

SPECTRA OF RANDOM SPARSE GENERATORS OF MARKOVIAN EVOLUTION Goran Nakerst with S. Denisov, T. Prosen, M. Haque

TU Dresden, Maynooth University (Ireland)

Maynooth University National University

Motivation

Continuous time Markov evolution of the probability vector P(t),

$$\frac{d}{dt}P(t) = MP(t),\tag{1}$$

is solely determined by the **generator matrix** M. Generic generator matrices are modeled by random matrices. Spectra of dense random generator matrices mismatch relaxation times of physical generators (large spectral gap). We propose **sparse** random generator matrices. dense random generator TASEP on ring TASEP on chain obc

Spectral edges

Spectral gap: $\gamma_* = \min_{\operatorname{Re}\lambda_i < 0} |\operatorname{Re}\lambda_i|$ horizontal extent: (largest eigenvalue) $\tilde{\gamma} = \max_{1 \le i \le D} |\operatorname{Re} \lambda_i|$ For symmetric generators: $\tilde{\gamma} \ge \max_{1 \le i \le D} J_{ii} \text{ and } \min_{1 \le i \le D} J_{ii} \ge \gamma_*.$ Numerically ($\varphi \ll D$) for non-symmetric: $\tilde{\gamma} \approx \max_{1 \le i \le D} J_{ii}$ and $\min_{1 \le i \le D} J_{ii} \approx \gamma_*$. Spectral edges are given by ex- \Longrightarrow

• $\varphi \sim \log D \implies$ average spectral gap $\approx O(1)$

• Edge weights (K_{ij}) are positive, iid distributed, e.g χ^2 , exponential, uniform, etc.

Conclusion

- Bulk spectrum of sparse random Markov generators M diverges from equilibrium eigenvalue 0 iff connectivity φ increases with state space size D.
- Spectral edges are determined by extreme values of diagonal of $M \implies$
- -left tail of M_{ij} decreases at most as power-law: spectral gap closes as power in D for constant φ and crossover to increasing gap at $\varphi \sim \log D$.
- -Largest eigenvalue investigated for exponential (χ^2) and power-law right tail (uniform). • Spacing ratios agree with random matrices for $\varphi \geq 2$.

GN gratefully acknowledges support from SFB 1143.

Spacing ratios:
$$z_j = \frac{\lambda_j^N - \lambda_j}{\lambda_j^{NN} - \lambda_j} = re^{i\theta}$$

 $\lambda_i^N \ (\lambda_i^{NN}) \text{ nearest (next nearest) to } \lambda_i$

GinOE
$$\varphi = 2$$
 $\varphi = 3$ $\varphi = 1$ $\langle \cos \theta \rangle$ 0.73790.73590.73720.7871 $\langle r \rangle$ 0.23470.22250.22840.3516

10⁰

 10^{-1}

 10^{-2}

18

15

 10^{6}

Π

12 🕃

($\tilde{\gamma}$)

Complex spacing ratios agree with non-Hermitian Gaussian random matrices for $\varphi \geq 2$