
Introduction

We study the quartic random Schrödinger equation

𝛽4𝛼∇
4 − 𝛽2

ħ2

2𝑚
∇2 + 𝑉( Ԧ𝑥) 𝜑𝑛 =𝐸𝑛𝜑𝑛, (1)

where 𝛼 is a dimensional parameter, 𝛽2 and 𝛽4 are

adimensional and control the relative strength of the

dispersion terms, and 𝑉( Ԧ𝑥) is a Gaussian white noise.

In the free case (𝑉 = 0) only unbounded states are possible

and the calculation of the DOS is straightforward. When we

introduce the random potential, we can have fluctuations to

energies low enough to allow new bound states to appear.

The calculation of the DOS is then the calculation of a

potential fluctuation of the required magnitude.

Our objective is to compute the disordered-averaged DOS,

which is related to the systems partition function 𝒵 by
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The average in (2) is evaluated using the replica trick. This

results on a field integral with action
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where ෤𝑔~|𝐸|2−
𝑑

4 and ෨𝛽2 are rescaled adimensional

parameters. We will approximate the DOS in the low energy

regime by using the steepest descent method.

Soliton equation

The field configuration with the largest action contribution is

called a soliton [2]. By taking the variance of Eq.(3) they can

be shown to be given by

−∇2∇2 𝜙 𝑟 + ෨𝛽2∇
2 𝜙 𝑟 = 𝜙 𝑟 − 𝜙3 𝑟 , (4)

which we solve numerically using spectral renormalization

[3].

Since solitons are localized solutions, far from the origin we

can neglect the nonlinearity in Eq.(4) and solve the decaying

behavior analytically. We then find that for ෨𝛽2 < −2 the soliton

solution stops existing, so we expect no tailing.
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Fluctuations about the soliton

The soliton gives the leading functional dependency of the

partition function. The next order of approximation is to

consider fluctuations about the soliton. Making use of the

spherical symmetry we separate into radial and normal

components
𝜙 Ԧ𝑥 = 𝜙 𝑟 + 𝛿𝜙⊥( Ԧ𝑥) Ƹ𝑟 + 𝛿𝜙∥ Ԧ𝑥 ො𝑛. (5)

It is well-known that such fluctuations result in a Gaussian

integral evaluable in terms of functional determinants.

Following [2] we parametrize the resulting determinants as
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where 𝑧 is used to label the radial and normal cases. The

eigenvalues 𝜆𝑛 are determined by

∇2∇2 − ෨𝛽2∇
2 + 1 − 3𝜆𝑛𝜙

2 𝑟 𝑓 𝑟 = 0, (7)

which we obtain numerically using compound matrix methods

[4]. They are shown below for the 1d case.
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Fig 3. Two-dimensional soliton for ෨𝛽2 = −1.9

Fig 4. The asymptotic behavior of the eigenvalues can be 

determined using the Thomas-Fermi approximation.

Fig 1. Representation of a random potential.

Fig 2. Tailing in 1d for 𝛽4 = 0. Adapted from [1].
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