Holography for Astrophysics and Cosmology

Neutrino Transport in Holography

Collaborators: Elias KIRITSIS (APC), Francesco NITTI (APC) and Matti JÄRVINEN (APCTP)

Goal

Compute the neutrino radiative coefficients in a strongly coupled holographic medium at finite T and n_B

→ Simplest toy model : SYM coupled to fundamental hypermultiplets (supersymmetric equivalents of quarks)

Outline

- 1) Motivation
- 2) Introduction 1: Formalism for neutrino transport
- 3) Introduction 2 : Holographic 2-point function
- 4) Holographic Set-up
- 5) Holographic calculation of the chiral current correlators
- 6) Summary

Motivation

- Neutrino (ν) radiation is the main mechanism for Neutron Star (NS) cooling
- \circ Requires the knowledge of ν interaction with dense QCD matter in the core
- Simulations need an input from

particle physics : $j \& \lambda \leftrightarrow \langle J_{L/R} J_{L/R} \rangle^R$

Motivation

- O Computing $\langle J_{L/R}J_{L/R}\rangle^R$ inside NS is a difficult problem: the matter is both very dense and strongly coupled (low energy QCD)
- The holographic method is a way of getting analytic insight into strongly coupled problems

Problem: compute $\langle J_{L/R}J_{L/R}\rangle^R$ in holographic QCD at finite T and n_B

→ This work : simplest toy model (SYM + hypermultiplets)

Formalism for neutrino transport

Neutrino Emissivity and Absorption

Exercice: compute the exact propagator $G_{\nu}(\vec{x}_1, t_1; \vec{x}_2, t_2)$ of ν 's in a dense QCD medium

Assume $\lambda_{MFP} \gg \lambda_{\nu}$ de Broglie wavelength

 $ightharpoonup G_{\nu}$ can be described by the u distribution function $onup f_{\nu}(\vec{x}, t)$

The transport of neutrinos is described by the kinetic equation obeyed by $f_{\nu}(t)$

$$\partial_t f_{\mathcal{V}} \equiv j(E_{\mathcal{V}})(1-f_{\mathcal{V}}) - \frac{1}{\lambda(E_{\mathcal{V}})} f_{\mathcal{V}}$$
 . Emissivity Mean Free Path

Schwinger-Dyson equation

[2103.10636]

The kinetic equation can be derived from the finite temperature Schwinger-Dyson equation

$$\longrightarrow + \longrightarrow \Sigma \longrightarrow$$

The self-energy Σ is expanded at order $\mathcal{O}(G_F^2)$ in the weak interaction

$$v + n \leftrightarrow e^{-} + p$$

$$v + n/p \leftrightarrow v + n/p$$

It is fully non-perturbative in the strong interaction

Schwinger-Dyson equation

The kinetic equation is derived from the finite temperature Schwinger-Dyson equation

$$j(E_{\nu}) = G_F^2 \int \frac{d\vec{k}_e^3}{(2\pi)^3} (kins)^{\lambda \sigma} \times (stats) \times Im(i\langle J_{\lambda}^- J_{\sigma}^+ \rangle^R) + G_F^2 \int \frac{d\vec{k}_{\nu}^3}{(2\pi)^3} (kins)^{\lambda \sigma} \times (stats) \times Im\left(i\langle J_{\lambda}^0 J_{\sigma}^0 \rangle^R\right),$$

$$\vec{k}_e, \vec{p}_{\nu} \qquad f_e, f_W \qquad Dense QCD$$

$$\leftrightarrow \left\langle J_{\lambda}^{L/R} J_{\sigma}^{L/R} \right\rangle^R \qquad \leftrightarrow \left\langle J_{\lambda}^{L/R} J_{\sigma}^{L/R} \right\rangle^R$$

$$\leftrightarrow \left\langle J_{\lambda}^{L/R} J_{\sigma}^{L/R} \right\rangle^R$$

Holographic 2-point function

The Holographic Correspondence

Duality bewteen a QFT in 4D and a semi-classical gravitational theory in 5D.

If the QFT is strongly coupled, then the dual theory is weakly curved.

The dual 5D space-time (bulk) is asymptotically AdS^5 .

Its **boundary** is the 4D spacetime on which the QFT is defined The additional dimension *z* is called the **holographic coordinate** and identified with the **energy scale** such that:

UV ↔ boundary IR ↔ center

Retarded holographic 2-point function

[ArXiv:hep-th/0205051]

Consider finite temperature, with a black hole in the bulk

 $\mathbf{0} \leftrightarrow \boldsymbol{\phi} : \langle 00 \rangle^R$ is obtained by studying the fluctuations of $\boldsymbol{\phi}$

$$\delta \phi = \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \, \mathrm{e}^{ik.x} C_k(z) \delta \phi_0(k) \,, \quad \text{At } z \sim z_H : \delta \phi(z) \sim (z_H - z)^{-\frac{ik^0 z_H}{4}}$$

Infalling boundary condition

The on-shell action at quadratic order is

$$S_{on-shell} = -\frac{1}{2} \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \delta \phi_0(-k) \langle \mathbf{00} \rangle^{\mathbf{R}}(\mathbf{k}) \delta \phi_0(k) .$$

The Holographic Set-up

A holographic toy model to compute chiral currents 2-point functions at finite T, n_B and n_3

AdS^{5}/CFT^{4} at finite temperature

The original correspondence was formulated for an explicit 4D CFT:

 $\mathcal{N} = 4$ SU(N) SYM in 4d \leftrightarrow type IIB string theory on AdS⁵

A thermal state is dual to a planar AdS-Schwarzschild black hole

${ m AdS}^{5}/{ m CFT}^{4}$ at finite T and n_{B}

Simplest holographic set-up with (deconfined) baryon density n_B

- \circ Couple $\mathcal{N}=4$ SYM to fundamental hypermultiplets (\sim quarks)
- \circ The theory possesses a global chiral symmetry $U(N_f)_L \times U(N_f)_R$ with currents $J_{L/R}^{\mu}$

$$U(N_f)_L \times U(N_f)_R : \partial_{\mu} J_{L/R}^{\mu} = 0 \qquad \longleftrightarrow \qquad U(N_f)_L \times U(N_f)_R : A_{L/R}^{M}$$

- O Baryon number $U(1)_L \times U(1)_R : J_B^{\mu}$ is dual to $A_B^M \equiv \widehat{A}_L^M + \widehat{A}_R^M$ Abelian part
- o Deconfined $n_B \leftrightarrow \mu_B$: boundary source for $A_0^B(z) = \mu_B + \mathcal{O}(z^2)$, at $z \to 0$

${ m AdS}^{5}/{ m CFT}^{4}$ at finite T and n_{B}

Simplest holographic set-up with (deconfined) baryon density n_B

- \circ Couple $\mathcal{N}=4$ SYM to fundamental hypermultiplets (\sim quarks)
- \circ The theory possesses a global chiral symmetry $U(N_f)_L \times U(N_f)_R$ with currents $J_{L/R}^{\mu}$

$$U(N_f)_L \times U(N_f)_R : \partial_{\mu} J_{L/R}^{\mu} = 0 \qquad \longleftrightarrow \qquad U(N_f)_L \times U(N_f)_R : A_{L/R}^{M}$$

- \circ Deconfined $n_B \leftrightarrow \mu_B$: boundary source for $A_B^0(z) = \mu_B + \mathcal{O}(z^2)$, at $z \to 0$
- o Isospin asymmetry $(n_n \ge n_p) \leftrightarrow \mu_3$: source for $A_0^{L,3}(z) = \mu_3 + \mathcal{O}(z^2)$, at $z \to 0$

Action and vacuum solution

$$S = M_{Pl}^3 N_c^2 \int dx^5 \sqrt{-g} \left(R + \frac{12}{\ell^2} - \frac{\kappa}{N_c} \text{Tr} \left\{ F_{MN}^{(L)} F_{(L)}^{MN} + F_{MN}^{(R)} F_{(R)}^{MN} \right\} \right),$$

Veneziano limit : $N_c \to \infty$, $N_f \to \infty$, $x \equiv N_f/N_c$ fixed

→ Back-reaction of the gauge field on the metric

Geometry dual to the vacuum at finite (T, n_B, n_3) : solution to the bulk Einstein-Maxwell equations such that

- \circ Asymptotically AdS^5
- $\bigcirc A_0^B \text{ and } A_0^{L,3} \text{ are sourced at the boundary by } (\mu_B, \mu_3)$ $\bigcirc \text{Regular at the horizon } : A_0^B(z_H) = A_0^{L,3}(z_H) = 0$ $\bigcirc AdS \text{Reissner Nordst}$ (AdS-RN) with charge $\bigcirc Q^2 \propto \mu^2 \equiv \mu_B^2 + 2\mu_3^2$

AdS – Reissner Nordström

Holographic calculation of the chiral current 2-point function

Perturbations of AdS-RN

 $\langle J_{\lambda}J_{\sigma}\rangle^{R}$ is obtained by considering perturbations of the fields on top of AdS-RN

$$A_{L/R}^M o ar{A}_{L/R}^M + \delta A_{L/R}^M$$
 , $g_{MN} o ar{g}_{MN} + \delta g_{MN}$,

$$\forall \boldsymbol{\varphi}, \ \delta \varphi = \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \mathrm{e}^{ik.x} C_k(z) \delta \varphi_0(k) , \quad \text{At } z \sim z_H : \varphi(z) \sim (z_H - z)^{-\frac{ik^0 z_H}{4}}$$

Infalling boundary condition

$$\circ$$
 Prescription : radial gauge $\,\delta A^z_{L/R}=0\,$, $\,\delta g_{Mz}=0\,$

- $\circ \delta T_{MN} \propto \delta X \equiv \mu_B \delta A_B + 2\mu_3 \delta A_{L,3}$ couples to δg
- \circ All the other gauge fields decouple from δg

Perturbations: Symmetries

The boundary plasma has an SO(3) rotational invariance

$$\langle J_{\lambda}J_{\sigma}\rangle^{R}(\omega,\vec{k}) = P^{\perp}(\omega,\vec{k})_{\lambda\sigma}i\Pi^{\perp}(\omega,\mathbf{k}) + P^{\parallel}(\omega,\vec{k})_{\lambda\sigma}i\Pi^{\parallel}(\omega,\mathbf{k})$$

For a given mode (ω, \vec{k}) , it reduces to an SO(2) subgroup

The perturbations are divided into helicity sectors that decouple

Helicity	Gauge field	Metric
h = 0	δA_0 , δA_3	δg_0^0 , δg_0^3 , δg_3^3 , $\delta g_1^1 + \delta g_2^2$
h = 1	$\delta A_{1,2}$	$\delta g_0^{1,2}$, $\delta g_3^{1,2}$
h = 2		δg_2^1 , $\delta g_1^1 - \delta g_2^2$

Sector decoupled from the metric

Consider δA_{μ} that decouples from $\delta g_{\mu\nu}$

The modes are organized in terms of the gauge-invariants under

$$U(1): \delta A \to \delta A + d\delta \lambda$$

h = 1	h = 0
δA_1 , δA_2	$E^{\parallel} \equiv \omega \delta A_3 + k \delta A_0$

The linearized Maxwell equations in each helicity sector can be written in terms of the gauge-invariants

The Π 's are extracted from the solutions near the boundary $(z \to 0)$

$$\Pi^{\perp} \propto -\frac{\ell}{z} \frac{\partial_z \delta A_1}{\delta A_1} \bigg|_{z \to 0} , \qquad \Pi^{\parallel} \propto -\frac{\ell}{z} \frac{\partial_z \delta E^{\parallel}}{\delta E^{\parallel}} \bigg|_{z \to 0} .$$

Sector coupled to the metric

 $\delta T_{MN} \propto \delta X_{\mu}$ couples to $\delta g_{\mu\nu}$

Again, organize the modes in terms of the gauge-invariants under:

$$\circ \ U(1): \delta X \to \delta X + \mathrm{d}\delta \lambda$$

O Diffeomorphisms:

$$\delta X_M \to \delta X_M + \delta \xi^N \partial_N \bar{X}_M + \bar{X}_N \partial_M \delta \xi^N$$
$$\delta g_{MN} \to \delta g_{MN} + \nabla_M \delta \xi_N + \nabla_N \delta \xi_M$$

h = 1	h = 0	
$\delta X_{1,2}$	$\delta S_1 \equiv \omega \delta X_3 + k \delta X_0 + a(z) \mu k (\delta g_1^1 + \delta g_2^2)$	
$\delta Y^{1,2} \equiv k \delta g_0^{1,2} + \omega \delta g_3^{1,2}$	$\delta S_2 \equiv 2\omega k \delta g_0^3 + \omega^2 \delta g_z^z - f(z)k^2 \delta g_0^0 + b(z, \omega/k)k^2 (\delta g_1^1 + \delta g_2^2)$	

Sector coupled to the metric

The linearized Einstein-Maxwell equations in each helicity sector can be written in terms of the gauge-invariants:

- o h = 1:2 coupled 2nd order ODE's for $\delta X_{1,2}$ and $\delta Y^{1,2}$
- o h = 0:2 coupled 2nd order ODE's for δS_1 and δS_2

The Π 's are extracted from the solutions near the boundary $(z \to 0)$

$$\boldsymbol{h} = \boldsymbol{1}: \qquad \delta X_1 = \delta \hat{X}_1 + z^2 \delta \Pi_{X_1} + \cdots , \qquad \delta \Pi_{X_1} \equiv \boldsymbol{\Pi}_{\mathbf{XX}}^{\perp} \delta \hat{X}_1 + \Pi_{XY}^{\perp} \delta \hat{Y}^1 ,$$

Compute 2 solutions and invert the linear relation

$$\left(\Pi_{XX}^{\perp} \Pi_{XY}^{\perp} \right) = \left(\delta \Pi_{X_1}^{(1)} \delta \Pi_{X_1}^{(2)} \right) \begin{pmatrix} \delta \hat{X}_1^{(1)} & \delta \hat{X}_1^{(2)} \\ \delta \hat{Y}_{(1)}^1 & \delta \hat{Y}_{(2)}^1 \end{pmatrix}^{-1}$$

Some numerical results

Polarization functions for the free gauge fields

NS inner crust conditions

$$\frac{\mu}{T} = 887, Y_e = 0.15$$

$$h = 1$$

No peak structure signaling a dominating pole

$$h = 0$$

- Diffusion pole manifest in the hydrodynamic region $\omega = -iDk^2$
- The diffusion peak disappears at large k

Polarization functions for $\delta W_{\!\mu}$

NS inner crust conditions

$$\frac{\mu}{T} = 887, Y_e = 0.15$$

$$h = 0$$

- h = 1
- Diffusion pole in the hydrodynamic region
- → induced by the coupling to the thermal bath dual to the metric

Sound pole manifest in the hydrodynamic region $k = \frac{k}{k}$

$$\omega = \frac{k}{\sqrt{3}} - iDk^2$$

The peak disappears at large k

Next Steps

- \circ Compute the radiative coefficients $j(E_{\nu})$ and $\lambda(E_{\nu})$
- Compare with approximate results for quark stars
- More realistic model of holographic QCD :
 - → topological CS term and full DBI action for the flavor branes in SYM
 - → bottom-up V-QCD framework
- \circ Deconfined $n_B \rightarrow$ Baryonic matter confined inside baryons
- \circ Use the resulting $j(E_{\nu})$ and $\lambda(E_{\nu})$ in actual simulations!

Summary

- Computing transport of v's in QCD matter \leftrightarrow Im $\left(i\left\langle J_{\lambda}^{L/R}J_{\sigma}^{L/R}\right\rangle^{R}\right)$: strongly coupled calculation
- We use the holographic approach to tackle this strongly coupled problem
- First in a toy model : $\mathcal{N}=4$ SU(N) SYM at finite (T,μ_B,μ_3)
- o $\operatorname{Im}\left(i\left\langle J_{\lambda}^{L/R}J_{\sigma}^{L/R}\right\rangle^{R}\right)$ is extracted from the near-boundary behavior of the solution of the linearized Einstein-Maxwell equations on top of the AdS-RN background

Appendix

Neutrino radiation in Neutron Stars

The cooling of a young NS core happens via neutrino (ν) emission

Inner core: neutrinos scatter off the strongly coupled dense QCD matter via the weak interaction

<u>Problem</u>: understand weak charge transport in strongly coupled dense QCD matter

The Holographic Dictionary

Every QFT operator has a dual field in the bulk of same spin

 $T_{\mu\nu}$

 \leftrightarrow

 g_{MN}

0

 \leftrightarrow

φ

 $G: \partial_{\mu}J^{\mu} = 0$

 \leftrightarrow

 $G:A^{M}$

Near-boundary, source and vev

$$O(x) \leftrightarrow \phi(x,z)$$

The near-boundary behavior $(z \to 0)$ of ϕ is dictated by the AdS^5 geometry

In Euclidean signature, the holographic correspondence is formally stated as

$$e^{W(\phi_0)} \equiv \left\langle e^{\int_{\partial \mathcal{M}} O\phi_0} \right\rangle = \left. e^{-S_{on-shell}^{5D}[\phi]} \right|_{\phi \sim \phi_0}$$

Euclidean holographic 2-point function

Consider finite temperature, with a black hole in the bulk

$$z:0\to z_H\propto rac{1}{T}$$
 ,

 ${\color{red} o} \leftrightarrow {\color{red} \phi} : \langle OO \rangle^E$ is obtained by studying the fluctuations of ${\color{red} \phi}$

$$\delta \phi = \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \mathrm{e}^{ik.x} f_k(z) \delta \phi_0(k)$$
, At $z \sim z_H : \phi(z)$ regular

$$W[\delta\phi_0] = -S_{on-shell}^{5D}[\delta\phi]|_{\delta\phi(z\to 0)=\delta\phi_0}$$
 the on-shell action at quadratic order is

Generating functional for correlation functions of O

$$S_{on-shell}^{5D} = -\frac{1}{2} \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \delta \phi_0(-k) \langle \mathbf{00} \rangle^{\mathbf{E}}(\mathbf{k}) \delta \phi_0(k) .$$

The holographic retarded correlator

[ArXiv:0205051]

$$J_{L/R}^{\mu} \leftrightarrow A_{L/R}^{\mu}$$

 $\langle J^{\mu}J^{\nu}\rangle^{R}$ is obtained by studying the fluctuations of A^{μ}

$$\delta A^{\mu} = \int \frac{d^4k}{(2\pi)^4} e^{ik.x} f_k(z) A_0^{\mu}(k)$$
, At $z \sim z_H : A^{\mu}(z) \sim (z_H - z)^{-\frac{ik^0 z_H}{4}}$

Infalling boundary condition

The on-shell action at quadratic order is

$$S_{on-shell} = -\frac{1}{2} \int \frac{\mathrm{d}^4 k}{(2\pi)^4} A_0^{\mu} (-k) \langle \boldsymbol{J}_{\mu} \boldsymbol{J}_{\nu} \rangle^{R} (\boldsymbol{k}) A_0^{\nu} (k) ,$$

Correlator at finite density

Goal: compute $\text{Im}\langle J^{L/R}J^{L/R}\rangle^R(k)$ in a dense matter composed of baryons

→ Easier problem : baryon number fractionalized

Finite fractionalized baryon density \leftrightarrow finite chemical potential μ_B

Source:
$$\hat{L}^0 + \hat{R}^0 = \mu_B + \mathcal{O}(z^2)$$
,

Barvon gauge field \widehat{V}

Isospin asymmetric $(n_n \ge n_p) \leftrightarrow \text{finite } \mu_3$

Source
$$\underline{L_3^0} = \mu_3 + \mathcal{O}(z^2)$$

Weak isospin gauge field Intermediate Goal: compute ${\rm Im} \langle J^{L/R} J^{L/R} \rangle^R(k)$ at finite (T,μ_B,μ_3) in V-QCD

Sector coupled to the metric

 $\delta W_{\!\mu}$ couples to $\delta g_{\mu
u}$

Again, organize the modes in P-odd and P-even sectors and in terms of the gauge-invariants under:

$$\circ \delta W \to \delta W + d\delta \lambda$$

$$\delta W_M \to \delta W_M + \delta \xi^N \partial_N \overline{W}_M + \overline{W}_N \partial_M \delta \xi^N$$

O Diffeomorphisms:

$$\delta g_{MN} \to \delta g_{MN} + \nabla_M \delta \xi_N + \nabla_N \delta \xi_M$$

P-odd	P-even
$\delta W_{1,2}$	$Z_1 \equiv \omega \delta W_3 + k \delta W_0 + \frac{k z}{4} \partial_z \overline{W}_0 (\delta g_1^1 + \delta g_2^2)$
$\delta Y^{1,2} \equiv k \delta g_0^{1,2} + \omega \delta g_3^{1,2}$	$\begin{split} Z_2 \\ &\equiv 2\omega k \delta g_0^3 + \omega^2 \delta g_z^z - f(z) k^2 \delta g_0^0 \\ &+ \frac{f(z) k^2 (\delta g_1^1 + \delta g_2^2)}{2} \left(1 - \frac{z f'(z)}{2 f(z)} - \frac{\omega^2}{f(z) k^2} \right) \end{split}$

Lattice YM thermodynamics in the large N_c limit

Thermodynamic quantities converge fast in the large N_c limit $\rightarrow N_c = 3$ close to large N_c

Opacities (preliminary)

$$\kappa(E_{\nu}) \equiv j(E_{\nu}) + \frac{1}{\lambda(E_{\nu})}$$

- T=8 MeV, n_B =0.11 fm⁻³, Y_e =0.05
- T=5 MeV, n_B =0.01 fm⁻³, Y_e =0.15

Holographic QCD: field content

In practice, the only operators relevant to the vacuum structure of low-energy QCD are

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{2g_{YM}^2} \text{Tr} \, F_{\mu\nu} F^{\mu\nu} + \sum_{i=1}^{N_f} \bar{\psi}^i (i \, \gamma^{\mu} D_{\mu} - m_i) \psi^i$$

	$T_{\mu\nu}$	\leftrightarrow	g _{MN} Color
	${ m Tr}F_{\mu u}F^{\mu u}$	\iff	φ $\frac{N_f}{N_f}$ finite
	$ar{\psi}^i \psi^j$	\leftrightarrow	\mathcal{T}^{ij} Flavor $\frac{N_f}{N_c}$ finite
	$U(N_f)_{L} \times U(N_f)_{R} : \partial_{\mu} J_{L/R}^{\mu} = 0$	\leftrightarrow	$U(N_f)_{\mathrm{L}} \times U(N_f)_{\mathrm{R}} : A_{\mathrm{L/R}}^{\mathrm{M}}$
	$\operatorname{Tr} F \wedge F$	\leftrightarrow	$a extit{ } heta_{QCD} = 0$

The V-QCD action is built by deforming what is known from top-down holography with phenomenological parameters of the bulk theory

$$S_{V-QCD} = S_c + S_f + S_{CS}$$

$$S_c = M_{Pl}^3 N_c^2 \int dx^5 \sqrt{-g} \left[R - \frac{4}{3} (\partial \varphi)^2 + V_g(\varphi) \right],$$

Parameters of the bulk theory

$$M_{Pl}$$
 $V_g(\varphi)$

The V-QCD action is built by deforming what is known from top-down holography with phenomenological parameters of the bulk theory

$$S_{V-QCD} = S_c + S_f + S_{CS}$$

$$S_f = -\frac{1}{2} M_{Pl}^3 N_c \text{STr} \int d\mathbf{x}^5 V(\mathcal{T}) \left[\sqrt{-\det \mathbf{A}^{(L)}} + \sqrt{-\det \mathbf{A}^{(R)}} \right], \text{[hep-th/0303057]}$$

$$\mathbf{A}_{MN}^{(L)} \equiv g_{MN} + F_{MN}^{(L)} + \frac{1}{2} \left[(D_M \mathcal{T})^\dagger (D_N \mathcal{T}) + h.c. \right],$$

The V-QCD action is built by deforming what is known from top-down holography with phenomenological parameters of the bulk theory

$$S_{V-QCD} = S_c + \frac{S_f}{S_f} + S_{CS}$$

$$V-QCD: \begin{cases} S_f = -\frac{1}{2} M_{Pl}^3 N_c \text{Tr} \int dx^5 V_f(\varphi, \mathcal{T}) \left[\sqrt{-\det \mathbf{A}^{(L)}} + \sqrt{-\det \mathbf{A}^{(R)}} \right], & \text{[1112.1261]} \\ \mathbf{A}_{MN}^{(L)} \equiv g_{MN} + w(\varphi, \mathcal{T}) F_{MN}^{(L)} + \frac{\kappa(\varphi, \mathcal{T})}{2} \left[(D_M \mathcal{T})^{\dagger} (D_N \mathcal{T}) + h.c. \right], \end{cases}$$

Parameters of the bulk theory

$$V_f(\varphi, \mathcal{T})$$
 $w(\varphi, \mathcal{T})$ $\kappa(\varphi, \mathcal{T})$

The V-QCD action is built by deforming what is known from top-down holography with phenomenological parameters of the bulk theory

$$S_{V-QCD} = S_c + S_f + S_{CS}$$

$$S_{CS} = rac{iN_c}{4\pi^2} \int \Omega_5(\mathcal{T}, A_{(L/R)})$$
 ,

[hep-th/0012210] [hep-th/0702155]

When $\mathcal{T}=0$, Ω_5 is the CS 5-form

Parameters of the bulk theory

 $f_i(\mathcal{T})$

In String Theory, the tachyon dependence is known only in the maximally supersymmetric case

We generalize this result : Ω_5 is the sum of all 5-forms built from (A, F, DT) with coefficients $f_i(T)$

Previous Results in V-QCD

At T = 0 and $n_b = 0$

[1112.1261]

- Bulk solution dual to the QCD vacuum
- Meson and glueball spectra

At $T \neq 0$ and $n_h = 0$

[1210.4516]

- Deconfinement phase transition
- Chiral phase transition

At $T \neq 0$ and $n_b \neq 0$

[1312.5199]

Phase diagram when the baryon number is fractionalized (deconfined quarks)

We don't know how the picture is modified when we allow for baryons to appear

