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Goal
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Compute the neutrino radiative coefficients in a strongly coupled  
holographic medium at finite T and 𝒏𝑩
à Simplest toy model : SYM coupled to fundamental hypermultiplets 
(supersymmetric equivalents of quarks)



Outline
1) Motivation 

2) Introduction 1 : Formalism for neutrino transport 

3) Introduction 2 : Holographic 2-point function

4) Holographic Set-up

5) Holographic calculation of the chiral current correlators

6) Summary



Motivation
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o Neutrino (𝝂) radiation is the main 
mechanism for Neutron Star (NS) 
cooling

o Requires the knowledge of 𝜈
interaction with dense QCD matter in 
the core 

o Simulations need an input from 

particle physics : 𝒋 & 𝝀 ↔ 𝐽!/#𝐽!/#
#
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o Computing 𝐽!/#𝐽!/#
#

inside NS is a 
difficult problem: the matter is both
very dense and strongly coupled
(low energy QCD)

o The holographic method is a way of 
getting analytic insight into strongly
coupled problems

Problem : compute 𝐽!/#𝐽!/#
#

in 
holographic QCD at finite T and 𝑛$
à This work : simplest toy model 

(SYM +  hypermultiplets)

Motivation



Formalism for neutrino 
transport



Neutrino Emissivity and Absorption
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Exercice	: compute the	exact	propagator 𝑮𝝂(𝒙𝟏, 𝒕𝟏; 𝒙𝟐, 𝒕𝟐) of	𝜈’s	in	a	dense	QCD	
medium	

Assume	𝜆()* ≫ 𝜆+ de	Broglie	wavelength

à𝑮𝝂 can be described by the 𝝂 distribution function 𝒇𝝂 𝒙, 𝒕

The transport of neutrinos is described by the kinetic equation obeyed by 𝑓+(𝑡)

𝜕;𝑓+ ≡ 𝑗 𝐸+ 1 − 𝑓+ −
1

𝜆 𝐸+
𝑓+ .

Emissivity
Mean Free Path

𝑓"(𝑡)
Homogeneous



Schwinger-Dyson equation 
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= + +

The kinetic equation can be derived from the finite temperature Schwinger-Dyson 
equation

𝝂 + 𝒏 ↔ 𝒆! + 𝒑 𝝂 + 𝒏/𝒑 ↔ 𝝂 + 𝒏/𝒑

The self-energy Σ is expanded at order 𝒪(𝑮𝑭𝟐) in the weak interaction 

It is fully non-perturbative in the strong interaction

[2103.10636]



Schwinger-Dyson equation 
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= + +

𝑗 𝐸! = 𝐺"#'
dk$%

2𝜋 % kins & '× stats ×Im 𝑖 𝐽&
(𝐽') * + 𝐺"#'

dk!%

2𝜋 % kins & '× stats ×Im 𝑖 𝐽&
+ 𝐽'+

* ,

𝑘" , 𝑝⃗# 𝑘# , 𝑝⃗#𝑓" , 𝑓$ 𝑓# , 𝑓%Dense QCD

↔ 𝐽&
,/*𝐽'

,/*
*

Dense QCD

↔ 𝐽&
,/*𝐽'

,/*
*

The kinetic equation is derived from the finite temperature Schwinger-Dyson 
equation

𝝂 + 𝒏 ↔ 𝒆! + 𝒑 𝝂 + 𝒏/𝒑 ↔ 𝝂 + 𝒏/𝒑



Holographic 2-point function



The Holographic Correspondence

Duality bewteen a QFT in 
4D and a semi-classical 
gravitational theory in 5D.

If the QFT is strongly 
coupled, then the dual 
theory is weakly curved.

The dual 5D space-time (bulk) 
is asymptotically 𝑨𝒅𝑺𝟓 .

Its boundary is the 4D space-
time on which the QFT is 
defined

The additional dimension z 
is called the holographic 
coordinate and identified 
with the energy scale such 
that:

UV ↔ boundary
IR ↔ center
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z



Retarded holographic 2-point function
Consider	finite temperature,	with a	black	hole in	the	bulk

𝑧 ∶ 0 → 𝑧G ∝
1
𝑇
,

𝑶 ↔ 𝝓 : 𝑂𝑂 # is obtained by studying the fluctuations of 𝜙

𝛿𝜙 = ∫ d!H
IJ ! eKH.M𝐶H 𝑧 𝛿𝜙N 𝑘 , At 𝑧 ∼ 𝑧G : 𝛿𝜙 𝑧 ∼ 𝑧G − 𝑧

O"#
$%&
!

The on-shell action at quadratic order is 

𝑆PQORSTUU = −
1
2
n

dV𝑘
2𝜋 V 𝛿𝜙N −𝑘 𝑶𝑶 𝑹 𝒌 𝛿𝜙N 𝑘 .
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[ArXiv:hep-th/0205051]

Infalling boundary condition

[0805.0150]

z

𝒛𝑯 = 𝜋 𝑇 OY



The Holographic Set-up
A holographic toy model to compute 
chiral currents 2-point functions at finite 
𝑇, 𝑛9 and 𝑛:



AdS5/CFT4 at finite temperature  
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The original correspondence was formulated for an explicit 4D CFT : 

𝓝 = 𝟒 SU(N) SYM  in 4d   ↔ type IIB string theory on AdS5

A thermal state is dual to a planar AdS-Schwarzschild black hole

SYM at finite T AdS5-Schwarzschild

z

𝒛𝑯 = 𝜋 𝑇 OY
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AdS5/CFT4 at finite T and 𝑛!
Simplest holographic set-up with (deconfined) baryon density 𝒏𝑩

o Couple 𝒩=4 SYM to fundamental hypermultiplets (∼ quarks)

o The theory possesses a global chiral symmetry 𝑈 𝑁[ !×𝑈 𝑁[ #with currents 𝑱𝑳/𝑹
𝝁

𝑈 𝑁" #
×𝑈 𝑁" $

: 𝜕%J#/$
% = 0 ↔ 𝑈 𝑁" #

×𝑈 𝑁" $
: A#/$'

o Baryon number 𝑈 1 !×𝑈 1 # : 𝐽$
^ is dual to 𝑨𝑩𝑴 ≡ }𝑨𝑳𝑴 + }𝑨𝑹𝑴

o Deconfined 𝑛$↔𝝁𝑩 : boundary source for 𝑨𝟎𝑩 𝒛 = 𝝁𝑩 +𝓞 𝒛𝟐 , at 𝑧 → 0

Abelian part
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AdS5/CFT4 at finite T and 𝑛!
Simplest holographic set-up with (deconfined) baryon density 𝒏𝑩

o Couple 𝒩=4 SYM to fundamental hypermultiplets (∼ quarks)

o The theory possesses a global chiral symmetry 𝑈 𝑁[ !×𝑈 𝑁[ #with currents 𝑱𝑳/𝑹
𝝁

𝑈 𝑁" #
×𝑈 𝑁" $

: 𝜕%J#/$
% = 0 ↔ 𝑈 𝑁" #

×𝑈 𝑁" $
: A#/$'

o Deconfined 𝑛$↔𝝁𝑩 : boundary source for 𝑨𝑩𝟎 𝒛 = 𝝁𝑩 +𝓞 𝒛𝟐 , at 𝑧 → 0

o Isospin asymmetry 𝑛Q ≥ 𝑛a ↔ 𝝁𝟑 : source for 𝑨𝟎
𝑳,𝟑 𝒛 = 𝝁𝟑 +𝓞(𝒛𝟐) , at 𝑧 → 0



Action and vacuum solution
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𝑆 = 𝑀*U
c 𝑁dIndxe −𝑔 𝑅 +

12
ℓI
−
κ
𝑁d

Tr 𝑭𝑴𝑵
(𝑳) 𝑭(𝑳)𝑴𝑵 + 𝑭𝑴𝑵

(𝑹)𝑭(𝑹)𝑴𝑵 ,

Veneziano limit : 𝑁d → ∞ ,𝑁[ → ∞ , 𝒙 ≡ 𝑵𝒇/𝑵𝒄 fixed

àBack-reaction of the gauge field on the metric

Geometry dual to the vacuum at finite (𝑻, 𝒏𝑩, 𝒏𝟑) : solution to the bulk Einstein-
Maxwell equations such that

o Asymptotically 𝐴𝑑𝑆e

o 𝐴N$ and 𝐴N
!,c are sourced at the boundary by (𝜇$, 𝜇c)

o Regular at the horizon : 𝐴N$ 𝑧G = 𝐴N
!,c 𝑧G = 0

AdS – Reissner Nordström
(AdS-RN) with charge 
Q# ∝ 𝜇# ≡ 𝜇.# + 2𝜇%#



Holographic calculation of the 
chiral current 2-point function



Perturbations of AdS-RN
𝐽k𝐽l # is obtained by considering perturbations of the fields on top of AdS-RN

𝐴!/#( → 𝐴̅!/#( + 𝛿𝐴!/#( , 𝑔(m → 𝑔̅(m + 𝛿𝑔(m ,

∀𝝋, 𝛿𝜑 = ∫ d!H
IJ ! eKH.M𝐶H 𝑧 𝛿𝜑N 𝑘 , At 𝑧 ∼ 𝑧G : 𝜑 𝑧 ∼ 𝑧G − 𝑧

O"#
$%&
!

oPrescription : radial gauge  𝛿𝐴!/#n = 0 , 𝛿𝑔(n = 0

o 𝜹𝑻𝑴𝑵 ∝ 𝛿𝑋 ≡ 𝜇$𝛿𝐴$ + 2𝜇c𝛿𝐴!,c couples to 𝜹𝒈

oAll the other gauge fields decouple from 𝛿𝑔

19/31

[ArXiv:hep-th/0205051]

Infalling boundary condition

[0805.0150]



Perturbations : Symmetries
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The boundary plasma has an SO(3) rotational invariance 

𝐽k𝐽l # 𝜔, 𝑘 = 𝑃o 𝜔, 𝑘 kl𝑖𝚷
o 𝛚,𝐤 + 𝑃∥ 𝜔, 𝑘 kl𝑖𝚷

∥ 𝛚,𝐤

For a given mode (𝝎, 𝒌), it reduces to an SO(2) subgroup

The perturbations are divided into helicity sectors that decouple SO(2)

𝑘 = 𝑘𝑒%

Helicity Gauge field Metric

ℎ = 0 𝛿𝐴+ , 𝛿𝐴% 𝛿𝑔++ , 𝛿𝑔+% , 𝛿𝑔%% , 𝛿𝑔// + 𝛿𝑔##

ℎ = 1 𝛿𝐴/,# 𝛿𝑔+
/,# , 𝛿𝑔%

/,#

ℎ = 2 − 𝛿𝑔#/ , 𝛿𝑔// − 𝛿𝑔##



Sector decoupled from the metric 
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Consider 𝛿𝐴^ that decouples from 𝛿𝑔^+
The modes are organized in terms of the gauge-invariants under 

U 1 ∶ 𝛿𝐴 → 𝛿𝐴 + d𝛿𝜆

𝒉 = 𝟏 𝒉 = 𝟎

𝛿𝐴/ , 𝛿𝐴# 𝐸∥ ≡ 𝜔𝛿𝐴% + 𝑘𝛿𝐴+

The linearized Maxwell equations in each helicity sector can be written in terms of 
the gauge-invariants

The Π’s are extracted from the solutions near the boundary (𝑧 → 0)

Πo ∝ −
ℓ
𝑧

�
𝜕n𝛿𝐴Y
𝛿𝐴Y n→N

, Π∥ ∝ −
ℓ
𝑧

 
𝜕n𝛿𝐸∥

𝛿𝐸∥
n→N

.



Sector coupled to the metric 
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𝛿𝑇(m ∝ 𝛿𝑋^ couples to 𝛿𝑔^+

Again, organize the modes in terms of the gauge-invariants under : 
o 𝑈 1 ∶ 𝛿𝑋 → 𝛿𝑋 + d𝛿𝜆
o Diffeomorphisms : 

𝒉 = 𝟏 𝒉 = 𝟎

𝛿𝑋/,# 𝛿𝑆/ ≡ 𝜔𝛿𝑋% + 𝑘𝛿𝑋+ + 𝑎 𝑧 𝜇 𝑘(𝛿𝑔// + 𝛿𝑔##)

𝛿𝑌/,# ≡ 𝑘𝛿𝑔+
/,# + 𝜔𝛿𝑔%

/,# 𝛿𝑆#
≡ 2𝜔𝑘𝛿𝑔+% + 𝜔#𝛿𝑔22 − 𝑓 𝑧 𝑘#𝛿𝑔++ + 𝑏 𝑧, 𝜔/𝑘 𝑘# 𝛿𝑔// + 𝛿𝑔##

𝛿𝑋( → 𝛿𝑋( + 𝛿𝜉m𝜕m ¢𝑋( + ¢𝑋m𝜕(𝛿𝜉m

𝛿𝑔(m → 𝛿𝑔(m + ∇(𝛿𝜉m + ∇m𝛿𝜉(



Sector coupled to the metric 
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The linearized Einstein-Maxwell equations in each helicity sector can be written in 
terms of the gauge-invariants :

o 𝒉 = 𝟏 : 2 coupled 2nd order ODE’s for 𝛿𝑋Y,I and 𝛿𝑌Y,I

o 𝒉 = 𝟎 : 2 coupled 2nd order ODE’s for 𝛿𝑆Y and 𝛿𝑆I

The Π’s are extracted from the solutions near the boundary (𝑧 → 0)

𝛿𝑋Y = 𝛿𝑋̈Y + 𝑧I𝛿Πr' +⋯ , 𝛿Πr' ≡ 𝚷𝐗𝐗o 𝛿𝑋̈Y + Πrto 𝛿𝑌̈Y ,

Compute 2 solutions and invert the linear relation 

𝚷𝑿𝑿o Πrto = 𝛿Πr'
(Y) 𝛿Πr'

(I) 𝛿𝑋̈Y
Y 𝛿𝑋̈Y

I

𝛿𝑌̈ Y
Y 𝛿𝑌̈(I)Y

OY

𝒉 = 𝟏 :



Some numerical results



Polarization functions for the free gauge fields 
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𝒉 = 𝟏 𝒉 = 𝟎

o No peak structure signaling a dominating pole

o Diffusion pole manifest in the hydrodynamic
region 𝝎 = −𝒊𝑫𝒌𝟐

o The diffusion peak disappears at large k

NS	inner crust conditions
𝜇
𝑇 = 887, 𝑌" = 0.15



Polarization functions for 𝛿𝑊"

26/28

𝒉 = 𝟏 𝒉 = 𝟎
o Diffusion pole in the hydrodynamic region

à induced by the coupling to the thermal bath 
dual to the metric

o Sound pole manifest in the hydrodynamic region
𝝎 = 𝒌

𝟑
− 𝒊𝑫𝒌𝟐

o The peak disappears at large k

NS	inner crust conditions
𝜇
𝑇 = 887, 𝑌" = 0.15



Next Steps 
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o Compute the radiative coefficients 𝒋(𝑬𝝂) and 𝝀(𝑬𝝂)

o Compare with approximate results for quark stars 

o More realistic model of holographic QCD :
à topological CS term and full DBI action for the flavor branes in SYM
à bottom-up V-QCD framework

o Deconfined 𝑛$ à Baryonic matter confined inside baryons 

o Use the resulting 𝑗 𝐸+ and 𝜆(𝐸+) in actual simulations !



Summary 
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o Computing transport of 𝝂�𝒔 in QCD matter ↔ Im 𝒊 𝑱𝝀
𝑳/𝑹𝑱𝝈

𝑳/𝑹 𝑹
: strongly 

coupled calculation

o We use the holographic approach to tackle this strongly coupled problem

o First in a toy model : 𝒩 = 4 SU(N) SYM at finite (𝑻, 𝝁𝑩, 𝝁𝟑)

o Im 𝑖 𝐽k
!/#𝐽l

!/# #
is extracted from the near-boundary behavior of the 

solution of the linearized Einstein-Maxwell equations on top of the AdS-RN 
background 



Appendix 
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Inner core : neutrinos scatter off the strongly coupled dense QCD matter via the weak interaction

Problem : understand weak charge transport in strongly coupled dense QCD matter 

Neutrino radiation in Neutron Stars
The cooling of a young NS core happens via neutrino (𝜈) emission

𝜈



The Holographic Dictionary 

𝑇%( ↔ g')

𝑂 ↔ φ

G : 𝜕%J% = 0 ↔ G : A'

Every QFT operator has a dual field in the bulk of same spin 

31/31



Near-boundary, source and vev
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𝑂(𝑥) ↔ 𝜙(𝑥, 𝑧)

The near-boundary behavior (𝑧 → 0) of 𝜙 is dictated by the 𝑨𝒅𝑺𝟓 geometry

𝜙 𝑥, 𝑧 = 𝜙N 𝑥 𝑧�( 1 +⋯ + 𝜙Y 𝑥 𝑧�) 1 +⋯ ,

In Euclidean signature, the holographic correspondence is formally stated as 

𝑒�(�$) ≡ 𝑒∫*ℳ ��$ = ³𝑒O�,-(./011
23 �

�∼�$
.

Source Vev ∼ 𝑂Non-normalizable Normalizable



Euclidean holographic 2-point function
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Consider	finite temperature,	with a	black	hole in	the	bulk

𝑧 ∶ 0 → 𝑧G ∝
1
𝑇
,

𝑶 ↔ 𝝓 :  𝑂𝑂 � is obtained by studying the fluctuations of 𝜙

𝛿𝜙 = ∫ d!H
IJ ! eKH.M𝑓H 𝑧 𝛿𝜙N 𝑘 , At 𝑧 ∼ 𝑧G : 𝜙 𝑧 regular

𝑊 𝛿𝜙N = µ−𝑆PQORSTUUe� 𝛿𝜙 �� n→N ���$
à the on-shell action at quadratic order is 

𝑆PQORSTUUe� = −
1
2
n

dV𝑘
2𝜋 V 𝛿𝜙N −𝑘 𝑶𝑶 𝑬 𝒌 𝛿𝜙N 𝑘 .

Generating functional 
for correlation 
functions of O



The holographic retarded correlator 
𝐽!/#
$ ↔ 𝐴!/#

$

𝐽$𝐽% # is obtained by studying the fluctuations of 𝐴$

𝛿𝐴$ = ∫ &*'
() * e*'.,𝑓' 𝑧 𝐴-

$ 𝑘 , At 𝑧 ∼ 𝑧. : A$ 𝑧 ∼ 𝑧. − 𝑧
/+,

-./
*

The on-shell action at quadratic order is 

𝑆01/23455 = −
1
2
2

d6𝑘
2𝜋 6 𝐴-

$ −𝑘 𝑱𝝁𝑱𝝂
𝑹 𝒌 𝐴-% 𝑘 ,
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[ArXiv:0205051]

Infalling boundary condition



Correlator at finite density
Goal : compute Im 𝐽#/$𝐽#/$ $(𝑘) in a dense matter composed of baryons

à Easier problem : baryon number fractionalized

Finite fractionalized baryon density ↔ finite chemical potential 𝜇0

Source : 7𝐿1 + 7𝑅1 = 𝜇0 + 𝒪 𝑧2 ,

Isospin asymmetric (𝑛3 ≥ 𝑛4) ↔ finite 𝜇5

Source : 𝐿51 = 𝜇5 + 𝒪 𝑧2

Intermediate Goal : compute Im 𝐽#/$𝐽#/$ $(𝑘) at finite (𝑇, 𝜇0 , 𝜇5) in V-QCD
35/46

Baryon gauge field �𝑉

Weak isospin gauge field



Sector coupled to the metric 
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𝛿𝑊 couples to 𝛿𝑔^+

Again, organize the modes in P-odd and P-even sectors and in terms of 
the gauge-invariants under : 
o 𝛿𝑊 → 𝛿𝑊 + d𝛿𝜆
o Diffeomorphisms : 

P

𝑘 = 𝑘𝑒c

P-odd P-even

𝛿𝑊/,# 𝑍/ ≡ 𝜔𝛿𝑊% + 𝑘𝛿𝑊+ +
𝑘 𝑧
4
𝜕2 ]𝑊+(𝛿𝑔// + 𝛿𝑔##)

𝛿𝑌/,# ≡ 𝑘𝛿𝑔+
/,# + 𝜔𝛿𝑔%

/,#

𝑍#
≡ 2𝜔𝑘𝛿𝑔+% + 𝜔#𝛿𝑔22 − 𝑓 𝑧 𝑘#𝛿𝑔++

+
𝑓 𝑧 𝑘# 𝛿𝑔// + 𝛿𝑔##

2 1 −
𝑧𝑓3 𝑧
2𝑓 𝑧 −

𝜔#

𝑓 𝑧 𝑘#

𝛿𝑊( → 𝛿𝑊( + 𝛿𝜉m𝜕m ·𝑊( + ·𝑊m𝜕(𝛿𝜉m

𝛿𝑔(m → 𝛿𝑔(m + ∇(𝛿𝜉m + ∇m𝛿𝜉(



Lattice YM thermodynamics in the large 𝑁! limit
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Thermodynamic quantities converge fast in the large 𝑁4 limit à 𝑁4 = 3 close to large 𝑁4
[0907.3719]



Opacities (preliminary)

38/34

𝜅 𝐸! ≡ 𝑗 𝐸! +
1

𝜆(𝐸!)



Holographic QCD : field content 

𝑇%( ↔ g')

Tr 𝐹67𝐹67 ↔ φ

C𝜓8 𝜓9 ↔ 𝒯89

𝑈 𝑁" L×𝑈 𝑁" R : 𝜕%JL/R
% = 0 ↔ 𝑈 𝑁" L×𝑈 𝑁" R : AL/R

'

Tr 𝐹 ∧ 𝐹 ↔ 𝒶

In practice, the only operators relevant to the vacuum structure of low-energy QCD are 

ℒQCD = −
1

2𝑔:;2
Tr 𝐹67𝐹67 +S

8<=

>)

C𝜓8 𝑖 𝛾6𝐷6 −𝑚8 𝜓8

𝜽QCD = 𝟎

Color

Flavor

𝑁5
𝑁4
binite
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The V-QCD Model : Action
The V-QCD action is built by deforming what is known from top-down holography 
with phenomenological parameters of the bulk theory 

𝑆�O��� = 𝑆d + 𝑆[ + 𝑆��

𝑁! 𝐷3-branes 

g, 𝜑

𝑆d = 𝑀*U
c 𝑁dIndxe −𝑔 𝑅 −

4
3
𝜕𝜑 I + 𝑉�(𝜑) ,

Parameters of the bulk theory

𝑀67 𝑉8(𝜑)
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The V-QCD Model : Action
The V-QCD action is built by deforming what is known from top-down holography 
with phenomenological parameters of the bulk theory 

𝑆�O��� = 𝑆d + 𝑆[ + 𝑆��

𝑁! 𝐷3-branes 𝑁" 𝐷4-branes 𝑁" 𝐷4-branes 
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𝐀(m
! ≡ 𝑔(m + 𝐹(m

! +
1
2

𝐷(𝒯 � 𝐷m𝒯 + ℎ. 𝑐. ,

[hep-th/0303057]
[hep-th/0012210]
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The V-QCD Model : Action
The V-QCD action is built by deforming what is known from top-down holography 
with phenomenological parameters of the bulk theory 

𝑆�O��� = 𝑆d + 𝑆[ + 𝑆��

𝑆[ = −
1
2
𝑀*U
c 𝑁dTrndxe𝑉[(𝜑, 𝒯) −det 𝐀(!) + −det 𝐀(#) ,

Parameters of the bulk theory

𝑉5(𝜑, 𝒯) 𝑤(𝜑, 𝒯) 𝜅(𝜑, 𝒯)

𝑁! 𝐷3-branes 𝑁" 𝐷4-branes 𝑁" 𝐷4-branes 
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g, 𝜑

𝐀(m
! ≡ 𝑔(m +𝑤 𝜑,𝒯 𝐹(m

! +
𝜅 𝜑,𝒯
2

𝐷(𝒯 � 𝐷m𝒯 + ℎ. 𝑐. ,
V-QCD :

[1112.1261]
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The V-QCD Model : Action
The V-QCD action is built by deforming what is known from top-down holography 
with phenomenological parameters of the bulk theory 

𝑆�O��� = 𝑆d + 𝑆[ + 𝑆��

𝑆�� =
𝑖𝑁d
4𝜋I

nΩe(𝒯, 𝐴(!/#)) ,

Parameters of the bulk theory

𝑓9(𝒯)

𝑁! 𝐷3-branes 𝑁" 𝐷4-branes 𝑁" 𝐷4-branes 

𝑞$

G𝑞 ̅(

𝐴#
$%

𝐴&
̅()̅

𝒯$)̅

g, 𝜑

[hep-th/0012210]
[hep-th/0702155]

When 𝒯 = 0 , ΩH is the CS 5-form

In String Theory, the tachyon dependence is known 
only in the maximally supersymmetric case 

We generalize this result : ΩH is the sum of all 5-forms 
built from (𝐴, 𝐹, 𝐷𝒯) with coefficients 𝑓8(𝒯)



Previous Results in V-QCD

Baryon Density [𝜌+]1
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At T = 0 and 𝑛I = 0
• Bulk solution dual to the QCD vacuum 
• Meson and glueball spectra

At 𝑇 ≠ 0 and 𝑛I = 0
• Deconfinement phase transition
• Chiral phase transition   

At 𝑇 ≠ 0 and 𝑛I ≠ 0
Phase diagram when the baryon number is 
fractionalized (deconfined quarks)

We don’t know how the picture is modified 
when we allow for baryons to appear 

V-QCD phase diagram
[1112.1261]

[1210.4516]

[1312.5199]
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