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Say no quark matter in neutron stars

Can a running coupling or new phases change that from a 
D3/probe D7 perspective?

New AdS/QCD models for new descriptions.
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Holography of Quark Matter - D3/probe D7 

Fluctuations give meson spectrum.  hep-th/0304032 
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Abstract: We compute the meson spectrum of an N = 2 super Yang-Mills theory with

fundamental matter from its dual string theory on AdS5 × S5 with a D7-brane probe [1].

For scalar and vector mesons with arbitrary R-charge the spectrum is computed in closed

form by solving the equations for D7-brane fluctuations; for matter with non-zero mass mq

it is discrete, exhibits a mass gap of order mq/
√

gsN and furnishes representations of SO(5)

even though the manifest global symmetry of the theory is only SO(4). The spectrum of

mesons with large spin J is obtained from semiclassical, rotating open strings attached to

the D7-brane. It displays Regge-like behaviour for J #
√

gsN , whereas for J $
√

gsN it

corresponds to that of two non-relativistic quarks bound by a Coulomb potential. Meson

interactions, baryons and ‘giant gauge bosons’ are briefly discussed.

Keywords: D-branes, Supersymmetry and Duality, Brane Dynamics in Gauge Theories.

Orthonormal wave functions 

Orthonormal wave functions 

Orthonormal wave functions 

Always in the 
probe limit –
quenched.



Can add

T  - black hole
- instant deconfinement
- quasi-normal modes

µ - At
hep-th/0611099

B – world volume Fab
hep-th/0701001

DBI action translates background to quark physics so pheno descriptions in DBI…

shooting technique. Of course the physical solutions should not have arbitrary m and c. For a

given value of m, c is fixed by requiring regularity throughout the space.

The numerical solutions are illustrated in figure 7.1 for several choices of m. We choose units

such that the horizon is represented as a quarter circle with radius wH = 1.

black hole
embeddings

Minkowski
embeddings
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Figure 7.1: Two classes of regular solutions in the AdS black hole background. The quark mass
mq is the parameter m in units of ⇤ ⌘ wH

2⇡↵0 : mq = m⇤. We set ⇤ = wH = 1.

As can be seen from the figure, there are two qualitatively di↵erent D7-brane embeddings. At

large quark masses the D7-brane tension is stronger than the attractive force of the black hole.

The D7-brane ends at a point outside the horizon, ⇢ = 0, w6 � wH , at which the S3 wrapped by

the D7-brane collapses (see (7.9)). Such a D7-brane solution is called a Minkowski embedding.

They behave very similarly to the supersymmetric solutions in AdS5⇥S5. As the mass decreases,

there exists a critical value of the mass m = mcrit ⇡ 0.92 such that w6(⇢ = 0) = wH . For smaller

masses the D7-brane is forced to fall into the black hole horizon, i.e. the D7-brane ends at the

horizon w = wH at which the S1 of the black hole geometry collapses. This is a so-called black

hole embedding.

From a geometrical point of view the two classes of embeddings di↵er by their topology:

The D7-topology is R3
⇥B4

⇥S1 for Minkowski and R3
⇥S3

⇥B2 for black hole solutions. The

appearance of a change in the topology of the embedding at mcrit points to a phase transition

in the dual field theory at exactly this critical value of the quark mass.

In fact, this embedding behaviour is a specific example of the more general problem of em-

bedding a brane of arbitrary dimension in a black hole geometry, as studied in [190]. Expanding

the embedding equation near the horizon, it was shown that the equations have a self-similarity

which implies that for a given range of m, there are an infinite number of embeddings.

The dependence of the condensate on the mass is illustrated in figure 7.2. At m = 0 the

83

7.1.1 AdS-Schwarzschild solution

The high temperature, deconfined, phase of the N = 4 gauge theory is described by the AdS-

Schwarzschild solution, given by

ds2 =
K(r)

R2
d⌧ 2 + R2 dr2

K(r)
+

r2

R2
d~x2 + R2d⌦2

5 , (7.1)

where

K(r) = r2
�

r4
H

r2
. (7.2)

Asymptotically for r � rH , the black hole solution approaches AdS5⇥S5 whose radius is related

to the ’t Hooft coupling of the dual gauge theory by R4 = 4⇡�↵02. This spacetime is smooth

and complete if ⌧ is periodic with period ⇡rH . Note that the S1 parameterized by ⌧ collapses

at the horizon r = rH . The fact that the geometry “ends” at r = rH is responsible for the

existence of an area law for the Wilson loop and a mass gap in the dual field theory (see [32]).

For convenience, in the numerical work below we shall set both R and rH equal to 1.

The temperature of the field theory corresponds to the Hawking temperature of the black hole

which is given by the radius of the horizon, T = rH/(R2⇡). At finite temperature the fermions

have anti-periodic boundary conditions in the Euclidean time direction [32] and supersymmetry

is broken. The black hole solution thus describes a strongly interacting quark-gluon plasma

which is non-supersymmetric and non-conformal. It is therefore believed that, despite the

presence of other fields not contained in QCD, this plasma shares some properties with the

quark-gluon plasma of QCD.

As in the previous sections, we now introduce a D7-brane into this background, which

corresponds to the addition of matter in the fundamental representation. The dual field theory

is the N = 2 gauge theory discussed in section 3.1.1, but now at finite temperature.

7.1.2 Embedding of a D7-brane

To embed a D7-brane in the AdS black-hole background it is useful to recast the metric (7.1)

to a form with an explicit flat 6-plane. To this end, we change variables from r to w, such that

dw

w
⌘

rdr

(r4 � r4
H

)1/2
, (7.3)

which is solved by

2w2 = r2 +
q

r4 � r4
H

. (7.4)

The metric is then

ds2 =

✓
w2 +

w4
H

w2

◆
d~x2 +

(w4
� w4

H
)2

w2(w4 + w4
H

)
dt2 +

1

w2
(

6X

i=1

dw2
i
) , (7.5)
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g=1 for Chiral Symmetry Breaking
l

1112.1261 
1204.2474

A scalar in AdS is stable until 
M2 < - 4
ie D < 2 

+



The Standard Picture of Neutron Stars

cs
2  = dp/de



The Baryonic Phase From D3/D7      1204.5640 [hep-th]

Baryons in the AdS/CFT are D5 branes wrapped on S5

At finite density there can be configurations where the D3 and D7 touch 
(tied by strings/quarks)

where D̃(θ) is defined in (2.24) with ν = 0. This is for one Bayron vertex. The holographic

energy density of many non-interacting free baryon vertex system at finite density nB is

nBTD5

∫

dθLE
D5 (2.26)

where nB = nq

Nc
and nq is the quark density.

2.4 Baryon phase: D7 + D5 branes

The baryon phase is constructed by connecting a D7 flavour brane and D5 baryon vertices

by strings between them. It can be shown that the strings’ tension is so strong that they

tend to shrink to a point [14], which makes the D7 flavor brane and D5 baryon vertices

meet at a point. Therefore, ignoring strings, we start with the D7 - nB D5 combined

system. Its free energy density is

FB = TD7

∫ ∞

0
dρLE,LT

D7 +
nq

Nc
TD5

∫ π

0
dθLE

D5 (2.27)

= TD7

(
∫ ∞

0
dρLE,LT

D7 +
2

3π
d̃

∫ π

0
dθLE

D5

)

, (2.28)

≡ TD7(F̃D7 + F̃D5) , (2.29)

where nq

2πα′TD7

= d̃ since nq is identified with 1
V3

δSD7

δAt(∞) (V3 is the three dimensional volume).

Let us consider, at a fixed finite density d̃, the configuration of the D7 brane with a fixed

boundary value L(∞) = m and the D5 brane with a fixed ξ(0) = ξ0. The two brane

embeddings have to meet at ρ = 0 and θ = π, i.e. L(0) = ξ(π) ≡ w0. There are infinitely

many configurations satisfying this condition, parameterized by w0. To find out the lowest

energy configuration, we vary the total free energy.

δFB ∼
∫ ∞

0
dρ(EOML)δL+

∂LE,LT
D7

∂L′
δL

∣

∣

∣

∣

∣

∞

0

+
2

3π
d̃

∫ π

0
(EOMξ)δξ +

2

3π
d̃
∂LE

D5

∂ξ′
δξ

∣

∣

∣

∣

π

0

∼ −
∂LE,LT

D7

∂L′
δL

∣

∣

∣

∣

∣

ρ=0

+
2

3π
d̃
∂LE

D5

∂ξ′
δξ

∣

∣

∣

∣

θ=π

,

(2.30)

where the EOML and EOMξ are the equations of motion of L and ξ respectively. They

vanish since we consider only the solutions of the equation piecewise. δL(∞) = δξ(0) = 0

by our boundary condition. At the matching point, δL = δξ, so the condition is reduced

to
∂LE,LT

D7

∂L′

∣

∣

∣

∣

∣

ρ=0

=
2

3π
d̃
∂LE

D5

∂ξ′

∣

∣

∣

∣

θ=π

⇒ L′(0) =
ξ′(π)

ξ(π)
, (2.31)

which is called a force balancing condition [14, 36].

– 9 –



We impose a dilaton form (representing the
DBI in some unknown geometry we don’t 
want to spend our life developing!)

This represents the rough form of the 
QCD running

Large IR value discourages spike dense 
D7 embeddings

Large derivative causes chiral 
symmetry breaking BF bound violation

Large IR value stops D5 shrinking to 
point



We’re currently seeking dilaton profiles that give perfect QCD 
phenomenology… but plausible that neutrons are the full answer…



Quark Cores

The core is too fluffy and stars with 
quark cores are unstable.

cs
2  = dp/de = 1/3 



How can QCD be different?

Running coupling
New phases – chiral symmetry breaking but no confinement 

- confinement but no chiral symmetry breaking

A Massive Deconfined Phase

pure glue

+ quarks

g = 1   chiral symmetry breaking

confinement One can imagine µ
inserting itself to switch off 
confinement but chiral 
symmetry breaking 
persisting… maybe…

D3/probe D7 has such 
phases…



A Massive Deconfined Phase D3/probe D7    1911.12705

6

with

m2 = �3 + h
⇢5

⇢̃4
dh

d⇢
(11)

As expected the field � maps to a field � with m2 = �3
in the case where h = constant - it holographically de-
scribes the mass and quark condensate of dimensions 1
and 3 (satisfying the requiredm2 = �(��4)). When h is
⇢ dependent in the IR though there is an additional con-
tribution to m2, a running of �. If m2 passes through �4
then the Breitenlohner Freedman (BF) bound in AdS5 is
violated, there is an instability and the D7 embedding
function moves away from � = 0 - chiral symmetry is
then broken.

Thus h = constant describes a theory with no anomalous
dimension. In [20] it was shown that h = 1/⇢q describes
a theory with

m2 = �3� �m2, �m2 =
4q

(2� q)2
(12)

m2 = �4 is achieved when q = 0.536 and it becomes
infinite at q = 2. In terms of the anomalous dimension
of the IR phase we have

� = 1�

s

1� 4q

(2� q)2
. (13)

It’s worth stressing that this analysis in a sense legit-
imises not backreacting the dilaton factor in our model.
If one did have a fully backreacted geometry then the
expansion to (8) would be more complicated but the ad-
ditional pieces from expanding metric terms and so forth
would simply be an additional contribution to the run-
ning mass in (11). At the level of studying the instability
to chiral symmetry breaking putting in a hand chosen
dilaton is as good as including a more elaborate bottom
up geometry (of course if one had an honest full descrip-
tion of the particular chiral symmetry breaking system
then the subtleties would be important!).

A natural choice to describe the running in a QCD like
theory is

h = 1 +
1

(⇢2 + �2)
q
2

(14)

which has zero anomalous dimension in the UV whilst
moving to an IR regime below (⇢2+�2)

1
2 = 1 with a fixed

point for the anomalous dimension. Note we include �
here in the spirit of the D3/D7 models we have discussed.
Importantly if it were not present the BF bound would
be violated in the model no matter how large � became
so there would be no stable solutions for �.

There is intrinsically a single scale in this ansatz (the
numerator of the fraction), which we have set to 1, and

it loosely sets units where ⇤QCD=1. In fact this scale
represents where the model moves from weak coupling to
strong coupling. For the walking theories this scale may
be quite separated from the IR scale where the BF bound
is violated and chiral symmetry breaking occurs. We
find it more intuitive therefore below to write all physical
observables in units of the IR quark mass �0 = �(0)
which for comparison to QCD should be taken to be 330
MeV or so. There is still though only the single scale in
the model.

By varying q one can pick very walking theories [36]
where the anomalous dimension asymptotes to the BF
bound at q = 0.536 or theories that run quickly to large
IR fixed points q ' 2. There are also theories that have
a divergent anomalous dimension at some finite value of
(⇢2 + �2)

1
2 by picking q > 2. It is interesting in this lat-

ter case that the anomalous dimension diverges at some
finite energy scale (as it would at one or two loop level
in QCD) yet the gravity dual provides a smooth descrip-
tion below that scale. It is a matter of speculation as
to the IR behaviour of the QCD running and we will
explore a range of possible IR divergent and fixed point
behaviours below. The theory is known not to be very
walking though so values of q towards 2 are most likely
appropriate. In [20] it was shown that the zero density
chiral transition as one varies q shows BKT or Miransky
scaling [37, 38] because the IR mass is smoothly tuned
through the BF bound.

The reader might wonder how generic our ansatz for h
is. In the UV it must be a constant (so � = 0). In the IR
it must go as 1/⇢q at � = 0 (so � has the desired fixed
point value). Writing the AdS radial direction as (⇢2 +
�2)

1
2 is correct in the probe D7 model and dimensionally

correct - it seems sensible. The question then is about the
transition region between the IR and UV regimes - here
we have picked something generically monotonic. In fact
in [25] we argued that in these chiral symmetry breaking
models the physics is determined by the derivative of
gamma at the scale of the BF bound violation. Here
our function simply raises this derivative as q and the
fixed point value of � rises. Of course, one could imagine
doing some wilder things where there are, for example,
multiple plateaus in the running but given nothing like
that is well motivated we believe our ansatz is in fact
reasonably generic.

Our theory then is (7) with (14). Note that in the large ⇢
limit these theories return to the description of [13] since
h ! 1 so we fix the coe�cient of the Lagrangian as in
[13] to match to the asymptotic perturbative prediction
of the free energy from QCD - that is we enforce (5) in
the UV.

Since the Lagrangian does not depend on the field At

we have a conserved constant, the density, d = �L
�A0

t
, from

here we can find an equation for At. Then we can perform
a Legendre transformation L

0 = L�A0
t
�L
�A0

t
to replace At



All theories asymptote 
to the standard D3/ 
probe D7 quark plasma 
at large µ but show 
larger cs

2 and pressure 
at lower densities… 

Fit c0 to 300-440 MeV

10

FIG. 11: Mass of the Neutron Star (in units of solar mass M�)
as a function of its radius (in kilometers). Colour lines represent
Nuclear matter star from EFT EoS, the black lines represent the
change of phase towards a hybrid star with a quark core using the
constant dilaton D3/D7 model.

that the transition for the on-set of density occurs at µ =
308.55 MeV. The transitions to the high density phase
are those shown in Figure 11. As in [13] we find only
unstable stars with a core of this material.

350 400 450 500 550 600� [MeV]

100

200

300

400

500

600

P [MeV/fm3]

FIG. 12: Transition from nuclear to quark matter for the case of
q=1.8. The Black line correspond to the case of a constant dilaton
and the green, orange and red curves represent nuclear matter as
in Fig 4. The dark teal curve corresponds to �0 = 360 MeV,
the purple curve corresponds to �0 = 395 and the magenta curve
corresponds to �0 = 420.

3. Bottom-Up D3/D7 with Running �

We have seen that our bottom up models have a sti↵er
equation of state when the running anomalous dimen-
sion of the quarks is included. In fact, as we will see,
only the sti↵est models with c2s > 0.5 are of any interest
phenomenologically for neutron stars. Let us therefore
begin by studying the case q = 1.8 which has the sti↵est
equation of state.

For q = 1.8 we must also pick the scale �0. Naively
this is roughly 330 MeV (a third the proton mass) but
if we make such a low choice the nuclear phase barely
exists before the quark phase takes over. The naive re-
lation to the proton mass though is only an estimate so

we will allow ourselves to consider a range of test cases:
�0 = 360, 395 and 420 MeV. In Fig 12 we show the pres-
sure against chemical potential plots for these cases - the
nuclear curves are also displayed so the position of the
phase transitions can be read o↵. Note the transition to
the quark phase are typically at lower scales than in the
basic D3/D7 model since the pressure is larger.

FIG. 13: Speed of sound squared as a function of the chemical
potential for the case of q=1.8. Green, orange and red curves are
those for the three nuclear EoS and the three quark matter curves
are in dark teal for �0 = 360 MeV, in purple for �0 = 395 MeV,
and in magenta for �0 = 420 MeV. The transition from nuclear
to quark matter is indicated with a black dashed line.

It is instructive to see how sti↵ the quark matter is at the
transition. In Fig 13 we plot c2s against µ separately for
each of the nuclear equations of states. The black dot-
ted lines show where the phase transitions occur. Clearly
there is a distinct drop in c2s as one moves to the quark
phase in all these cases but the sti↵ness does then grow
at higher µ. One might expect that the neutron star
stability will decay when the core moves above the tran-



The material is still not stiff enough 
though to support neutron stars…

Accepting some weird guys you 
probably can’t make astrophysically…



Getting Stuck into a First Order Transition  2009.14079

A continuous transition to the standard quark plasma didn’t help…

How cope with quark decoupling 
below it’s dynamical mass scale?

Setting Dm2 = 0 – return to N=2 –
gives sensible embedding… (?)



Extending the prescription to finite 
µ gives a first order transition…

There is a free parameter for how 
you weight the UV and IR parts of 
the action

kIR



Realizes quark core paradigm…



This isn’t a big change to the high m quark phase action/P but allowed 
us to control the first order transition whilst cs

2 < 1

Here we don’t worry about colour breaking – quark and magnetic 
monopole soup screen gluons anyway… just add fields to describe the 
qq operators of interest (3 for CFL).

1803.03107 [hep-ph]



How can QCD be different?

Running coupling
New phases – chiral symmetry breaking but no confinement 

- confinement but no chiral symmetry breaking

Quarkyonic confined phase

pure glue

+ quarks

g = 1   chiral symmetry breaking

confinement
This picture maybe stupidly 
naïve… 

To include confinement we 
need to go beyond the 
D3/probe D7 systems…

Sakai-Sugimoto might be 
sensible.. But hard to 
identify the quark mass 
and condensate… 



Domain Wall Chiral Quarks

Kaplan 
92

5d -> 4d generates chirl fermions on the domain walls

4d -> 3d splits the 4 component fermioninto two 2 
component fermions – not chiral



Domain Wall Chiral 
Quarks
2106.08753 with Jack Mitchell, Jesus Cruz-Rojas

4

where µ = 0, 1, 2. Under dimensional reduction  will
become two 2+1 dimensional 2-component spinors which
can be extracted from  by using the projectors

P± =
1

2
(1± i�3) (10)

Note in the Dirac basis

�
0 =

0

BBB@

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1

CCCA
, �

1 =

0

BBB@

0 0 0 1

0 0 1 0

0 �1 0 0

�1 0 0 0

1

CCCA
,

�
2 =

0

BBB@

0 0 0 �i

0 0 i 0

0 i 0 0

�i 0 0 0

1

CCCA
, �

3 =

0

BBB@

0 0 1 0

0 0 0 �1

�1 0 0 0

0 1 0 0

1

CCCA

(11)
If we write (± correspond to the static energy eigenvalue)

 =

0

BBB@

 
+
1

 
+
2

 
�
1

 
�
2

1

CCCA
(12)

then the two distinct spinors each with the information
of a 2-spinor are

P± =
1

2

0

BBB@

 
+
1 ± i 

�
1

 
+
2 ⌥ i 

�
2

�i( +
1 ± i 

�
1 )

i( +
2 ⌥ i 

�
2 )

1

CCCA
(13)

Now consider the case where

M(x3) = �M, x3 < 0, M(x3) = M, x3 > 0
(14)

To seek a massless mode solution of (9), we decompose
 in terms of a product in the x

3 and x
µ directions.

 = [a(x3)P+ + b(x3)P�] 0(x
µ) (15)

where we assume the massless eigenstate satisfies

i�
µ
@µ 0(x

µ) = 0 (16)

Since {�
µ
, �

3
} = 0 we have �µP+ = P

�
�
µ and �µP� =

P
+
�
µ and we may drop the first term in (9) as a result

of (16) for the zero mode.

Now we use (�3)2 = �1 so that i�3P+ = P+ and i�
3
P� =

�P�. The coe�cients of P± give the two equations

(@3 +M(x3))a(x3) = 0 (�@3 +M(x3))b(x3) = 0
(17)

The first equation (remember M(x3) switches sign at the
origin) has the normalizable solution

a(x3) = Ne
�M |x3| (18)

The solution for b which has a positive sign in the expo-
nential is not normalizable so unphysical. Thus a single
one of the two 2+1 dimensional 2-spinors is massless at
the discontinuity. If we have a second discontinuity with
the opposite sign switch in M(x3) then the second 2+1d
spinor will be localized there.

Note that a condensate between the two 2-spinors  ̄1 2

with the 2+1d �0 = �3 is the same combination of oper-
ators as the 3+1d condensate  ̄ .

At weak coupling there is expected to be a quark mass
controlled by the overlap of the wave functions so it will
fall o↵ as an exponential of the gap between two adja-
cent discontinuities (formally as exp(�Mw) with w the
separation between the defects). It is not clear that the
same decoupling will happen if the separated quarks are
interacting strongly - indeed we will find the mass in the
holographic setting falls o↵ only as the power law ⇠ 1/w.
Our goal for the rest of the paper is to realize this domain
wall set up in holography at strong coupling in part to
investigate such questions.

IV THE D3/PROBE-D7 SYSTEM & DOMAIN
WALLS

For this section we rewrite the metric of the gravity dual
of N = 4 SYM theory as

ds
2 =

r
2

R2
dx

2
3+1 +

R
2

r2
(d⇢2 + ⇢

2
d⌦2

3 + du
2
1 + du

2
2) (19)

where R is the AdS radius and r
2 = ⇢

2 +
P

i u
2
i .

We introduce a probe N=2 quark hypermultiplet into
the N = 4 SYM theory described by (19) by including a
D7 brane in the configuration [3]

0 1 2 3 4 5 6 7 8 9

D3 - - - - • • • • • •

D7 - - - - - - - - • •

(20)

The Dirac-Born-Infeld (DBI) action for the probe D7 is
given by

SD7 = �T7

Z
d
8
⇠

p
�detP [GMN ] (21)

which gives up to constants

SD7 ⇡

Z
d
4
x d⇢ ⇢

3

s

1 + (@⇢ui)2 +
R4

(⇢2 + u
2
i )

2
(@xui)2

(22)
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where µ = 0, 1, 2. Under dimensional reduction  will
become two 2+1 dimensional 2-component spinors which
can be extracted from  by using the projectors

P± =
1

2
(1± i�3) (10)

Note in the Dirac basis

�
0 =

0

BBB@
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then the two distinct spinors each with the information
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Now consider the case where

M(x3) = �M, x3 < 0, M(x3) = M, x3 > 0
(14)

To seek a massless mode solution of (9), we decompose
 in terms of a product in the x

3 and x
µ directions.

 = [a(x3)P+ + b(x3)P�] 0(x
µ) (15)

where we assume the massless eigenstate satisfies

i�
µ
@µ 0(x

µ) = 0 (16)

Since {�
µ
, �

3
} = 0 we have �µP+ = P

�
�
µ and �µP� =

P
+
�
µ and we may drop the first term in (9) as a result

of (16) for the zero mode.

Now we use (�3)2 = �1 so that i�3P+ = P+ and i�
3
P� =

�P�. The coe�cients of P± give the two equations

(@3 +M(x3))a(x3) = 0 (�@3 +M(x3))b(x3) = 0
(17)

The first equation (remember M(x3) switches sign at the
origin) has the normalizable solution

a(x3) = Ne
�M |x3| (18)

The solution for b which has a positive sign in the expo-
nential is not normalizable so unphysical. Thus a single
one of the two 2+1 dimensional 2-spinors is massless at
the discontinuity. If we have a second discontinuity with
the opposite sign switch in M(x3) then the second 2+1d
spinor will be localized there.

Note that a condensate between the two 2-spinors  ̄1 2

with the 2+1d �0 = �3 is the same combination of oper-
ators as the 3+1d condensate  ̄ .

At weak coupling there is expected to be a quark mass
controlled by the overlap of the wave functions so it will
fall o↵ as an exponential of the gap between two adja-
cent discontinuities (formally as exp(�Mw) with w the
separation between the defects). It is not clear that the
same decoupling will happen if the separated quarks are
interacting strongly - indeed we will find the mass in the
holographic setting falls o↵ only as the power law ⇠ 1/w.
Our goal for the rest of the paper is to realize this domain
wall set up in holography at strong coupling in part to
investigate such questions.

IV THE D3/PROBE-D7 SYSTEM & DOMAIN
WALLS

For this section we rewrite the metric of the gravity dual
of N = 4 SYM theory as
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where R is the AdS radius and r
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We introduce a probe N=2 quark hypermultiplet into
the N = 4 SYM theory described by (19) by including a
D7 brane in the configuration [3]
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The Dirac-Born-Infeld (DBI) action for the probe D7 is
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Figure 2: The Fourier representation of the even

periodic mass function we use (100 Fourier terms are

used) - in each period it has two domain walls separated

by a width w.

Figure 3: the full ⇢� x3 dependence of a domain wall

pair as represented by (28)

Figure 4: The contours in the ⇢� x3 plane where

M = 0. The examples given are a numerical solution

(Orange), and a second narrower numerical case

(Blue), With D5 embeddings from (6) of matching width

overlaid in (Black) and (Red) respectively. Note the

imperfections are due to truncating the Fourier Series.

Figure 5: The quark condensate parameter c plotted

against x3 across the domain walls for a configuration

of width = 0.37 and reaching to a depth of ⇢min = 1.27.
First 40(Red), 100(Cyan), 300(Black) Fourier modes

included.

This solution provides the UV boundary data for the
holographic field u1. It is now straightforward to plot
the configuration into the interior of AdS. We simply use
our solutions fk(⇢) as a multiplier on each Fourier mode

u1(⇢, z) = a0
2 f0(⇢) +

P1
n=1 anf2⇡n(⇢) cos

2⇡nz
3L

. (28)

We plot an example solution in Figure 3. The high k

modes die away as one moves to smaller ⇢ and the well
configuration begins to decay. The key question is where
are the contours where u1 = 0 - this is where the 2+1d
fermions will be isolated. We plot this in Figure 4

The two domain walls in the UV are well separated but
they join together in the IR. The behaviour of two do-
main walls joining is very familiar from probe brane em-
beddings (for example that in section II). As first intro-
duced in the Sakai-Sugimoto model [6], when branes join
in this fashion it indicates condensation of the fermions
on the two boundaries. The minimum ⇢ value of the
configuration ⇢min is the mass gap of the theory (for-
mally ⇢min/2⇡↵0). We will make the same interpretation
here. The two initially separated 2+1d 2-spinors have
a symmetry breaking interaction together. What is not
yet clear is whether the symmetry breaking is intrinsic
through a mass term or due to spontaneous symmetry
breaking.

Of course, strictly the gauge invariant operator that con-
denses is a path ordered Wilson line stretched between
the UV Domain Walls [10]

O = q̄1e
i
R
Aµdx

µ

q2 (29)

but in the IR at the condensation scale the theory can
no longer “see” the separation (the domain walls have
joined) and the operator will mix freely with the local
operator q̄1q2. One would expect their vevs to be propor-
tional. We can extract the local 3+1d quark condensate
from the sub-leading behaviour of our solution at the
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Us for chiral symmetry 
breaking…

We include a hard wall at 
r=1 so IR is imperfect…
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where ui, i = 1, 2 are the position of the brane in the two
transverse directions. The rotational symmetry allows us
to assume the vacuum embedding lies in the u1 direction.
x are generically the 3+1d Minkowski coordinates. Note
it is helpful again to rescale x3+1 by a factor of R2 to
e↵ectively set R

2 = 1. This means all momenta and
masses below are strictly R

4
k
2
, R

4
M

2.

Mass terms in the linearized system

A supersymmetry preserving, x independent mass can
be included by the solution u1 = m with mq = m/2⇡↵0.
The meson spectrum for this case has been computed in
[4].

Here we will be interested in z (i.e. x3) dependent mass
terms. To allow in principle a generic z dependence we
will write the mass term as a Fourier Series in terms of
sine and cosine waves in the z direction. Initially we will
apply the mass as a perturbation to the massless theory,
working in the linearized equation of motion approxima-
tion (keeping only terms to quadratic order in the action).
That is we have

@⇢

�
⇢
3
@⇢u1

�
+

1

⇢
(@2

zu1) = 0 (23)

and we seek solutions

u1 = fk(⇢) cos kz (24)

Since there is no scale in the AdS geometry the solutions
for fk(⇢) are ill behaved in the IR. We resolve this by
including a hardwall regulator at ⇢ = 1 - we shoot from
⇢ = 1 with u

0
1(1) = 0. In practice this means that any

structure we see in AdS can only be trusted for ⇢ � 1.

The numerical solutions asymptotes to a constant value
in the UV (the UV form of the solution is u1 ⇠ m+c/⇢

2).
We then normalize the solutions so that

fk(⇢ ! 1) = 1 (25)

Note that in the linearized regime the solutions are in-
dependent of the normalization and hence the physics is
independent of the maximum mass value. We plot some
example fk in Figure 1. We see that higher k modes are
less supported at small ⇢ as one would expect since UV
physics is irrelevant in the IR.

Figure 1: The solutions for fk(⇢) in pure AdS with a

hardwall at ⇢ = 1 for k = 1(blue), 10(orange), 30(green).

A Periodic Domain Wall Configuration

We now want to construct a configuration of two interact-
ing domain walls. For simplicity we will use the following
periodic example which is simple to Fourier expand. The
configuration is 3L periodic, with a sharp wall at z0 and
another at 3L� z0. The defect is centred half way along
the 3L interval and is of width w = 3L� 2z0. Thus

u1 = 1 0  z  z0

u1 = �1 z  z  3L� z0

u1 = 1 3L� z0  z  3L

(26)

For z0 > L the walls are reasonably close but well sepa-
rated from the next recurrence of the configuration - we
will not take z0 > L therefore in what follows.

The Fourier expansion for this even function is

f(z) = a0
2 +

P1
n=1 an cos

2⇡nz
3L

a0 = 8z0
3L � 2

an = 2
⇡n


sin 2⇡nz0

3L � sin 2⇡n(3L�z0)
3L

�
(27)

In Figure 2 we plot an example configuration showing the
Fourier approximation taking the first 100 terms.
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Figure 6: The minimum value of ⇢ an M = 0 contour

reaches to as a function of width between the two

domain walls. The D7 Domain wall solution is in blue.

The grey is the D3/probe D5 system from Section VI.

boundary (again it falls o↵ as u1 ⇠ m + c/⇢
2 with c

proportional to the quark condensate). We plot this in
Figure 5 where we see the condensate is localised at the
defects and becomes more so as one increases the number
of Fourier terms. However, note that the solutions have
c = 0 at the domain wall’s centre with two peaks, one
positive and one negative, to either side that are moving
into the domain wall as we increase the number of Fourier
modes. Presumably they eventually merge with the true
condensate being the sum of the peaks (which could be
zero) but this is very hard to compute at the 3+1d level.
Below we will restrict our computation to the M = 0
locus which gives us a better understanding.

⇢min is the most easily extracted quantity and we can test
its dependence on the separation of the domain walls. We
show this in Figure 6. We can fit to the functional form

⇢min =
C

wp
, (30)

For small widths, where the configurations lies well above
the IR cut o↵ at ⇢ = 1, the numerical fit is c = 0.59 p =
0.96. As one expects the relation is governed by dimen-
sional analysis with the separation of the domain walls
the only dimensionful parameter in the theory i.e. p = 1.

At this point it is worth making a harder comparison be-
tween these domain wall solutions and the vacuum con-
figuration of the D3/probe D5D5 system of Section II. In
Figure 4 we have also plotted U-shaped D5 embeddings of
the same width as configurations - they lie very close. In
Figure 6 we plot ⇢min against the width of the U-shape
also. As the domain wall results become more trusted
away from the domain wall at ⇢ = 1 the two solutions
converge. It seems likely from this that the deviations are
artefacts of our IR wall. We will prove their equivalence

for large quark mass in the next section. In the field the-
ory this equality presumably follows from both systems
consisting of massless fermions on the domain walls in-
teracting by the same N = 4 dynamics. The mass gap
and self energies of the quarks as a function of energy
scale must be the same in each system.

The Large Mass Limit

To move away from the Fourier analysis approximations
and numerics we can instead consider two isolated do-
main walls where the background spatial dependent mass
is infinite (orM � 1/w). That is the mass is strictly zero
on the domain wall but infinite elsewhere. In this limit
we can derive the contour in the ⇢ � z plane where the
domain wall sits.

Our solution for @⇢u1 in (22) will be a delta function
on a contour where some ⇢(z) vanishes, where M = 0,
multiplied by some very large number, N . Keeping just
the leading terms in @⇢u1 leaves

SD7 ⇡

Z
d
4
x d⇢ ⇢

3(@⇢ui)

s

1 +
1

(⇢2 + u
2
i )

2
(@z⇢(z))2

(31)
We must be careful though with the treatment of the
metric by the delta function in (@⇢ui): in particular, a
delta function reduces the action to that on a sub-space
and so we must correctly adjust the

p
�g factor to that

on the line ⇢(z) by including a Jacobian factor. We find it
instructive here to consider the problem in a flat 2-plane
space where the action would be just

S ⇡

Z
dz d⇢ (@⇢ui)

p
1 + (@z⇢(z))2 (32)

We must set

@⇢ui =
1

@z⇢
�(z � z0) (33)

in order to obtain

S ⇡

Z
d⇢

q
1 + (@⇢z)2 (34)

which is the line element on z(⇢). In a curved space this
naturally becomes

@⇢ui = 1p
g⇢⇢(@z⇢)2

�(z � z0)

����
locus

= ⇢
@z⇢

�(z � z0)

(35)

Note both sides of this equation are correctly dimension-
less. Equally the pre-factor of the delta function on the
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Figure 6: The minimum value of ⇢ an M = 0 contour

reaches to as a function of width between the two

domain walls. The D7 Domain wall solution is in blue.

The grey is the D3/probe D5 system from Section VI.

boundary (again it falls o↵ as u1 ⇠ m + c/⇢
2 with c

proportional to the quark condensate). We plot this in
Figure 5 where we see the condensate is localised at the
defects and becomes more so as one increases the number
of Fourier terms. However, note that the solutions have
c = 0 at the domain wall’s centre with two peaks, one
positive and one negative, to either side that are moving
into the domain wall as we increase the number of Fourier
modes. Presumably they eventually merge with the true
condensate being the sum of the peaks (which could be
zero) but this is very hard to compute at the 3+1d level.
Below we will restrict our computation to the M = 0
locus which gives us a better understanding.

⇢min is the most easily extracted quantity and we can test
its dependence on the separation of the domain walls. We
show this in Figure 6. We can fit to the functional form

⇢min =
C

wp
, (30)

For small widths, where the configurations lies well above
the IR cut o↵ at ⇢ = 1, the numerical fit is c = 0.59 p =
0.96. As one expects the relation is governed by dimen-
sional analysis with the separation of the domain walls
the only dimensionful parameter in the theory i.e. p = 1.

At this point it is worth making a harder comparison be-
tween these domain wall solutions and the vacuum con-
figuration of the D3/probe D5D5 system of Section II. In
Figure 4 we have also plotted U-shaped D5 embeddings of
the same width as configurations - they lie very close. In
Figure 6 we plot ⇢min against the width of the U-shape
also. As the domain wall results become more trusted
away from the domain wall at ⇢ = 1 the two solutions
converge. It seems likely from this that the deviations are
artefacts of our IR wall. We will prove their equivalence

for large quark mass in the next section. In the field the-
ory this equality presumably follows from both systems
consisting of massless fermions on the domain walls in-
teracting by the same N = 4 dynamics. The mass gap
and self energies of the quarks as a function of energy
scale must be the same in each system.

The Large Mass Limit

To move away from the Fourier analysis approximations
and numerics we can instead consider two isolated do-
main walls where the background spatial dependent mass
is infinite (orM � 1/w). That is the mass is strictly zero
on the domain wall but infinite elsewhere. In this limit
we can derive the contour in the ⇢ � z plane where the
domain wall sits.

Our solution for @⇢u1 in (22) will be a delta function
on a contour where some ⇢(z) vanishes, where M = 0,
multiplied by some very large number, N . Keeping just
the leading terms in @⇢u1 leaves

SD7 ⇡

Z
d
4
x d⇢ ⇢

3(@⇢ui)

s

1 +
1

(⇢2 + u
2
i )

2
(@z⇢(z))2

(31)
We must be careful though with the treatment of the
metric by the delta function in (@⇢ui): in particular, a
delta function reduces the action to that on a sub-space
and so we must correctly adjust the

p
�g factor to that

on the line ⇢(z) by including a Jacobian factor. We find it
instructive here to consider the problem in a flat 2-plane
space where the action would be just

S ⇡

Z
dz d⇢ (@⇢ui)

p
1 + (@z⇢(z))2 (32)

We must set

@⇢ui =
1

@z⇢
�(z � z0) (33)

in order to obtain

S ⇡

Z
d⇢

q
1 + (@⇢z)2 (34)

which is the line element on z(⇢). In a curved space this
naturally becomes

@⇢ui = 1p
g⇢⇢(@z⇢)2

�(z � z0)

����
locus

= ⇢
@z⇢

�(z � z0)

(35)

Note both sides of this equation are correctly dimension-
less. Equally the pre-factor of the delta function on the
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right has dimension of inverse energy so correctly reduces
the dimension of the action by one as we move down one
in spatial dimension.

The action (22) reduces in dimension by one, and writing
just the coe�cient of the large N , gives

S =

Z
d
2
x d⇢ ⇢

2
q

1 + ⇢4(@⇢z)2 (36)

The action for z is precisely that of the D3/probe D5
D5 system (4) with solution (6). Again we see that the
dynamics of the systems, mass gaps and so forth are,
remarkably, precisely the same.

Fluctuations on the domain wall

We will now assume that the M ! 1 limit action (36)
sets theM = 0 contour to that of (6) and any dynamics in
the 2+1d theory is a perturbation on this contour (u ⌧

M). We can then understand the quark condensate in
the system as follows. We start again from the action
for u1 (22) but impose the dynamics we have found by
requiring the solution to only lie on the locus in (6) by
including by hand a delta function of the form in (35).
This gives

L ⇡ ⇢
4(@⇢z)

s

1 +A(@⇢ui)2 +
(@x2+1ui)2

(⇢2 + u
2
i )

2
(37)

with

A = 1 +
1

(@⇢z)2(⇢2 + u
2
i )

2
(38)

where from (5) we know

@⇢z =
⇢
4
minp

⇢12 � ⇢
8
min⇢

4
(39)

Note that our theory diverges from the D3/probe D5 D5
system because the number of scalar fluctuations (i =
1, 2) originates from the D7 probe action. In the field
theory this reflects the fact that there is a single 3+1d
four component spinor reduced to a single two component
spinor on each defect.

If we consider the vacuum of the theory where there is
no x2+1 dependence (i.e. u1(⇢)) we can see by inspection
that (37) is minimized by @⇢u1 = 0 or u1 = a constant.
Equivalently we can see this solution satisfies the equa-
tion of motion

@⇢

✓
⇢4A(@⇢z)p
1+A(@⇢u1)2

(@⇢u1)

◆

+ 2
(⇢2+u2

1)
3

⇢4A
(@⇢z)

p
1+A(@⇢u1)2

(@⇢u1)2u1 = 0

(40)

We conclude that for consistency we must fix this con-
stant to be rmin = 0.675/w, the IR mass gap. That mass
is then the same at all RG scales and there is no con-
densate in the system. The system simply describes a
massive quark state in a conformal gauge background.

The u2 field is interesting because it plays the role of the
Goldstone boson in systems with chiral symmetry break-
ing. Here where there is no dynamical chiral symmetry
breaking so far, we don’t expect to see Goldstone dy-
namics. We can write the linearized equation of motion
for u2(⇢, x) on the locus in the background of u1 (thus
setting @⇢u1 = 0)

@⇢(⇢
4
A(@⇢z)(@⇢u2)) +M

2
u2

⇢
4(@⇢z)

(⇢2 + u
2
1)

2
u2 = 0 (41)

By rescaling z, u2, ⇢,Mu2 we can set ⇢min = 1 in the
equation and therefore for a generic rmin: Mu2 =
M⇢min=1/⇢min. Numerically we find (by shooting from
u
0
2(0) = 0 and requiring that u2 vanishes in the UV) that

R
2
M⇢min=1 = 7.8.

That this 2+1d state is not massless means it is not a
Goldstone boson. One has to again conclude, since the
theory has a single scale set by the width w, that there
is a bare quark mass ⇢min in the system. Then all bound
states naturally have mass proportional to ⇢min. The
joining of the branes is therefore a reflection of the pres-
ence of a hard quark mass in this case.

That the basic domain wall set up has a (non-local) quark
mass of 0.675/w even in the infinite 3+1d mass, M , limit
should be compared to the weak coupling domain wall
system where the mass is strictly zero in this limit. The
extra ingredient is presumably the strong coupling gauge
dynamics.

In the next section we will introduce a magnetic field
background that is known in some systems to trigger dy-
namical chiral symmetry breaking and this will lead us
to chiral symmetry breaking constructions.

V DYNAMICAL SYMMETRY BREAKING

The domain wall system we have constructed so far sim-
ply describes isolated two component quarks each on a
separate 2+1d domain wall. There is a (non-local) mass
term linking the quarks of order 1/w where w is the sep-
aration between the domain walls. In this section we
want to add in dynamics associated with the N = 4
gauge fields that cause chiral symmetry breaking. In
fact this system, presumably because the fermions are
isolated from each other, are more di�cult to condense
than those on the usual single probe brane constructions
as we will see.

u is constant except on some z(r) where dr u diverges 

The action is precisely that of the D3 /probe D5 anti-D5 system and the Us the same…
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Figure 2: The Fourier representation of the even

periodic mass function we use (100 Fourier terms are

used) - in each period it has two domain walls separated

by a width w.

Figure 3: the full ⇢� x3 dependence of a domain wall

pair as represented by (28)

20 40 60 80 100
�

1.45

1.50

1.55

z

Figure 4: The contours in the ⇢� x3 plane where

M = 0. The examples given are a numerical solution

(Orange), and a second narrower numerical case

(Blue), With D5 embeddings from (6) of matching width

overlaid in (Black) and (Red) respectively. Note the

imperfections are due to truncating the Fourier Series.

Figure 5: The quark condensate parameter c plotted

against x3 across the domain walls for a configuration

of width = 0.37 and reaching to a depth of ⇢min = 1.27.
First 40(Red), 100(Cyan), 300(Black) Fourier modes

included.

This solution provides the UV boundary data for the
holographic field u1. It is now straightforward to plot
the configuration into the interior of AdS. We simply use
our solutions fk(⇢) as a multiplier on each Fourier mode

u1(⇢, z) = a0
2 f0(⇢) +

P1
n=1 anf2⇡n(⇢) cos

2⇡nz
3L

. (28)

We plot an example solution in Figure 3. The high k

modes die away as one moves to smaller ⇢ and the well
configuration begins to decay. The key question is where
are the contours where u1 = 0 - this is where the 2+1d
fermions will be isolated. We plot this in Figure 4

The two domain walls in the UV are well separated but
they join together in the IR. The behaviour of two do-
main walls joining is very familiar from probe brane em-
beddings (for example that in section II). As first intro-
duced in the Sakai-Sugimoto model [6], when branes join
in this fashion it indicates condensation of the fermions
on the two boundaries. The minimum ⇢ value of the
configuration ⇢min is the mass gap of the theory (for-
mally ⇢min/2⇡↵0). We will make the same interpretation
here. The two initially separated 2+1d 2-spinors have
a symmetry breaking interaction together. What is not
yet clear is whether the symmetry breaking is intrinsic
through a mass term or due to spontaneous symmetry
breaking.

Of course, strictly the gauge invariant operator that con-
denses is a path ordered Wilson line stretched between
the UV Domain Walls [10]

O = q̄1e
i
R
Aµdx

µ

q2 (29)

but in the IR at the condensation scale the theory can
no longer “see” the separation (the domain walls have
joined) and the operator will mix freely with the local
operator q̄1q2. One would expect their vevs to be propor-
tional. We can extract the local 3+1d quark condensate
from the sub-leading behaviour of our solution at the
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where µ = 0, 1, 2. Under dimensional reduction  will
become two 2+1 dimensional 2-component spinors which
can be extracted from  by using the projectors

P± =
1

2
(1± i�3) (10)

Note in the Dirac basis

�
0 =

0

BBB@

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1

CCCA
, �

1 =

0

BBB@

0 0 0 1

0 0 1 0

0 �1 0 0

�1 0 0 0

1

CCCA
,

�
2 =

0

BBB@

0 0 0 �i

0 0 i 0

0 i 0 0

�i 0 0 0

1

CCCA
, �

3 =

0

BBB@

0 0 1 0

0 0 0 �1

�1 0 0 0

0 1 0 0

1

CCCA

(11)
If we write (± correspond to the static energy eigenvalue)

 =

0

BBB@

 
+
1

 
+
2

 
�
1

 
�
2

1

CCCA
(12)

then the two distinct spinors each with the information
of a 2-spinor are

P± =
1

2

0

BBB@

 
+
1 ± i 

�
1

 
+
2 ⌥ i 

�
2

�i( +
1 ± i 

�
1 )

i( +
2 ⌥ i 

�
2 )

1

CCCA
(13)

Now consider the case where

M(x3) = �M, x3 < 0, M(x3) = M, x3 > 0
(14)

To seek a massless mode solution of (9), we decompose
 in terms of a product in the x

3 and x
µ directions.

 = [a(x3)P+ + b(x3)P�] 0(x
µ) (15)

where we assume the massless eigenstate satisfies

i�
µ
@µ 0(x

µ) = 0 (16)

Since {�
µ
, �

3
} = 0 we have �µP+ = P

�
�
µ and �µP� =

P
+
�
µ and we may drop the first term in (9) as a result

of (16) for the zero mode.

Now we use (�3)2 = �1 so that i�3P+ = P+ and i�
3
P� =

�P�. The coe�cients of P± give the two equations

(@3 +M(x3))a(x3) = 0 (�@3 +M(x3))b(x3) = 0
(17)

The first equation (remember M(x3) switches sign at the
origin) has the normalizable solution

a(x3) = Ne
�M |x3| (18)

The solution for b which has a positive sign in the expo-
nential is not normalizable so unphysical. Thus a single
one of the two 2+1 dimensional 2-spinors is massless at
the discontinuity. If we have a second discontinuity with
the opposite sign switch in M(x3) then the second 2+1d
spinor will be localized there.

Note that a condensate between the two 2-spinors  ̄1 2

with the 2+1d �0 = �3 is the same combination of oper-
ators as the 3+1d condensate  ̄ .

At weak coupling there is expected to be a quark mass
controlled by the overlap of the wave functions so it will
fall o↵ as an exponential of the gap between two adja-
cent discontinuities (formally as exp(�Mw) with w the
separation between the defects). It is not clear that the
same decoupling will happen if the separated quarks are
interacting strongly - indeed we will find the mass in the
holographic setting falls o↵ only as the power law ⇠ 1/w.
Our goal for the rest of the paper is to realize this domain
wall set up in holography at strong coupling in part to
investigate such questions.

IV THE D3/PROBE-D7 SYSTEM & DOMAIN
WALLS

For this section we rewrite the metric of the gravity dual
of N = 4 SYM theory as

ds
2 =

r
2

R2
dx

2
3+1 +

R
2

r2
(d⇢2 + ⇢

2
d⌦2

3 + du
2
1 + du

2
2) (19)

where R is the AdS radius and r
2 = ⇢

2 +
P

i u
2
i .

We introduce a probe N=2 quark hypermultiplet into
the N = 4 SYM theory described by (19) by including a
D7 brane in the configuration [3]

0 1 2 3 4 5 6 7 8 9

D3 - - - - • • • • • •

D7 - - - - - - - - • •

(20)

The Dirac-Born-Infeld (DBI) action for the probe D7 is
given by

SD7 = �T7

Z
d
8
⇠

p
�detP [GMN ] (21)

which gives up to constants

SD7 ⇡

Z
d
4
x d⇢ ⇢

3

s

1 + (@⇢ui)2 +
R4

(⇢2 + u
2
i )

2
(@xui)2

(22)
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Figure 6: The minimum value of ⇢ an M = 0 contour

reaches to as a function of width between the two

domain walls. The D7 Domain wall solution is in blue.

The grey is the D3/probe D5 system from Section VI.

boundary (again it falls o↵ as u1 ⇠ m + c/⇢
2 with c

proportional to the quark condensate). We plot this in
Figure 5 where we see the condensate is localised at the
defects and becomes more so as one increases the number
of Fourier terms. However, note that the solutions have
c = 0 at the domain wall’s centre with two peaks, one
positive and one negative, to either side that are moving
into the domain wall as we increase the number of Fourier
modes. Presumably they eventually merge with the true
condensate being the sum of the peaks (which could be
zero) but this is very hard to compute at the 3+1d level.
Below we will restrict our computation to the M = 0
locus which gives us a better understanding.

⇢min is the most easily extracted quantity and we can test
its dependence on the separation of the domain walls. We
show this in Figure 6. We can fit to the functional form

⇢min =
C

wp
, (30)

For small widths, where the configurations lies well above
the IR cut o↵ at ⇢ = 1, the numerical fit is c = 0.59 p =
0.96. As one expects the relation is governed by dimen-
sional analysis with the separation of the domain walls
the only dimensionful parameter in the theory i.e. p = 1.

At this point it is worth making a harder comparison be-
tween these domain wall solutions and the vacuum con-
figuration of the D3/probe D5D5 system of Section II. In
Figure 4 we have also plotted U-shaped D5 embeddings of
the same width as configurations - they lie very close. In
Figure 6 we plot ⇢min against the width of the U-shape
also. As the domain wall results become more trusted
away from the domain wall at ⇢ = 1 the two solutions
converge. It seems likely from this that the deviations are
artefacts of our IR wall. We will prove their equivalence

for large quark mass in the next section. In the field the-
ory this equality presumably follows from both systems
consisting of massless fermions on the domain walls in-
teracting by the same N = 4 dynamics. The mass gap
and self energies of the quarks as a function of energy
scale must be the same in each system.

The Large Mass Limit

To move away from the Fourier analysis approximations
and numerics we can instead consider two isolated do-
main walls where the background spatial dependent mass
is infinite (orM � 1/w). That is the mass is strictly zero
on the domain wall but infinite elsewhere. In this limit
we can derive the contour in the ⇢ � z plane where the
domain wall sits.

Our solution for @⇢u1 in (22) will be a delta function
on a contour where some ⇢(z) vanishes, where M = 0,
multiplied by some very large number, N . Keeping just
the leading terms in @⇢u1 leaves

SD7 ⇡

Z
d
4
x d⇢ ⇢

3(@⇢ui)

s

1 +
1

(⇢2 + u
2
i )

2
(@z⇢(z))2

(31)
We must be careful though with the treatment of the
metric by the delta function in (@⇢ui): in particular, a
delta function reduces the action to that on a sub-space
and so we must correctly adjust the

p
�g factor to that

on the line ⇢(z) by including a Jacobian factor. We find it
instructive here to consider the problem in a flat 2-plane
space where the action would be just

S ⇡

Z
dz d⇢ (@⇢ui)

p
1 + (@z⇢(z))2 (32)

We must set

@⇢ui =
1

@z⇢
�(z � z0) (33)

in order to obtain

S ⇡

Z
d⇢

q
1 + (@⇢z)2 (34)

which is the line element on z(⇢). In a curved space this
naturally becomes

@⇢ui = 1p
g⇢⇢(@z⇢)2

�(z � z0)

����
locus

= ⇢
@z⇢

�(z � z0)

(35)

Note both sides of this equation are correctly dimension-
less. Equally the pre-factor of the delta function on the
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Figure 6: The minimum value of ⇢ an M = 0 contour

reaches to as a function of width between the two

domain walls. The D7 Domain wall solution is in blue.

The grey is the D3/probe D5 system from Section VI.

boundary (again it falls o↵ as u1 ⇠ m + c/⇢
2 with c

proportional to the quark condensate). We plot this in
Figure 5 where we see the condensate is localised at the
defects and becomes more so as one increases the number
of Fourier terms. However, note that the solutions have
c = 0 at the domain wall’s centre with two peaks, one
positive and one negative, to either side that are moving
into the domain wall as we increase the number of Fourier
modes. Presumably they eventually merge with the true
condensate being the sum of the peaks (which could be
zero) but this is very hard to compute at the 3+1d level.
Below we will restrict our computation to the M = 0
locus which gives us a better understanding.

⇢min is the most easily extracted quantity and we can test
its dependence on the separation of the domain walls. We
show this in Figure 6. We can fit to the functional form

⇢min =
C

wp
, (30)

For small widths, where the configurations lies well above
the IR cut o↵ at ⇢ = 1, the numerical fit is c = 0.59 p =
0.96. As one expects the relation is governed by dimen-
sional analysis with the separation of the domain walls
the only dimensionful parameter in the theory i.e. p = 1.

At this point it is worth making a harder comparison be-
tween these domain wall solutions and the vacuum con-
figuration of the D3/probe D5D5 system of Section II. In
Figure 4 we have also plotted U-shaped D5 embeddings of
the same width as configurations - they lie very close. In
Figure 6 we plot ⇢min against the width of the U-shape
also. As the domain wall results become more trusted
away from the domain wall at ⇢ = 1 the two solutions
converge. It seems likely from this that the deviations are
artefacts of our IR wall. We will prove their equivalence

for large quark mass in the next section. In the field the-
ory this equality presumably follows from both systems
consisting of massless fermions on the domain walls in-
teracting by the same N = 4 dynamics. The mass gap
and self energies of the quarks as a function of energy
scale must be the same in each system.

The Large Mass Limit

To move away from the Fourier analysis approximations
and numerics we can instead consider two isolated do-
main walls where the background spatial dependent mass
is infinite (orM � 1/w). That is the mass is strictly zero
on the domain wall but infinite elsewhere. In this limit
we can derive the contour in the ⇢ � z plane where the
domain wall sits.

Our solution for @⇢u1 in (22) will be a delta function
on a contour where some ⇢(z) vanishes, where M = 0,
multiplied by some very large number, N . Keeping just
the leading terms in @⇢u1 leaves

SD7 ⇡
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i )
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(@z⇢(z))2

(31)
We must be careful though with the treatment of the
metric by the delta function in (@⇢ui): in particular, a
delta function reduces the action to that on a sub-space
and so we must correctly adjust the

p
�g factor to that

on the line ⇢(z) by including a Jacobian factor. We find it
instructive here to consider the problem in a flat 2-plane
space where the action would be just

S ⇡

Z
dz d⇢ (@⇢ui)
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1 + (@z⇢(z))2 (32)

We must set

@⇢ui =
1
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�(z � z0) (33)

in order to obtain
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which is the line element on z(⇢). In a curved space this
naturally becomes
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Note both sides of this equation are correctly dimension-
less. Equally the pre-factor of the delta function on the
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boundary (again it falls o↵ as u1 ⇠ m + c/⇢
2 with c

proportional to the quark condensate). We plot this in
Figure 5 where we see the condensate is localised at the
defects and becomes more so as one increases the number
of Fourier terms. However, note that the solutions have
c = 0 at the domain wall’s centre with two peaks, one
positive and one negative, to either side that are moving
into the domain wall as we increase the number of Fourier
modes. Presumably they eventually merge with the true
condensate being the sum of the peaks (which could be
zero) but this is very hard to compute at the 3+1d level.
Below we will restrict our computation to the M = 0
locus which gives us a better understanding.

⇢min is the most easily extracted quantity and we can test
its dependence on the separation of the domain walls. We
show this in Figure 6. We can fit to the functional form

⇢min =
C

wp
, (30)

For small widths, where the configurations lies well above
the IR cut o↵ at ⇢ = 1, the numerical fit is c = 0.59 p =
0.96. As one expects the relation is governed by dimen-
sional analysis with the separation of the domain walls
the only dimensionful parameter in the theory i.e. p = 1.

At this point it is worth making a harder comparison be-
tween these domain wall solutions and the vacuum con-
figuration of the D3/probe D5D5 system of Section II. In
Figure 4 we have also plotted U-shaped D5 embeddings of
the same width as configurations - they lie very close. In
Figure 6 we plot ⇢min against the width of the U-shape
also. As the domain wall results become more trusted
away from the domain wall at ⇢ = 1 the two solutions
converge. It seems likely from this that the deviations are
artefacts of our IR wall. We will prove their equivalence

for large quark mass in the next section. In the field the-
ory this equality presumably follows from both systems
consisting of massless fermions on the domain walls in-
teracting by the same N = 4 dynamics. The mass gap
and self energies of the quarks as a function of energy
scale must be the same in each system.

The Large Mass Limit

To move away from the Fourier analysis approximations
and numerics we can instead consider two isolated do-
main walls where the background spatial dependent mass
is infinite (orM � 1/w). That is the mass is strictly zero
on the domain wall but infinite elsewhere. In this limit
we can derive the contour in the ⇢ � z plane where the
domain wall sits.

Our solution for @⇢u1 in (22) will be a delta function
on a contour where some ⇢(z) vanishes, where M = 0,
multiplied by some very large number, N . Keeping just
the leading terms in @⇢u1 leaves

SD7 ⇡

Z
d
4
x d⇢ ⇢

3(@⇢ui)

s

1 +
1

(⇢2 + u
2
i )

2
(@z⇢(z))2

(31)
We must be careful though with the treatment of the
metric by the delta function in (@⇢ui): in particular, a
delta function reduces the action to that on a sub-space
and so we must correctly adjust the

p
�g factor to that

on the line ⇢(z) by including a Jacobian factor. We find it
instructive here to consider the problem in a flat 2-plane
space where the action would be just

S ⇡

Z
dz d⇢ (@⇢ui)

p
1 + (@z⇢(z))2 (32)

We must set

@⇢ui =
1

@z⇢
�(z � z0) (33)

in order to obtain

S ⇡

Z
d⇢

q
1 + (@⇢z)2 (34)

which is the line element on z(⇢). In a curved space this
naturally becomes

@⇢ui = 1p
g⇢⇢(@z⇢)2

�(z � z0)

����
locus

= ⇢
@z⇢

�(z � z0)

(35)

Note both sides of this equation are correctly dimension-
less. Equally the pre-factor of the delta function on theThere remain fluctuations on the domain wall
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Figure 2: The Fourier representation of the even

periodic mass function we use (100 Fourier terms are

used) - in each period it has two domain walls separated

by a width w.

Figure 3: the full ⇢� x3 dependence of a domain wall

pair as represented by (28)

20 40 60 80 100
�

1.45

1.50

1.55

z

Figure 4: The contours in the ⇢� x3 plane where

M = 0. The examples given are a numerical solution

(Orange), and a second narrower numerical case

(Blue), With D5 embeddings from (6) of matching width

overlaid in (Black) and (Red) respectively. Note the

imperfections are due to truncating the Fourier Series.

Figure 5: The quark condensate parameter c plotted

against x3 across the domain walls for a configuration

of width = 0.37 and reaching to a depth of ⇢min = 1.27.
First 40(Red), 100(Cyan), 300(Black) Fourier modes

included.

This solution provides the UV boundary data for the
holographic field u1. It is now straightforward to plot
the configuration into the interior of AdS. We simply use
our solutions fk(⇢) as a multiplier on each Fourier mode

u1(⇢, z) = a0
2 f0(⇢) +

P1
n=1 anf2⇡n(⇢) cos

2⇡nz
3L

. (28)

We plot an example solution in Figure 3. The high k

modes die away as one moves to smaller ⇢ and the well
configuration begins to decay. The key question is where
are the contours where u1 = 0 - this is where the 2+1d
fermions will be isolated. We plot this in Figure 4

The two domain walls in the UV are well separated but
they join together in the IR. The behaviour of two do-
main walls joining is very familiar from probe brane em-
beddings (for example that in section II). As first intro-
duced in the Sakai-Sugimoto model [6], when branes join
in this fashion it indicates condensation of the fermions
on the two boundaries. The minimum ⇢ value of the
configuration ⇢min is the mass gap of the theory (for-
mally ⇢min/2⇡↵0). We will make the same interpretation
here. The two initially separated 2+1d 2-spinors have
a symmetry breaking interaction together. What is not
yet clear is whether the symmetry breaking is intrinsic
through a mass term or due to spontaneous symmetry
breaking.

Of course, strictly the gauge invariant operator that con-
denses is a path ordered Wilson line stretched between
the UV Domain Walls [10]

O = q̄1e
i
R
Aµdx

µ

q2 (29)

but in the IR at the condensation scale the theory can
no longer “see” the separation (the domain walls have
joined) and the operator will mix freely with the local
operator q̄1q2. One would expect their vevs to be propor-
tional. We can extract the local 3+1d quark condensate
from the sub-leading behaviour of our solution at the

Non-local qL qR operators at the IR tip become local 
and mix with the 4d local qq operator – source each 
other?

OWL
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right has dimension of inverse energy so correctly reduces
the dimension of the action by one as we move down one
in spatial dimension.

The action (22) reduces in dimension by one, and writing
just the coe�cient of the large N , gives

S =

Z
d
2
x d⇢ ⇢

2
q

1 + ⇢4(@⇢z)2 (36)

The action for z is precisely that of the D3/probe D5
D5 system (4) with solution (6). Again we see that the
dynamics of the systems, mass gaps and so forth are,
remarkably, precisely the same.

Fluctuations on the domain wall

We will now assume that the M ! 1 limit action (36)
sets theM = 0 contour to that of (6) and any dynamics in
the 2+1d theory is a perturbation on this contour (u ⌧

M). We can then understand the quark condensate in
the system as follows. We start again from the action
for u1 (22) but impose the dynamics we have found by
requiring the solution to only lie on the locus in (6) by
including by hand a delta function of the form in (35).
This gives

L ⇡ ⇢
4(@⇢z)

s

1 +A(@⇢ui)2 +
(@x2+1ui)2

(⇢2 + u
2
i )

2
(37)

with

A = 1 +
1

(@⇢z)2(⇢2 + u
2
i )

2
(38)

where from (5) we know

@⇢z =
⇢
4
minp

⇢12 � ⇢
8
min⇢

4
(39)

Note that our theory diverges from the D3/probe D5 D5
system because the number of scalar fluctuations (i =
1, 2) originates from the D7 probe action. In the field
theory this reflects the fact that there is a single 3+1d
four component spinor reduced to a single two component
spinor on each defect.

If we consider the vacuum of the theory where there is
no x2+1 dependence (i.e. u1(⇢)) we can see by inspection
that (37) is minimized by @⇢u1 = 0 or u1 = a constant.
Equivalently we can see this solution satisfies the equa-
tion of motion

@⇢

✓
⇢4A(@⇢z)p
1+A(@⇢u1)2

(@⇢u1)

◆

+ 2
(⇢2+u2

1)
3

⇢4A
(@⇢z)

p
1+A(@⇢u1)2

(@⇢u1)2u1 = 0

(40)

We conclude that for consistency we must fix this con-
stant to be rmin = 0.675/w, the IR mass gap. That mass
is then the same at all RG scales and there is no con-
densate in the system. The system simply describes a
massive quark state in a conformal gauge background.

The u2 field is interesting because it plays the role of the
Goldstone boson in systems with chiral symmetry break-
ing. Here where there is no dynamical chiral symmetry
breaking so far, we don’t expect to see Goldstone dy-
namics. We can write the linearized equation of motion
for u2(⇢, x) on the locus in the background of u1 (thus
setting @⇢u1 = 0)

@⇢(⇢
4
A(@⇢z)(@⇢u2)) +M

2
u2

⇢
4(@⇢z)

(⇢2 + u
2
1)

2
u2 = 0 (41)

By rescaling z, u2, ⇢,Mu2 we can set ⇢min = 1 in the
equation and therefore for a generic rmin: Mu2 =
M⇢min=1/⇢min. Numerically we find (by shooting from
u
0
2(0) = 0 and requiring that u2 vanishes in the UV) that

R
2
M⇢min=1 = 7.8.

That this 2+1d state is not massless means it is not a
Goldstone boson. One has to again conclude, since the
theory has a single scale set by the width w, that there
is a bare quark mass ⇢min in the system. Then all bound
states naturally have mass proportional to ⇢min. The
joining of the branes is therefore a reflection of the pres-
ence of a hard quark mass in this case.

That the basic domain wall set up has a (non-local) quark
mass of 0.675/w even in the infinite 3+1d mass, M , limit
should be compared to the weak coupling domain wall
system where the mass is strictly zero in this limit. The
extra ingredient is presumably the strong coupling gauge
dynamics.

In the next section we will introduce a magnetic field
background that is known in some systems to trigger dy-
namical chiral symmetry breaking and this will lead us
to chiral symmetry breaking constructions.

V DYNAMICAL SYMMETRY BREAKING

The domain wall system we have constructed so far sim-
ply describes isolated two component quarks each on a
separate 2+1d domain wall. There is a (non-local) mass
term linking the quarks of order 1/w where w is the sep-
aration between the domain walls. In this section we
want to add in dynamics associated with the N = 4
gauge fields that cause chiral symmetry breaking. In
fact this system, presumably because the fermions are
isolated from each other, are more di�cult to condense
than those on the usual single probe brane constructions
as we will see.

ui = constant mass = 
IR gap

Suggests these theories’
chiral symmetry breaking is purely a 
hard mass. (mIR proportional 1/width)

hep-th/ 
0803.3547

157 The U-shaped loci cup off at ρ ¼ ρm and then all have
158 precisely the same width 2π=5 at large ρ. This is a distinct
159 behavior from the configurations we found in the D3/probe
160 D7 case in [1]—there any asymptotic separation could be
161 achieved. In fact in [2] we did not notice this peculiarity
162 because when a direction of the D5 is compactified to
163 include confinement this behavior ceases and arbitrarily
164 wide configurations exits. There, this behavior only man-
165 ifests for heavy quarks, that were not our interest. This
166 phenomena is a further odd behavior for the D5/probe D7
167 system in the far UV. Note this behavior suggests that
168 the UV width of the configuration cannot be taken to
169 directly measure a UV parameter such as the quark mass.
170 Our analysis of the DBI fields in the next section, which
171 explicitly describe the quark mass, confirms this interpre-
172 tation. Further at finite temperature, we will find that in a
173 system at a given temperature there can be two configu-
174 rations of equal UV width, but with different quark masses.
175 Below we will sort the solutions by the quark mass or NJL
176 interaction coupling rather than width.
177 A natural solution to the far UV behaviors is to simply
178 include a UV cutoff at some fixed ρUV. The solutions then
179 can take any width value in the UV up to a maximum of
180 2π=5 (corresponding to ρm ¼ 0). The zero width value is
181 when ρm ¼ ρUV. Presumably wider solutions are simply
182 unstable to mutual attraction in the x4 direction. Our next
183 test of these solutions is whether they have sensible and
184 consistent theories living on the loci.

185 B. Domain wall theory

186 The Lagrangian governing the fluctuations on the
187 domain wall locus is given by inputting the delta function
188 (5) by hand into (4). This enforces the geometry of the
189 locus and the resulting domain wall theory is considered a
190 fluctuation on the background U-shaped configuration (see
191 [1] for more details on the procedure). The action is

SDW ∼
Z

dρρ5=2ð∂ρx4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þAð∂ρx9Þ2 þ
1

ðKUÞ2
ð∂μx9Þ2

s

;

ð9Þ

192193 with the function

A ¼ 1þ 1

ðKUÞ2ð∂ρx4Þ2
ð10Þ

194195 encoding the x4 dependence of the holographic fields. The
196 equations of motion for the vacuum of the theory,

1

2
ρ5=2ð∂ρx4Þ

ð∂A
∂x9
Þð∂ρx9Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þAð∂ρx9Þ2
q − ∂ρ

"
ρ5=2∂ρx4Að∂ρx9Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þAð∂ρx9Þ2
q

#
¼ 0;

ð11Þ

197198which shows that the x9ðρÞ field has solutions with
199x9 ¼ const. It is natural to set this constant to the minimum
200radius ρm that the U-shaped locus reaches to—the IR mass
201gap. The constant solution matches that seen in D3/probe
202D7 domain wall configurations where there the fields on
203the domain walls are simple states with vanishing con-
204densate and no renormalization of the quark mass on their
205loci [1]. We plot these solutions in Fig. 1 to display the IR
206boundary conditions and show that different ρm domain
207walls lead to different UV masses.
208We stress again here that we have many configurations
209with the same far UV width of 2π=5 but with different IR
210masses ρm. The holographic field on the locus dual to the
211quark mass provides supporting solutions with different
212values of the UV mass. The UV width cannot be taken to
213measure the quarkmass but the holographic field on the locus
214does allow a clean interpretation of the configurations.
215In the next section, we will repeat the above construction
216in the background of a black fivebrane to describe the finite
217temperature behavior of the system.

218II. FINITE T-MESON MELTING TRANSITION

219The supergravity solution for the near horizon geometry
220around a stack of black fivebranes with Nc units of RR

2216-form flux is (U ¼ r=α0, K ¼ ð2πÞ3=2
gYM

ffiffiffi
N

p ) [8]

ds2

α0
¼KUð−hdt2þdx21−4Þþ

1

KU

"
1

h
dU2þU2dΩ2

3

#
ð12Þ

222223where

hðUÞ ¼ 1 −
U2

0

U2
ð13Þ

224225
eϕ ¼ U

K
; g2YM ¼ ð2πÞ3gsα0 ð14Þ
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F1:1FIG. 1. Solutions for the profile of the x9 field at zero temper-
F1:2ature. The dashed line represents the IR boundary condition
F1:3x9ðρmÞ ¼ ρm. These configurations have different UV quark
F1:4masses although they all tend to the same width in the far UV.
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The expected cause and e↵ect are well known from other
systems. If the core of the bulk geometry becomes repul-
sive to the domain wall (due to a factor growing in the
metric as some power of 1/⇢) then the domain wall will
be restricted to lie above some minimum ⇢ value, ⇢c. ⇢c

is then interpreted as the chiral symmetry breaking scale
and, crucially, as the UV quark mass falls (or equally the
separation of the domain wall grows in this case) this
scale should remain fixed. We will explore example sys-
tems that both realize and fail to realize this phenomena
below.

To begin to explore these issues let’s consider the e↵ects
of an applied magnetic field which is usually a well con-
trolled source of chiral symmetry breaking.

Applied Magnetic Field/Dilaton Profile

To include an explicit possible source of dynamical sym-
metry breaking into the domain wall configuration we will
include a magnetic field in the z or x3 direction. Mag-
netic fields are known to generate chiral symmetry break-
ing both in field theory [11] and holographic settings [12].
Our magnetic field enters as the 1, 2 components of FMN

in the DBI action for the probe D7

SD7 = �T7

Z
d
8
⇠

p
�detP [GMN + 2⇡↵0FMN ] (42)

which gives an overall pre-factor on the Lagrangian

LD7 ⇡ h(r)⇢3

s

1 + (@⇢ui)2 +
R4

(⇢2 + u
2
i )

2
(@xui)2 (43)

with

h =

s

1 +
B2R4

(⇢2 + u
2
i )

2
. (44)

We can e↵ectively set R = 1 by rescaling x3+1 and B.

The magnetic field naturally acts to generate chiral sym-
metry breaking on the probe D7 brane itself [12]. This
e↵ect destabilizes the linearized discussion in the previ-
ous section - the Fourier modes f(k) now satisfy

@⇢

�
h(⇢)⇢3@⇢u1

�
� h(⇢)

k
2

⇢
u1 +

2B2

h(⇢)⇢3
u1 = 0 (45)

The low k modes are unstable and tend to rise to large
values on the IR wall. This is not the instability we are
hoping to see - we want to watch dynamics in the domain
wall theory. To avoid this issue we will therefore move to
the large M limit. A very massive quark is insensitive to
the IR B field so in the M ! 1 limit only the domain

wall 2+1d locus where M = 0 will be a↵ected by the
magnetic field.

We therefore start from (43) and take the large M limit
with @zM proportional to the delta function in (35). We
also assume ui = 0, that is that it is much less than M .
We arrive at the equation for the locus where M = 0

S =

Z
d
2
x d⇢ h(⇢)⇢2

q
1 + ⇢4(@⇢z)2 (46)

There is still a conserved quantity and we obtain

@⇢z =
1p

c2h(⇢)2⇢12 � ⇢4
(47)

where c is the integration constant. The minimum value
of ⇢ a U-shaped configuration reaches is given when the
denominator vanishes. If we more generically imagine a
function

h
2 = 1 +

1

⇢q
(48)

then the vanishing of the denominator in (47) becomes
the solution of the polynomial equation

c
2
h
2
⇢
8
� 1 = 0 (49)

For q  8 the polynomial has positive powers of ⇢ only
and vanishes at some ⇢min controlled by the constant c.
By choosing c one can place the zero at any ⇢. These
configurations are U-shaped with the infinite separation
case corresponding to ⇢min ! 0. Such cases therefore
do not display a fixed minimum, ⇢c, mass gap as the
quark mass falls to zero. They do not describe chiral
symmetry breaking. Of course the B field case falls into
this category and so does not generate chiral symmetry
breaking for the fermions separated on the domain walls.

In contrast to the B-field case, were q > 8 in (48) then the
polynomial where the denominator of (47) vanishes di-
verges at both large ⇢ and as ⇢ ! 0. Between these limits
there is a minimum. For appropriate choices of the con-
stant c the largest ⇢ root corresponds to the h = 1 limit.
However, as we move in towards smaller ⇢, eventually, the
minimum of the function lifts o↵ from zero and at some
fixed c or ⇢c there cease to be further solutions. Here we
find U-shaped configurations which, as they widen, sat-
urate to falling in no further than ⇢c. This is the chiral
symmetry breaking e↵ect we were looking for. Clearly we
need a rapidly diverging h factor to provide a powerful
enough dynamic to trigger chiral symmetry breaking.

Given that these forms for h (which occurs in the position
of the dilaton e

�� in the action) do trigger chiral symme-
try breaking we will briefly study the model with q = 10
in (48). It is not a system we know how to generate in a
top-down model but is an interesting toy with
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scale should remain fixed. We will explore example sys-
tems that both realize and fail to realize this phenomena
below.

To begin to explore these issues let’s consider the e↵ects
of an applied magnetic field which is usually a well con-
trolled source of chiral symmetry breaking.

Applied Magnetic Field/Dilaton Profile

To include an explicit possible source of dynamical sym-
metry breaking into the domain wall configuration we will
include a magnetic field in the z or x3 direction. Mag-
netic fields are known to generate chiral symmetry break-
ing both in field theory [11] and holographic settings [12].
Our magnetic field enters as the 1, 2 components of FMN

in the DBI action for the probe D7

SD7 = �T7
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We can e↵ectively set R = 1 by rescaling x3+1 and B.

The magnetic field naturally acts to generate chiral sym-
metry breaking on the probe D7 brane itself [12]. This
e↵ect destabilizes the linearized discussion in the previ-
ous section - the Fourier modes f(k) now satisfy
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The low k modes are unstable and tend to rise to large
values on the IR wall. This is not the instability we are
hoping to see - we want to watch dynamics in the domain
wall theory. To avoid this issue we will therefore move to
the large M limit. A very massive quark is insensitive to
the IR B field so in the M ! 1 limit only the domain

wall 2+1d locus where M = 0 will be a↵ected by the
magnetic field.

We therefore start from (43) and take the large M limit
with @zM proportional to the delta function in (35). We
also assume ui = 0, that is that it is much less than M .
We arrive at the equation for the locus where M = 0

S =
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d
2
x d⇢ h(⇢)⇢2

q
1 + ⇢4(@⇢z)2 (46)

There is still a conserved quantity and we obtain

@⇢z =
1p
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(47)

where c is the integration constant. The minimum value
of ⇢ a U-shaped configuration reaches is given when the
denominator vanishes. If we more generically imagine a
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and vanishes at some ⇢min controlled by the constant c.
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configurations are U-shaped with the infinite separation
case corresponding to ⇢min ! 0. Such cases therefore
do not display a fixed minimum, ⇢c, mass gap as the
quark mass falls to zero. They do not describe chiral
symmetry breaking. Of course the B field case falls into
this category and so does not generate chiral symmetry
breaking for the fermions separated on the domain walls.

In contrast to the B-field case, were q > 8 in (48) then the
polynomial where the denominator of (47) vanishes di-
verges at both large ⇢ and as ⇢ ! 0. Between these limits
there is a minimum. For appropriate choices of the con-
stant c the largest ⇢ root corresponds to the h = 1 limit.
However, as we move in towards smaller ⇢, eventually, the
minimum of the function lifts o↵ from zero and at some
fixed c or ⇢c there cease to be further solutions. Here we
find U-shaped configurations which, as they widen, sat-
urate to falling in no further than ⇢c. This is the chiral
symmetry breaking e↵ect we were looking for. Clearly we
need a rapidly diverging h factor to provide a powerful
enough dynamic to trigger chiral symmetry breaking.

Given that these forms for h (which occurs in the position
of the dilaton e

�� in the action) do trigger chiral symme-
try breaking we will briefly study the model with q = 10
in (48). It is not a system we know how to generate in a
top-down model but is an interesting toy with

Violate the BF bound by hand in the interior of the space 
via a dilaton profile
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Figure 7: U-shaped loci of the domain wall in the z � ⇢

plane in the theory with q = 10 in (47). Note the

solutions with large widths pile up at ⇢c = 0.867

a phenomenologically imposed (unbackreacted) dilaton
profile. In Figure 7 we show the U-shaped loci where
M = 0 for this model displaying the pile up at a fixed
⇢c IR mass scale for widely separated domain walls (with
small UV quark mass).

Again we can determine the behaviour of the sub-leading
ui fields from (43) with (48) after restricting the dynam-
ics to the loci in Figure 7 by including by hand a delta
function of the form in (35). This gives

L ⇡ h(r)⇢4(@⇢z)

s

1 + F(@⇢ui)2 +
(@x2+1ui)2

(⇢2 + u
2
i )

2
(50)

with

F = 1 +
1

(@⇢z)2(⇢2 + u
2
i )

2
(51)

where @⇢z is given in (47).

The u1 vacuum equation is

@⇢

✓
h ⇢4F(@⇢z)p
1+F(@⇢u1)2

(@⇢u1)

◆

+ 2
(⇢2+u2

1)
3

h ⇢4

(@⇢z)
p

1+F(@⇢u1)2
(@⇢u1)2u1

�2 @h
@r2 ⇢

4(@⇢z)
p

1 + F(@⇢u1)2 u1 = 0

(52)

The extra term relative to (40), due to h, if su�ciently
large, can cause condensation. Note the mechanism here
is the same as discussed for D7 probe examples in [23]
- the final term can be considered a running mass for
u1 and if it violates the Breitenlohner Freedman (BF)
bound [24] at some ⇢ then the u1 = 0 solution becomes
unstable.
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Figure 8: the vacuum functions u1(⇢) for the theory

with q = 10 in (47) showing chiral symmetry breaking

behaviour. Note the solutions begin at ⇢min in the IR.

We solve (49) to set c for a given ⇢min (this involves more
fine tuning the closer the U-shape approaches ⇢min and
the separation of the domain walls goes to zero). We then
solve (52) subject to u1(⇢min) = ⇢min and u

0
1(⇢min) =

0 for di↵erent ⇢min. The results are shown in Figure
8. They show clear chiral symmetry breaking behaviour
with the IR mass becoming independent of the UV mass
at small UV mass.

Note we have also checked examples where q < 8 and
there the extra term in the equation of motion for u1 does
not violate the BF bound and the IR mass approaches
zero with the UV mass. This is self consistent with the
loci shape in these theories which do not show chiral sym-
metry breaking.

Finally we can write the linearized equation of motion
for x-dependent u2 fluctuations in the u1 background

@⇢

✓
h ⇢4F(@⇢z)p
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2
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(@⇢u1)2u2

�2 @h
@r2 ⇢

4(@⇢z)
p

1 + F(@⇢u1)2 u2 = 0
(53)

which can be solved subject to boundary conditions
u
0
2(⇢min) = 0 and in the UV u2 = 0 (so the fluctuation

is only of the operator and not the source). In the case
where the UV solution for u1 asymptotes to zero we can
immediately see that this “pion” is massless - if we set
M

2 = 0 in (53) then there is the solution u2 / u1 since
then (53) becomes precisely (52). Since this solution falls
to zero in the UV it is appropriate for the massless pion
state. At other values of UV quark mass we must

Us pile up at IR point… surface ui show chiral symmetry breaking and…

Goldstones show a Gell-Mann-Oakes 
Renner relation…. 
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Figure 9: For the vacuum solutions in Figure 8: the

pion (u2) mass squared against the quark mass

(extracted from the UV of Figure 8). Computed data

points are shown as well as a guiding linear function. A

Gell-Mann Oakes Renner relation is reproduced at small

mq but the system returns to M
2
⇡ ⇠ m

2
q at larger mq.

solve numerically and we plot, as the points in Figure
9, this field’s mass squared against the UV quark mass
extracted from the solutions in Figure 8. We also pro-
vide a linear line to guide the eye. At small mq the data
reasonably suggest a linear Gell-Mann-Oakes-Renner re-
lation - the state is the Goldstone boson (pion) of the
symmetry breaking. At larger mq the relation returns to
the expected M

2
⇡ / m

2
q.

Dilaton Flow Geometries

As another example of a chiral symmetry breaking mech-
anism we will turn to a backreacted hard wall model. The
simplest example is a case of a dilaton flow deformation
of AdS. First let’s consider the metric from [14] (it gener-
ates chiral symmetry breaking in the massless D3/probe
D7 system as described in [16]). In Einstein frame the
metric can be written as [16]

ds
2 = Gx dx

2
4 +Gr(d⇢

2 + ⇢
2⌦2

3 + du
2
1 + du

2
2), (54)

where
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4
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◆�/4

(55)

and
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1/2

✓
r
4 + b

4
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◆(2��)/4
r
4
� b

4

r4
(56)

with

H =

✓
r
4 + b

4

r4 � b4

◆�

� 1. (57)

Here �2 + �
2 = 10 and � = L

2
/2. The dilaton is given

by

e
2� = e

2�0

✓
r
4 + b

4

r4 � b4

◆�

(58)

Note here again the radial directions are r2 = ⇢
2+u

2
1+u

2
2.

The geometry has a running coupling growing into the IR
but also a singularity at b which it is not clear how to
resolve in the full string theory. Nevertheless the singu-
larity is repulsive to probe branes and triggers chiral sym-
metry breaking in the D3/probe D7 system [16]. We will
use this geometry to trigger chiral symmetry breaking on
the domain walls assuming it captures some aspects of a
more complete system. Note that for numerical work one
can rescale ⇢, ui to set b = 1 - it sets the energy scale of
the geometry/dual.

The probe D7 Lagrangian in this geometry is given by

LD7 = e
�
G

2
xG

2
r⇢

3

r
1 + (@⇢ui)2 +

Gr

Gx
(@xui)2 (59)

If the 3+1d theory’s quark mass is set to be less than
or of order the scale b then the background D7 probe
bends o↵ axis and breaks chiral symmetry in the 3+1d
theory [16]. We will therefore again take the M ! 1

limit so that the 3+1d theory does not have spontaneous
breaking, but allow domain walls where M = 0. Thus
we impose that the mass vanishes on a contour z(⇢) by
setting

@⇢u1 = N
G

�1/2
r

@z⇢

�����
z=z0

�(z � z0) (60)

and keeping the terms leading in N . We obtain the La-
grangian for the locus z(⇢)

LD7 = e
�
G

3/2
x G

2
r⇢

3

r
1 +

Gx

Gr
(@⇢z)2 (61)

Note a good cross-check on this result is that it matches
the embedding action for a 6-brane placed in the 0-2,⇢,
and ⌦3 directions with some profile z(⇢).

There remains a conserved quantity so we find

@⇢z =
G

1/2
r

G
1/2
x

p
c2e2�G4

xG
3
r⇢

6 � 1
(62)

The denominator factor in the square root blows up as
⇢ ! 1, and thus if c is too large there are no roots. This
means the U-shaped embeddings end at a fixed c or ⇢min

The interpretation of the set up is 
self consistent and the first U system 
we know with an explicit measure of 
mass and the condensate
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Figure 7: U-shaped loci of the domain wall in the z � ⇢

plane in the theory with q = 10 in (47). Note the

solutions with large widths pile up at ⇢c = 0.867

a phenomenologically imposed (unbackreacted) dilaton
profile. In Figure 7 we show the U-shaped loci where
M = 0 for this model displaying the pile up at a fixed
⇢c IR mass scale for widely separated domain walls (with
small UV quark mass).

Again we can determine the behaviour of the sub-leading
ui fields from (43) with (48) after restricting the dynam-
ics to the loci in Figure 7 by including by hand a delta
function of the form in (35). This gives

L ⇡ h(r)⇢4(@⇢z)

s

1 + F(@⇢ui)2 +
(@x2+1ui)2

(⇢2 + u
2
i )

2
(50)

with

F = 1 +
1

(@⇢z)2(⇢2 + u
2
i )

2
(51)

where @⇢z is given in (47).

The u1 vacuum equation is
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(52)

The extra term relative to (40), due to h, if su�ciently
large, can cause condensation. Note the mechanism here
is the same as discussed for D7 probe examples in [23]
- the final term can be considered a running mass for
u1 and if it violates the Breitenlohner Freedman (BF)
bound [24] at some ⇢ then the u1 = 0 solution becomes
unstable.
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Figure 8: the vacuum functions u1(⇢) for the theory

with q = 10 in (47) showing chiral symmetry breaking

behaviour. Note the solutions begin at ⇢min in the IR.

We solve (49) to set c for a given ⇢min (this involves more
fine tuning the closer the U-shape approaches ⇢min and
the separation of the domain walls goes to zero). We then
solve (52) subject to u1(⇢min) = ⇢min and u

0
1(⇢min) =

0 for di↵erent ⇢min. The results are shown in Figure
8. They show clear chiral symmetry breaking behaviour
with the IR mass becoming independent of the UV mass
at small UV mass.

Note we have also checked examples where q < 8 and
there the extra term in the equation of motion for u1 does
not violate the BF bound and the IR mass approaches
zero with the UV mass. This is self consistent with the
loci shape in these theories which do not show chiral sym-
metry breaking.

Finally we can write the linearized equation of motion
for x-dependent u2 fluctuations in the u1 background
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(53)

which can be solved subject to boundary conditions
u
0
2(⇢min) = 0 and in the UV u2 = 0 (so the fluctuation

is only of the operator and not the source). In the case
where the UV solution for u1 asymptotes to zero we can
immediately see that this “pion” is massless - if we set
M

2 = 0 in (53) then there is the solution u2 / u1 since
then (53) becomes precisely (52). Since this solution falls
to zero in the UV it is appropriate for the massless pion
state. At other values of UV quark mass we must

Witten’s “double 
trace” prescription:

In the NJL interpretation must change boundary conditions on the 
fluctuations (m can now vary) and a Goldstone results. 

You can also introduce other double trace terms in the fluctuation 
spectrum using the same prescription…
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We construct a new holographic description of QCD using domain wall fermions. The construction
consists of probe D7 branes in a D5 brane geometry describing quarks on a 4+1d defect in a 5+1d
gauge theory. We then compactify one dimension of the D5 to introduce confinement in the gauge
degrees of freedom. In addition we allow a spatial dependent mass term for the D7 brane quarks to
isolate chiral fermions on 3+1d domain walls. The D7 world volume fields, when restricted to the
domain wall position, provide an AdS/QCD description. We compute the spectrum and compare
to data. We include higher dimension operators to systematically improve the description.

Domain wall fermions [1] are a powerful technique for
isolating massless, chiral fermions within a gauge the-
ory. The technique is widely used in lattice QCD simu-
lations to enforce chiral symmetry. Recently we investi-
gated the technique in a holographic setting [2] provid-
ing a holographic description of 2+1 dimensional domain
wall fermions on a probe D7 brane in the AdS5 space
generated by N = 4 super Yang-Mills theory [3]. In the
limit where the higher dimension mass is very large the
position of the domain wall (where the chiral fermions
are massless) can be found exactly. Restricting the holo-
graphic fields to the locus of the domain wall gives a
holographic description of the dynamics of those chiral
fermions.

Here we take this approach to provide a description of
a 3+1 dimensional domain wall theory with Nf chiral
quarks on the defect - the basic construct is a 5+1 di-
mensional gauge theory (on a D5 brane) compactified
in one dimension (introducing confinement), with quarks
present on 4+1 dimensional defects (probe D7 branes).
The domain wall structure is then used to place chiral
fermion on 3+1 dimensional defects. When the 4+1d
mass is large the position of the domain wall can be found
and the holographic fields, when reduced to this locus,
provide a description of the chiral fermions. We present
the construction of this Domain Wall AdS/QCD theory
and compute the light meson spectrum it predicts. The
UV of the theory, reflecting that the gauge dynamics is
5+1 dimensional, does not match to perturbative QCD
so we impose a cut o↵ at the 3 GeV scale and only work at
lower scales in the holographic model. The predictions
are comparable in quality to those of other AdS/QCD
constructions [4, 5].

The holographic description should be matched at the
3 GeV upper cut o↵ to QCD in the intermediate cou-
pling regime and higher dimension operators would be
expected to be present [6]. We include such operators
using Witten’s multi-trace prescription [7] (see [8, 9] for
previous examples of using HDOs in holographic descrip-
tions of QCD). We fit the couplings of these operators

to the meson data since we can not compute the non-
perturbative QCD matching. We show that the predic-
tions of the model can be systematically improved in this
way.

I THE BRANE CONSTRUCTION

Our construction is built around the D5/probe D7 system
with five coincident directions in the configuration (one
of the systems discussed in [10]).

0 1 2 3 4 5 6 7 8 9

D5 - - - - - (-) • • • •

D7 - - - - - • - - - •

(1)

The UV theory is therefore a supersymmetric 5+1d gauge
theory with quark hypermultiplets restricted to a 4+1d
domain wall. The gauge theory is strongly coupled in
the UV but we will set up our QCD-like dynamics in
the IR where the supergravity approximation holds. We
will compactify one of the five spatial directions on the
D5 brane, shown by the brackets in (1). This breaks
supersymmetry and introduces an IR confinement scale
by making the geometry a cigar in the x5 and radial
direction.

Note if the D7 brane were at x9 = 0 describing a massless
quark, then the D7 would wrap around the cigar and re-
emerge as an anti-D7 brane anti-podal on the circle in x5.
This demonstrates that the theory needs an anti-D5 in
order for the D7 fluxes to have a sensible solution on the
x5 circle. Here though we will, except on a domain wall,
set the quark mass very large so that the D7 only live at
large radius where they are widely separated on the x5

circle. We will assume that there is then no interaction
between the anti-podal branes and concentrate on the
dynamics on one brane.

The final trick we will employ is to allow the quark mass,
M , on the 4+1d defect to be x4 dependent. We will as-
sume it is positive and very large everywhere except in an
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5+1 dimensional, does not match to perturbative QCD
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pling regime and higher dimension operators would be
expected to be present [6]. We include such operators
using Witten’s multi-trace prescription [7] (see [8, 9] for
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tions of QCD). We fit the couplings of these operators

to the meson data since we can not compute the non-
perturbative QCD matching. We show that the predic-
tions of the model can be systematically improved in this
way.
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Our construction is built around the D5/probe D7 system
with five coincident directions in the configuration (one
of the systems discussed in [10]).
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The UV theory is therefore a supersymmetric 5+1d gauge
theory with quark hypermultiplets restricted to a 4+1d
domain wall. The gauge theory is strongly coupled in
the UV but we will set up our QCD-like dynamics in
the IR where the supergravity approximation holds. We
will compactify one of the five spatial directions on the
D5 brane, shown by the brackets in (1). This breaks
supersymmetry and introduces an IR confinement scale
by making the geometry a cigar in the x5 and radial
direction.

Note if the D7 brane were at x9 = 0 describing a massless
quark, then the D7 would wrap around the cigar and re-
emerge as an anti-D7 brane anti-podal on the circle in x5.
This demonstrates that the theory needs an anti-D5 in
order for the D7 fluxes to have a sensible solution on the
x5 circle. Here though we will, except on a domain wall,
set the quark mass very large so that the D7 only live at
large radius where they are widely separated on the x5

circle. We will assume that there is then no interaction
between the anti-podal branes and concentrate on the
dynamics on one brane.
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The UV is rather odd – the fluctuations aren’t normalizable… all Us asymptote to the 
same width irrespective of the mass gap… but IR seems OK…

Compactifying in x5 confinement

Domain wall m(x4)               3+1d chiral quarks
3

where N = T7

R
d⌦2. The factor

e��G5/2
x G3/2

v =
K2U3

0

8

�
1 +

1

v2
�3

(15)

and blows up as v ! 0 which encourages the D7 to bend
away from v = 0 by switching on v9 and generating chiral
symmetry breaking. The equation for the D7 embedding
that encodes this is

@⇢


⇢2e��G5/2

x G3/2
vp

1+(@⇢v9)2
@⇢v9

�

�2⇢2
p

1 + (@⇢v9)2
⇣

d
dv2 e��G5/2

x G3/2
v

⌘
v9 = 0

(16)

The UV solution is v9 ' M + C/⇢ (' U/2U0) and so
the mass is proportional to MU0 and the condensate (of
dimension four in 4+1d) to CK2U2

0 (note that the con-
densate is a derivative with respect to the mass on the
action so naturally picks up the K2 factor from (15)).
We will avoid this chiral symmetry breaking (and any
interaction with any anti-podal anti-D7) by taking con-
figurations where M ! 1 except on domain walls.

Domain Walls

Our final ingredient is to introduce a quark mass that
has spatial dependence in the x4 direction. We take the
UV mass to be M except, on the boundary,

v9 = �M � w/2 < x4 < w/2 (17)

We expect 3+1d chiral fermions to be isolated at the
two discontinuities where M = 0. We will now work
in the infinite M limit [2] so that any issues with the
4+1d quarks are pushed to the far UV and so that the
x4 derivative of v9 becomes a delta function. One must
be careful to include appropriate Jacobian factors in the
form of the delta function (these are those that e↵ectively
reduce the D7 action to that of a 6 brane). We have, with
M vanishing on the contour x4(⇢)

@⇢v9 =
1

G1/2
v (@4⇢)

�����
locus

�(x4 � x4(⇢)) (18)

We now insert this factor into the D7 action (14) assum-
ing that v9 = 0 (formally v9 ⌧ M) giving

Slocus = �N

Z
d4x d⇢ ⇢2e��G2

xG
3/2
v

r
1 +

Gx

Gv
(@⇢x4)2

(19)

which is an action that determines the locus on which
M = 0 in the ⇢�x4 plane. (19) has a conserved quantity
which we denote C and we find

@⇢x4 =
G1/2

v

G1/2
x

p
e�2�⇢4G5

xG
2
vC

2 � 1
(20)
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Figure 1: The loci of the domain walls in the ⇢� x4

plane for di↵erent choices of C/⇢min. Here we set

KU0 = 1 for numerics.

Note the large ⇢ limit of this is 4
p
2/(CK7/2U5/2

0 ⇢7/2)
and C has energy dimension -5.

The solutions are U-shaped in the ⇢� x4 plane with the
minimum ⇢ value given when the denominator vanishes.
We display these solutions in Figure 1.

II THE DOMAIN WALL THEORY

We now wish to describe holographically the 3+1d chiral
fermions living on the domain walls and their interactions
- this is the Domain Wall AdS/QCD theory. One wants
solutions of the D7 brane world volume fields that are of
the form of a delta function on the loci found above and
shown in Figure 1. To find such solutions we, by hand,
dimensionally reduce the D7 brane action in (14) onto
the loci by imposing a delta function of the form in (18).

The Quark Mass and Condensate

As a first example let’s find the vacuum configuration
describing the quark condensate by considering just the
field v9. We obtain the action

SD7 = �N
R
d4x d⇢ ⇢2e��G5/2

x
G3/2

v

G1/2
v (⇢)

(@⇢x4)

⇥

q
1 + F(@⇢v9)2 +

Gv
Gx

(@x0�3v9)
2

(21)

where

F = 1 +
Gv

Gx(@⇢x4)2
(22)

It’s worth noting that in the large ⇢ limit for the pieces

4
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Figure 2: Numerical solutions for the vacuum functions

v9(⇢).

relevant for the vacuum configuration becomes

SD7 ⇠ �

Z
d4x d⇢

1

CK⇢

r
1 +

C2K5U5
0

32
⇢5(@⇢v9)2 (23)

The large ⇢ solution is v9 = m + c/⇢3. Note here we
use little m and c - they are masses and condensates be-
tween the chiral fermions on the domain wall which are
distinct from the M,C of the 4+1d theory. The conden-
sate is identified by taking a derivative with respect to
the mass, mU0, on the action - as written in this limit
the action is m independent so one must imagine a sub-
leading term, for example coming from the expansion of
the dilaton,

R
d⇢ v29/CK⇢. Now one sets v9 = m + c/⇢3

and di↵erentiates the cross term w.r.t U0m: thus we find
the condensate is proportional to c /CKU0 which is both
proportional to c and of dimension 3.

The resulting full equation of motion for an x indepen-
dent v9 vacuum solution is

@⇢

✓
e��⇢2G5/2

x G3/2
v

G1/2
v (⇢)

(@⇢x4)
F @⇢v9p
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@v2

⇣
e��G5/2

x G3/2
v

p
1 + F(@⇢v9)2

⌘
= 0

(24)

In the UV the solution is of the form m+ c/⇢2. We find
solutions numerically by shooting from the IR boundary
conditions v9(⇢min) = ⇢min (this is required for the IR
mass gap to be consistent with the gap described by the
loci in Figure 1) and v09(⇢min) = 0. We display the results
in Figure 2. The numerics become highly tuned as ⇢min

approaches one and the U-shaped loci become infinitely
wide but the results look very consistent with the UV
quark mass being zero in this limit (which is the case for
the D7 embedding in a uncompactified D5 background).
For small separations of the domain walls, large ⇢min, the
quark mass scales as 1/⇢min as we found in similar con-
figurations in [2]. The massless embedding shows chiral
symmetry breaking behaviour generating the ⇢min = 1
mass gap.
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Figure 3: A plot of M2
⇡ against mq with a guiding linear

function plotted (red).

Pions

The quark condensate and mass are complex objects and
we would expect a second degree of freedom in the dual
that forms a complex pair with v9. Let us call this v10
although there is no such field in the DBI action. We can
immediately write down it’s equation following that for
v9 since it has a U(1) symmetry that mixes it with that
field. The equation of motion for fluctuations of v10 in
the background of the v9 vacuum solution is simply
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v (⇢)

(@⇢x4)
F @⇢v10p
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2⇢2(@⇢x4)

G1/2
v (⇢)
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@v2

⇣
e��G5/2
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1 + F(@⇢v9)2

⌘

+M2e��⇢2G3/2
x G5/2

v

G1/2
v (⇢)

(@⇢x4)
v10p

1+F(@⇢v9)2
= 0

(25)

This equation is therefore su�cient to compute the be-
haviour of the Goldstone mode and its radially excited
states of the theory. v10 does not appear explicitly in the
model but this is because the v9 + iv10 complex number
can be written as v9ei� and then a U(1)A transformation
used to set � = 0. The degrees of freedom though re-
main and the solutions will emerge as components of the
gauge fields which are present on the U-shaped locus. It
is easiest to compute using the logic here though.

The Goldstone nature of this v10 state follows simply
from (25). If one sets M2 = 0 and v10 equal to the
v9 background solution then (25) is simply (24). This
solution though can only be used as a physical state
for the massless theory since we require that asymptot-
ically it falls to zero so it describes a fluctuation of the
operator (rather than asymptoting to a source). Away
from the massless quark theory we must solve (25) nu-
merically with v010(⇢min) = 0 and vary M2 to achieve
v10(1) = 0. We show our numerical data in Figure 3.
The results sensibly match a Gell-Mann-Oakes-Renner
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QCD DW AdS/QCD Improved

DW AdS/QCD

m⇢ 775 MeV 775⇤ gq = 0.247

m⇡ 139 MeV 139⇤ gv = 0.656

ma 1230 MeV 1, 955 gA = 1.287

FV 345 MeV 345⇤

FA 433 MeV 726.7

f⇡ 93 MeV 135.3 128.8

Mv,n=1 1465 MeV 3284 1881.8

MA,n=1 1655 MeV 5043 2752.5

Table 1: Mesonic observables - QCD values and the

basic Domain Wall AdS/QCD model’s predictions.

Starred quantities are used to fix parameters as

described in the text. In the final column we list the

values of the higher dimension operator couplings in the

improved version of the model - here f⇡, and the excited

state masses are predicted.

See [9] for recent examples of this methodology in alter-
native AdS/QCD set ups.

In particular we proceed as follows. We start by consider-
ing di↵erent background embeddings for v9 that asymp-
tote in the UV to di↵erent source values. For each we
compute the pion mass. We then fix by hand the ratio
of the vector meson mass to the pion mass to its ob-
served value and find the wave function, which does not
asymptote to zero in the UV - we can extract the HDO
coupling from the source and operator values at the cut
o↵, assuming the presence of an operator g2V /⇤

2
|q̄�µq|2

(we will quote g2V = ⇤2
J /O). Next we fit the normaliza-

tion of the source to fit FV . In the axial sector we allow
a coupling g2A/⇤

2
|q̄�µ�5q|2 to fit the axial vector meson

mass. Now FA and f⇡ can be computed. Repeating this
for all the v9 embeddings we can achieve the physical
value of fA, fixing the background embedding. The pion
decay constant reduces a little as shown in Table 1 but
not as low as the physical value. There is a bigger im-
provement in the predictions of the radial excited state
masses as we show for the first excitations of the ⇢ and
a mesons, although they too still remain high.

III DISCUSSION

We have presented a holographic domain wall theory of
3+1 dimensional chiral quarks interacting via confining
gauge interactions. Here the gauge interactions are five
dimensional albeit with one compact dimension to gen-

erate the confinement scale. The quarks of a 4+1 di-
mensional theory are isolated on separated domain walls
where the 4+1 dimensional theory’s mass vanishes. The
holographic fields on the locus of the defects provide a
holographic description of a QCD-like theory. We have
shown the theory has chiral symmetry breaking and gen-
erates a spectrum that quite closely resembles QCD. De-
viations are likely due to the gauge coupling growing into
the UV - we have included a UV cut o↵ to stop this
growth and included some higher dimension operators at
the cut o↵. The spectrum is then improved but the full
e↵ects of the higher dimension gauge dynamics are not
suppressed.

In lattice simulations using the domain wall fermion
method the gauge fields are isolated on the defects and
independent of the higher dimensions. It would be in-
teresting to try to arrange such a set up holographi-
cally using multi-centre brane solutions, although non-
supersymmetric multi-centre solutions are hard to find.

We have presented the model on the surface of a single
D7 brane generating just a single flavour of quarks. How-
ever, one would expect the domain wall trick to generate
non-abelian SU(Nf )L⇥ SU(Nf )R flavour symmetries - on
a domain wall only a single chiral quark is massless whilst
the other is massive, so the interaction with the adjoint
scalar superpartner of the gauge field is suppressed on the
wall. Thus the theory on the surface of Nf D7 branes is
just that of the abelian case but fields are promoted to
Nf ⇥Nf matrices and the full action should be traced in
flavour space. The bosonic fields will form U(Nf ) multi-
plets of the vector flavour symmetry with the masses and
couplings of the abelian case we have described.

In conclusion we believe it has been interesting to gener-
ate a new type of AdS/QCD model which uses the do-
main wall fermion method. The method may allow a
wider class of chiral theories to be explored in the future.
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where N = T7

R
d⌦2. The factor

e��G5/2
x G3/2

v =
K2U3

0

8

�
1 +

1

v2
�3

(15)

and blows up as v ! 0 which encourages the D7 to bend
away from v = 0 by switching on v9 and generating chiral
symmetry breaking. The equation for the D7 embedding
that encodes this is

@⇢


⇢2e��G5/2

x G3/2
vp

1+(@⇢v9)2
@⇢v9

�

�2⇢2
p

1 + (@⇢v9)2
⇣

d
dv2 e��G5/2

x G3/2
v

⌘
v9 = 0

(16)

The UV solution is v9 ' M + C/⇢ (' U/2U0) and so
the mass is proportional to MU0 and the condensate (of
dimension four in 4+1d) to CK2U2

0 (note that the con-
densate is a derivative with respect to the mass on the
action so naturally picks up the K2 factor from (15)).
We will avoid this chiral symmetry breaking (and any
interaction with any anti-podal anti-D7) by taking con-
figurations where M ! 1 except on domain walls.

Domain Walls

Our final ingredient is to introduce a quark mass that
has spatial dependence in the x4 direction. We take the
UV mass to be M except, on the boundary,

v9 = �M � w/2 < x4 < w/2 (17)

We expect 3+1d chiral fermions to be isolated at the
two discontinuities where M = 0. We will now work
in the infinite M limit [2] so that any issues with the
4+1d quarks are pushed to the far UV and so that the
x4 derivative of v9 becomes a delta function. One must
be careful to include appropriate Jacobian factors in the
form of the delta function (these are those that e↵ectively
reduce the D7 action to that of a 6 brane). We have, with
M vanishing on the contour x4(⇢)

@⇢v9 =
1

G1/2
v (@4⇢)

�����
locus

�(x4 � x4(⇢)) (18)

We now insert this factor into the D7 action (14) assum-
ing that v9 = 0 (formally v9 ⌧ M) giving

Slocus = �N

Z
d4x d⇢ ⇢2e��G2

xG
3/2
v

r
1 +

Gx

Gv
(@⇢x4)2

(19)

which is an action that determines the locus on which
M = 0 in the ⇢�x4 plane. (19) has a conserved quantity
which we denote C and we find

@⇢x4 =
G1/2

v

G1/2
x

p
e�2�⇢4G5

xG
2
vC

2 � 1
(20)
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Figure 1: The loci of the domain walls in the ⇢� x4

plane for di↵erent choices of C/⇢min. Here we set

KU0 = 1 for numerics.

Note the large ⇢ limit of this is 4
p
2/(CK7/2U5/2

0 ⇢7/2)
and C has energy dimension -5.

The solutions are U-shaped in the ⇢� x4 plane with the
minimum ⇢ value given when the denominator vanishes.
We display these solutions in Figure 1.

II THE DOMAIN WALL THEORY

We now wish to describe holographically the 3+1d chiral
fermions living on the domain walls and their interactions
- this is the Domain Wall AdS/QCD theory. One wants
solutions of the D7 brane world volume fields that are of
the form of a delta function on the loci found above and
shown in Figure 1. To find such solutions we, by hand,
dimensionally reduce the D7 brane action in (14) onto
the loci by imposing a delta function of the form in (18).

The Quark Mass and Condensate

As a first example let’s find the vacuum configuration
describing the quark condensate by considering just the
field v9. We obtain the action

SD7 = �N
R
d4x d⇢ ⇢2e��G5/2

x
G3/2

v

G1/2
v (⇢)

(@⇢x4)

⇥

q
1 + F(@⇢v9)2 +

Gv
Gx

(@x0�3v9)
2

(21)

where

F = 1 +
Gv

Gx(@⇢x4)2
(22)

It’s worth noting that in the large ⇢ limit for the pieces
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Figure #: A cartoon showing the evolution of a Domain

Wall system with constant m/⇤ under an increase of

temperature T (red, dashed) to T 0 > T (red, solid), the

connected locus begins to “square o↵”. Upon increase

from T 0
to Tc > T 0

(red, dotted) the tip of the locus falls

into the horizon and the locus becomes disconnected

(dotted, black). A UV cuto↵ is also depicted in the

cartoon (Purple).

370 Thus we now discuss theories at fixedm=ΛUV. When the
371 temperature lies far below ρmin the IR mass scale of the
372 U-shaped loci then the width of the locus at the UV cutoff
373 maps to the quark mass. As the temperature rises though the
374 domain wall loci that describe an equal quark mass begin to
375 shift and the UV width shrinks. We sketch this behavior in
376 Fig. 4 and show data for the width against temperature
377 in Fig. 5.
378 As one raises the temperature further the U-shaped loci
379 begin to “square off” and the minimum point approaches the
380 horizon. In the width versus temperature plot, Fig. 4, we can
381 see that the width of these configurations freezes at a fixed
382 value. Our interpretation is that these solutions, which
383 essentially live parallel to the black hole horizonuntil kinking
384 to a straight line in v, are really the systems best attempt to
385 describe two disconnected branes. This is a second order
386 transition to the meson melted phase of the system.
387 We stress that when ordering the domain wall loci by
388 equal quark mass, the first order thermal transition seen

389with width changes to a continuous second order transition.
390This is achieved by the width of the U-shaped loci changing
391smoothly, to resort the configurations naively ordered by
392width, at high temperature to allow this smooth behavior.
393To emphasize the second order nature of the transition we
394plot the quark condensate against temperature in Fig. 6 to
395show that it changes continuously at the transition. As far as
396we know, this is the first example of a second order meson
397melting transition in holography.
398At T ¼ 0 the system reproduces the flat solutions for the
399domain wall loci field x9 of the nonthermal geometry in
400the Sec. I B, where mIR ¼ mUV. Intuition suggests that the
401system will exhibit a transition when T > m, which we
402indeed find to be the case. We plot how the critical
403temperature varies with the quark mass in Fig. 7—it shows
404that there is direct proportionality between U0ðTcÞ and m.
405Thus for massless quarks, the phase transition occurs for
406any T > 0.

407C. NJL interpretation

408Witten’s multitrace operator prescription [10] teaches us
409that where a solution such as those we have discussed has a
410UV quark mass there are two interpretations. Either one has

UVU0(T)
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F4:1 FIG. 4. A cartoon showing the evolution of a domain wall
F4:2 system with constant m=Λ under an increase of temperature T
F4:3 (red, dashed) to T 0 > T (red, solid), the connected locus begins to
F4:4 “square off”. Upon increase from T 0 to Tc > T 0 (red, dotted) the
F4:5 tip of the locus falls into the horizon and the locus becomes
F4:6 disconnected (dotted, black).
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F5:3 shaped loci drop into the horizon and split into two separate
F5:4 screened pieces, marking the second order transition.
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372 U-shaped loci then the width of the locus at the UV cutoff
373 maps to the quark mass. As the temperature rises though the
374 domain wall loci that describe an equal quark mass begin to
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376 Fig. 4 and show data for the width against temperature
377 in Fig. 5.
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381 see that the width of these configurations freezes at a fixed
382 value. Our interpretation is that these solutions, which
383 essentially live parallel to the black hole horizonuntil kinking
384 to a straight line in v, are really the systems best attempt to
385 describe two disconnected branes. This is a second order
386 transition to the meson melted phase of the system.
387 We stress that when ordering the domain wall loci by
388 equal quark mass, the first order thermal transition seen

389with width changes to a continuous second order transition.
390This is achieved by the width of the U-shaped loci changing
391smoothly, to resort the configurations naively ordered by
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393To emphasize the second order nature of the transition we
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395show that it changes continuously at the transition. As far as
396we know, this is the first example of a second order meson
397melting transition in holography.
398At T ¼ 0 the system reproduces the flat solutions for the
399domain wall loci field x9 of the nonthermal geometry in
400the Sec. I B, where mIR ¼ mUV. Intuition suggests that the
401system will exhibit a transition when T > m, which we
402indeed find to be the case. We plot how the critical
403temperature varies with the quark mass in Fig. 7—it shows
404that there is direct proportionality between U0ðTcÞ and m.
405Thus for massless quarks, the phase transition occurs for
406any T > 0.
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408Witten’s multitrace operator prescription [10] teaches us
409that where a solution such as those we have discussed has a
410UV quark mass there are two interpretations. Either one has
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The transition is second order



Onwards

Summary

We now plan to include density, baryons and work towards neutron star 
equations of state… quarkyonic modes etc…

Deconfined massive phases might be possible as quark cores of neutron 
stars…

Domain wall fermions are a promising new holographic approached to 
AdS/QCD…


