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Relativistic Hydrodynamics

Why hydrodynamics? —— It describes interesting phenomena:

Time—>»

Quark-Gluon Plasma 4* Eé

Energy oing
Hard Ce ons

Initial state

Neutron star mergers

Black hole accretion disk

Early universe

— Relevant for groundbreaking research!
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What 1s hydrodynamics? —— Effective theory

Water

Neutron star

merger

@mplicated molecular dynamics

Collective description: hydrodynamics

* Two scales well separated:

/ Complicated QCD dynamics

Hydrodynamics \
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Neutron star mergers

Black hole mergers

1
Rm} _ERQMV — KTuv =) Ruv =0

Neutron star mergers

1
Ruv — ERQW — K Tuv
Matter must be specified

— Gravity coupled to QCD

mm) Hydrodynamics provides a good description
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Picture from simulations:
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Highly dynamical post merger region

— If we aim to precision physics, we must include all the relevant physics

Weak processes are relevant! ——  Effective bulk viscosity!
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Beyond state of the art: Introduce viscosity in the hydrodynamic equations

Including viscosity in relativistic hydrodynamics involves difficulties...
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Hydrodynamics: equations and causality

. )
Constitutive = + o+ 74 Gradient expansion
relations
Oth order  1Ist  2nd
N\ J
=0 Dynamical equations
Real-time evolutions are required!!
MIS is not unique:
MIS
Ideal hydr —_— Well posed
Sattyeto P BRSSS
Viscous hydro —_— Il posed DNMR
‘ Usual fix Divergence type
Miiller-Israel-Stewart (MIS) —— Well posed
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— In the quark gluon plasma viscosity is relevant

Time—»

Hydrodynamic

Initial state Evolution Hadron Freezeout

— MIS-type theories are used to describe experimental data

Developed infrastructure for MIS

¥

Use 1t 1n neutron star mergers

—— But there are issues....



Issues with shocks in MIS

— We have seen that viscosity is relevant in neutron star mergers.
This would require to use MIS-type theories.




Issues with shocks in MIS

— We have seen that viscosity is relevant in neutron star mergers.
This would require to use MIS-type theories.

— But... MIS theories have difficulties dealing with shocks

Olson, Hiscock 90
Geroch, Lindblom 91

Pandya, Pretorius 21




Issues with shocks in MIS

— We have seen that viscosity is relevant in neutron star mergers
This would require to use MIS-type theories...

— But... MIS theories have difficulties dealing with shocks

Olson, Hiscock 90
Geroch, Lindblom 91

Pandya, Pretorius 21

— Shocks are prensent in neutron star merger simulations



Issues with shocks in MIS

— We have seen that viscosity is relevant in neutron star mergers
This would require to use MIS-type theories...

— But... MIS theories have difficulties dealing with shocks

Olson, Hiscock 90
Geroch, Lindblom 91

Pandya, Pretorius *21

— Shocks are prensent in neutron star merger simulations

It could happen that viscous neutron star mergers are not viable by using MIS. ...
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* Ideal hydrodynamics
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* First order hydro: Landau frame
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BDNK equations
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Motivation

— Motivation: In heavy-ion collisions
dissipative terms comparable to ideal terms

Time—»

Hydrodynamic
Evolution

— Starts exploring the UV of the theory...

— We would like to explore the non-linear, and far from
equilibrium regimes of the BDNK equations
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Holography
— Excellent framework to study the applicability of hydrodynamics.

— Far from equilibrium strongly coupled field theories from first principles.

* Strongly coupled QFT * Dual of QCD not known...

* Out of equilibrium physics * Not precision holography

— (Qualitative aspects
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Holography: Our model

* CFT on Minkowski in 2+1 dim

* Decoupled sector of the stress tensor

Deformed plasma

{ Real-time quantum dynamics J

Holography
Numerical Relativity

‘ Dynamical classical gravity 1

* Gravity with A in 3+1 dim :

— 3+1 F( — 2N)
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Holographic solution Energy density

Deformed plasma /\‘

hed black brane

—— We have a microscopic solution
— We want to test the aplicability hydrodynamics:

®* (Check constitutive relations

* Time evolutions in hydro

Bantilan, Bea, Figueras ‘22
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Hydro: Constitutive relations

* Off center point
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Hydro: Constitutive relations

Heavy-ion
collision in QCD

Localized
perturbation in our

holographic theory .
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Heavy-ion
collision in QCD

Localized
perturbation in our
holographic theory .
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Theories and states are VERY DIFFERENT, but share one aspect:

— Far from equilibrium and relaxes to a hydro regime



Hydro: Constitutive relations

Heavy-ion
collision in QCD

Localized
perturbation in our
holographic theory .

0.2

Theories and states are VERY DIFFERENT, but share one aspect

— Far from equilibrium and relaxes to a hydro regime

— We initialize the hydro codes at different times, in analogy to the QGP
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Evolutions: holography vs hydrodynamics
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Evolutions: holography vs hydrodynamics
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Evolutions: holography vs hydrodynamics
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Evolutions: holography vs hydrodynamics
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Evolutions: holography vs hydrodynamics
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Evolutions: holography vs hydrodyn
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Evolutions: holography vs hydrodynamics
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Evolutions: holography vs hydrodynamics
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Time

Evolutions: holography vs hydrodynamics
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Main conclusions:

* Gradients dilute with time —— hydro evolutions provide a better description at late times.

* Evolutions in BDNK: provides a physically sensible description of the system 1n the hydro
regime, and compatible with MIS.
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Future directions

— BDNK might be the only way to include viscosity in neutron star mergers.

—— My research program aims to develop the numerical infrastructure required to implement
BDNK into neutron star merger simulations.

Thank you!

Goal:
First viscous neutron star merger simulation

Important step towards precision physics







BDNK: Acausal region

* BDNK egs. are hyperbolic if:

al=a2=0.8

Evolution loo

| al=0.8, a2=0.8 Non Hyperbolic

2
0 ‘_,.__...f Landau Frame ) . _
0 2 4 6 8 10 12 o

0.045
an 0.040
0.035

0.030




Backup slides: BDNK: 3+1, boost invariant

* 3+1 theory

* Boost invariant, 2+1 dynamics

— Similar to hydro codes used to describe the QGP

Evolution looks stable.... eSS NNNNNNNNNNNN—————————

al=a2=10

—— Similar conclusions!



Hydro equations

* Conformal theory in 2+1 dimensions

* Ideal hydrodynamics
TH = cul ¥ + p A ‘ V,.T" =0 Hyperbolic!!

* First order hydro: Landau frame

TH =eutu” + pA* _pot* ‘ V,T"" =0 Nothyperbolic...

* Usual fix: MIS-type
THY = eu u"” 4 p A* - TIH

: 3
" = —po*” — nry (J{“”} - 50‘“’”\7 - u)

New variable Hyperbolic!!
}
T = eu* u” + p A*Y +TI* vV,.TH =0

" = —no™” — 7, (H{“”} + %H“”Vn) »

" = —no™" — (H{‘W} + %H“VV“H,)
New equation



Backup slides: Hydro equations

* Conformal theory

* Ideal hydrodynamics
T =gt a4 p ‘ V., T" =0 Hyperbolic!!

* First order hydro: Landau frame

TH = eul u¥ + p AW _pghv ‘ V,T"" =0 Nothyperbolic...

* First order hydro: general frame

— e e o o e o oy,

: 9 ¢ | N2 — Include all 1st order terms
™ = [f + 2 asn (—{; +V. U):] (U‘“’ u’ + ) compatible with Poincare symmetry
\ _

( : \
1 Ve

1+ apm [(?},“ + 3 LE) u’ + (u 1/)] :

|




Backup slides: Constitutive relations

0-2_' =e===== Ideal + 1st i
: ===== Ideal + 1st + 2nd
0.0 - - . -
0.0 0.2 0.4 0.6 0.8



Backup slides: Off center
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Backup slides: Frames 1 and 2
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Hydro equations

—————

- ~
,,,,
-

* Conformal theory in 2+1 dimensions ey I R v PN
L=+ Vaur =0, {ur+z——=0.)
\\\\3 € / N 3 € ’,,"

~
~~~~~~
________

® [deal hydrodynamics
TH et at g

* First order hydro: Landau frame

TH —eufu®” 4 p A _pghv V,T"" =0 Nothyperbolic...

* First order hydro: general frame

25 ________________ N ag 1, @ > . ,
ThY [f_ + 2 agr}(gg +V. u) . 5 ) as — 1
S [(“’ﬁ i %V?))u” +(p ”)] ‘ V™ =0
--------------------- Hyperbolic!!

BDNK equations



Viscosity can be relevant
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BDNK: Integration method

Recall: BDNK eqs. are 2nd order in time

® Reduce to 1st order. RK4 unstable ——— Unstable. ..

* Implicit integration method ——— STABLE!!

STABLE and FASTER!!

* Explicit integration method RKNG34

—— Weuse RKNG34 1n our simulations



BDNK: Convergence tests

— Convergence test for BDNK
—— Performed for evolutions of Gaussian profiles

BDNK

4f /\/\-—/ ;
Quantity capturing the < _|

convergence order Q|

00 02 04 06 08 10



BDNK: We are not the first ones

®* Main differences:

Evolutions in first-order viscous hydrodynamics
A numerical exploration of first-order relativistic hydrodynamics
Hans Bantilan, Yago Bea, and Pau Figueras
Alex Pandya® and Frans Pretorius' School of Mathematical Sciences, Queen Mary University of London,
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA. Mile End Road, London EI 4NS, United Kingdom
(Dated: April 5, 2021)

Sk et We perform real-time n\'c:»lulim}s ll‘h'lllg the firsr-ql'r{nr viscous vrr:Eﬂr.iw'isriw‘ hy(_lrnclyx.ln‘mic ('qu.nlions
sz, Norouhs; and Kovtun (BDNK), For-£his:inthial favestigntion fm'ml%lm‘('(l by B('mﬁl('a, Disconzi, Noronha and lI\o\'mnll (BDNlI\) in Lhrmf(hm(*nmonztl ('on.(orlmzll
confignrations of & confortal Aund in Minke ime. We theories. For comparison, we also perform evolutions using the ideal and viscous BRSSS equations
 tnitial dita: & amooth (initially) station: stration of of hydrodynamics. Moreover, motivated by the physics of the quark-gluon plasma, we use holography
energy, a standard shock tube setup, and a smooth all(u'k\\-‘:t‘.i‘;‘t‘lup. We (‘Hm]mlt:“ these solutions to to obtain the microscopic dynamical evolution of a system relaxing to equilibrium in a strongly-
those obtained with a code based on the Miiller-Israel-Stewart (MIS) formalism, variants of which coupled field theory that we use to study the applicability of hydrodynamics.

are the common tools used today to model relativistic, viscous fluids. We find that for the two

We present the first numerical solutions of the causal, stable relativistic N,

smooth initial data cases, simple finite difference methods are adequate to obtain stable, convergent
solutions to the BDNK equations. For low viscosity, the MIS and BDNK evolutions show good Introduction. Dynamical evolutions of the rel- in noticing that if we change from these frames
agreement. At high viscosity the solutions begin to differ in regions with large gradients, and .. . . . - .

> = = - ativistic hvdrodvnamic eanations are essential to to another frame within a snecific set of frames

* ]+1 dynamics * 2+1 dynamics
* 3+1] theory * 2+1 theory

Motivated by neutron star mergers * Motivated by heavy-ion collisions

Integration method: conservative * Integration method: Explicit RKNG34
methods (HRSC)

* Microscopic solution
—— QOur works only partially overlap, and they are complementary

—— With our work and Pretorius paper, we are paving the way
to the implementation in relevant physical systems.
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QCD & Holography

a

Quark-Gluon Plasma

Hadrons
- -
O W

What have we learned from holography so far?

Chesler, Yaffe, Casalderrey, Mateos, Heller, van der Schee, ...
Early hydrodynamization times
Applicability with large gradients
Applicability for small systems
Transport coefficients

MIS fails in the presence of a phase transition
Attems, Bea, Mateos, Casalderrey, Triana, Zilhao "19, ‘20

1st order phase

transition

="




Holography: Our model

* CFT on Minkowski in 2+1 dim

* Decoupled sector of the stress tensor

Deformed plasma

{ Real-time quantum dynamics J

Numerical Holography

Relatiy
Dynamical classical gravity 1

* Gravity with Ain 3+1 dim plus massless scalar:
~ 3= m2a+ ()Y

* We focus on the Poincare patch of AdS.




Evolutions: holography vs hydrodyn
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Motivation: astrophysical systems

Neutron star mergers

State of the art ® Ideal hydrodynamics

Beyond state of the art * YViscous hydrodynamics

Shibata et al‘20
Chabanov, Rezzolla, Rischke ‘21

—— More realistic scenarios, closer to astrophysical systems.

—> New cra of precision gravitational waves (LISA, ... )
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Black hole mergers
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Motivation: astrophysical systems

Black hole mergers

1
Rm} _ERQMV — KTuv =) Ruv =0

Neutron star mergers

1
Matter must be specified

Ideally: solve gravity coupled to QCD
— At the moment not feasible



BDNK vs MIS

* Why do we need another formulation of viscous hydrodynamics?

I
(27 + AenIl) — 57'7,7,\1\1\ >0

* Non linear BN .1, o> -2 MIS |:+pen-emeram-T=4 >0

as —1° 1 .
Nonlinea E(M + Apnll) + H (Aa+Mg) >0, a#d,
e e+P+I+A, - %(mmmn) - %(AHAU) >0, atd
* Bocola de Citncia Do not depend on evolved variables L o denl])+ At o4 el G

+ 0nnIl + Anr A 2
Mas i FUNEIY TN (V)

m
e+P+I+A;— 27(27] + Aetll) — ;Ari = — 20+ Aenll + (6077 — Trr) Ad]
Ir m

67
7( + 6l + Air A K

(e+P+I+Ag)c2 >0,
T

_ Causality ensured all along the evolution! _
* The 1n evolution

* Constr
— BDNK might be good alternative to MIS!

Exploring th

Evolve BDNK with realistic heavy-ion initial data.

- Work in progress...
SRII

Christopher Plu

T=4.80 fm/c

"‘J’_)L,,L,

y(f

(Dated: March 31, 2021)

IP-Glasma + free-streaming KeMPaST + MUSIC

— Significant causality violations!




