect major advances from multiple fronts:

* Within CET, impressive efforts towards 2n; limit

* |n pQCD studies of cold QM, qualitative progress from inclusion of mixed
contributions and resummations

* Astrophysical observations coming up:
o GW observatory KAGRA started in 2020; Einstein Telescope in 2030s

o On X-ray front NICER, to be complemented by eXTP around 2025
* Model-independent EoS studies:

o Bayesian studies, enabling use of many more measurements
o Incorporating explicit first-order transitions

* Yet, no ab-initio method with realistic chances between 2 and 20n;
o Transport, out-of-equilibrium dynamics particular challenges



