Spectra of random sparse generators of Markovian evolution

Goran Nakerst with S. Denisov, T. Prosen, M. Haque

TU Dresden, Maynooth University (Ireland)

Motivation

Continuous time Markov evolution of the probability vector \(P(t) \)

\[
\frac{d}{dt} P(t) = MP(t),
\]

(1)

is solely determined by the generator matrix \(M \). Generic generator matrices are modeled by random matrices. Spectra of dense random generator matrices mismatch relaxation times of physical generators (large spectral gap). We propose sparse random generator matrices.

Sparse random generator matrix ensemble

- generator matrix \(M = K + i = D \times D \)-matrix, where
 - \(K \) is adjacency matrix of random graph
 - \(i \) is diagonal matrix with \(J = \sum_i K_{ii} \)
 - \(M \) is negative (combinatorial) Laplacian on graph

- Random graph is uniformly sampled from ensemble of all graphs with \(D \) vertices and fixed vertex degree \(\varphi \) (degree = in-degree = out-degree).

- \(\varphi \) controls the sparsity of \(M \). Sparsity \(\varphi \) can be
 - independent of \(D \): single particles
 - dependent on \(D \): many-body systems with \(\varphi \sim \log D \)

- Random graph is highly likely strongly connected if \(\varphi \geq 2 \).

- Edge weights \((K_{ij}) \) are positive, i.i.d distributed, e.g. \(\chi^2 \), exponential, uniform, etc.

Bulk spectrum: Mean and width

\[
\lambda_i = \min \{ \lambda_i, \lambda_{i+1} \} \quad |\Re \lambda_i| > \lambda_B
\]

Eigenvectors \(\lambda_i \). Mean of bulk is

\[
\mu(\lambda) = \frac{1}{D} \sum_{i=1}^{D} \lambda_i = -\varphi \mu_{ij}
\]

and horizontal width of bulk

\[
\sigma(\Re \lambda_j) = \left(\sum_{i=1}^{D} (\Re \lambda_i - \mu(\lambda))^2 \right)^{1/2}
\]

\[
\geq \sqrt{\frac{\varphi}{D}} + \frac{\sqrt{\varphi}}{\sqrt{D}}
\]

- Average \(\langle \ldots \rangle \) is over matrix ensemble.

- \(\mu_{ij} = \langle M_{ij} \rangle \)

- \(\sigma(\Re \lambda) \) is given by

\[
\sigma = \sqrt{\frac{\varphi}{D}} + \frac{1}{\sqrt{\sigma(\Re \lambda)}}
\]

- Numerically \(\varphi \ll D \): \(\alpha \sim \sqrt{D} \)

Conclusion

- Bulk spectrum of sparse random Markov generators \(M \) diverges from equilibrium eigenvalue \(0 \) if connectivity \(\varphi \) increases with state space size \(D \)

- Spectral edges are determined by extreme values of diagonal of \(M \)

- Left tail of \(M_{ij} \) decreases at most as power-law: spectral gap closes as power in \(D \) for constant \(\varphi \) and crossover to increasing gap at \(\varphi \sim \log D \)

- Largest eigenvalue investigated for exponential (\(\chi^2 \)) and power-law right tail (uniform).

- Spacing ratios agree with random matrices for \(\varphi \geq 2 \).

GN gratefully acknowledges support from SFB 1143.

Spectral edges

Spectral gap \(\gamma = \max_{|\Re \lambda| < D} |\Re \lambda| \)

(largest eigenvalue) \(\tilde{\gamma} = \max_{|\Re \lambda| < D} |\Re \lambda| \)

For symmetric generators:

\(\tilde{\gamma} \geq \max \lambda_i \) and \(\min \lambda_i \geq \varphi \).

Numerically \(\varphi \ll D \) for non-symmetric:

\(\tilde{\gamma} \approx \max \lambda_i \) and \(\min \lambda_i \approx \varphi \).

Spectral edges are given by extreme values of \(D \) distribution.

Average spectral gap

\[
\langle \gamma \rangle \approx D \int dx f(x)(1 - F(x))^{D-1}/D
\]

weights ~ uniform: \((J, \text{power-law left tail}) \)

\[
\varphi \text{ constant } \Rightarrow \text{power-law decay of average spectral gap}
\]

\[
\varphi \sim \log D \Rightarrow \text{average spectral gap } \sim O(1)
\]

Complex spacing ratios

\[
\gamma_j = \min_{i < j} \{ |\lambda_i - \lambda_j| \}
\]

\[
\lambda_i (\lambda_j) \text{ nearest (next nearest) to } \lambda_i
\]

Complex spacing ratios agree with non-Hermitian Gaussian random matrices for \(\varphi \geq 2 \).