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Motivation

Continuous time Markov evolution of the probability vector P (t),

d

dt
P (t) = MP (t), (1)

is solely determined by the generator matrixM . Generic generator matrices are modeled by
random matrices. Spectra of dense random generator matrices mismatch relaxation times
of physical generators (large spectral gap). We propose sparse random generator matrices.

Sparse random generator matrix ensemble

• generator matrix M = K − J is D ×D-matrix, where

–K is adjacency matrix of random graph

– J is diagonal matrix with Jii =
∑

i 6=jKji

–M is negative (combinatorial) Laplacian on graph

• Random graph is uniformly sampled from ensemble of all
graphs with D vertices and fixed vertex degree ϕ (degree =
in-degree = out-degree).

•ϕ controls the sparsity of M . Sparsity ϕ can be

– independent of D: single particles

– dependent on D: many-body systems with ϕ ∼ logD

• Random graph is highly likely strongly connected if ϕ ≥ 2.

• Edge weights (Kij) are positive, iid distributed, e.g χ2, exponential, uniform, etc.

Bulk spectrum: Mean and width

Eigenvalues λi of M . Mean of bulk is

µ(λ) :=

〈
1

D

D∑
i=1

λi

〉
= −ϕµ0

and horizontal width of bulk

σ(Reλ) :=

〈
1

D

D∑
i=1

(Reλi − µ(λ))2

〉1/2

≥ σ0
√
ϕ + O

(√
ϕ

D

)
.

• Average 〈. . . 〉 is over matrix ensemble.

•µ0 = 〈Mij〉, σ2
0 = var(Mij), i 6= j.

Ratio of mean and width α is given by

α :=
|µ(λ)|
σ(Reλ)

.
√
ϕ

Numerically (ϕ� D) : α ∼ √ϕ

bulk close to 0 ⇐⇒ α small
bulk distant from 0 ⇐⇒ α large

ϕ constant in D ⇐⇒ α constant in D
ϕ grows with D ⇐⇒ α grows with D

Connectivity ϕ increases with D =⇒ bulk diverges from equilibrium eigenvalue

Conclusion

• Bulk spectrum of sparse random Markov generatorsM diverges from equilibrium eigenvalue
0 iff connectivity ϕ increases with state space size D.

• Spectral edges are determined by extreme values of diagonal of M =⇒
– left tail of Mij decreases at most as power-law: spectral gap closes as power in D for

constant ϕ and crossover to increasing gap at ϕ ∼ logD.

– Largest eigenvalue investigated for exponential (χ2) and power-law right tail (uniform).

• Spacing ratios agree with random matrices for ϕ ≥ 2.
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Spectral edges

Spectral gap: γ∗ = minReλi<0 |Reλi|
horizontal extent:
(largest eigenvalue)

γ̃ = max1≤i≤D |Reλi|

For symmetric generators:

γ̃ ≥ max
1≤i≤D

Jii and min
1≤i≤D

Jii ≥ γ∗.

Numerically (ϕ� D) for non-symmetric:

γ̃ ≈ max
1≤i≤D

Jii and min
1≤i≤D

Jii ≈ γ∗.

=⇒ Spectral edges are given by ex-
treme values of Jll distribution.

Average spectral gap

Kij = Mij Jjj (F )

χ2, exponential Gamma
uniform Irwin-Hall

〈γ∗〉 ≈ D

∫
dxxf (x)(1− F (x))D−1

weights ∼ uniform: (Jii power-law left tail)

EVT: 〈γ∗〉 ≈ Γ

(
1 +

1

ϕ

)
(ϕ!)1/ϕD−1/ϕ

ϕ const: 〈γ∗〉 ∼ D−1/ϕ

1� ϕ� D : 〈γ∗〉 ≈ ϕD−1/ϕ

〈γ∗〉 const: ϕ ∼ logD (1� ϕ� D)

(Approximate) power-law left tail Jii, ϕ� D:

•ϕ constant =⇒ power-law decay of average spectral gap

•ϕ ∼ logD =⇒ average spectral gap ≈ O(1)

Average horizontal extent

〈γ̃〉 ≈ D

∫
dxxf (x)F (x)D−1

weights ∼ χ2
2: (Jii exponential right tail)

EVT: 〈γ̃〉 ≈2 logD + 2(ϕ− 1) log logD

+2γ − 2 log Γ(ϕ)

ϕ const: 〈γ̃〉 ∼ logD

ϕ ∼ logD : 〈γ̃〉 ∼ logD

weights ∼ uniform: (Jii power-law right tail)

EVT: 〈γ̃〉 ≈ ϕ− Γ

(
1 +

1

ϕ

)
(ϕ!)1/ϕD−1/ϕ

ϕ const: 〈γ̃〉 ∼ ϕ−D−1/ϕ

1� ϕ� D : 〈γ̃〉 ≈ ϕ(1−D−1/ϕ) ∼ ϕ

ϕ ∼ logD : 〈γ̃〉 ∼ logD

Complex spacing ratios

Spacing ratios: zj =
λNj − λj
λNNj − λj

= reiθ

λNi (λNNi ) nearest (next nearest) to λi

GinOE ϕ = 2 ϕ = 3 ϕ = 1

−〈cos θ〉 0.7379 0.7359 0.7372 0.7871
〈r〉 0.2347 0.2225 0.2284 0.3516

Complex spacing ratios agree with non-Hermitian
Gaussian random matrices for ϕ ≥ 2


