Wilson Loops, AdS/CFT and M2-branes

Arkady Tseytlin

Defect CFT on Wilson loop: $AdS_5/CFT_4 \rightarrow AdS_2/CFT_1$ [Giombi, Roiban, AT 2017]

• gauge-invariant correlators of operators on WL: "defect" CFT₁ "induced" from $\mathcal{N} = 4$ SYM

• $\frac{1}{2}$ -BPS WL: example of AdS₂/CFT₁

QFT in AdS₂ defined by superstring action in AdS₅ \times S⁵

• AdS/CFT map: SYM fields \perp to line

 $\leftrightarrow string \ coords \ as \ fields \ in \ AdS_2$

• "open string" analog of

 $Tr(\Phi^n...F^k...) \leftrightarrow closed-string vertex ops$

• e.g. 4-point correlators at strong coupling

from Witten diagrams in AdS₂

combined with OPE, connections with integrability, bootstrap, etc.

 $\mathcal{N} = 4 \text{ SYM: large } N, \ \lambda = g_{\text{YM}}^2 N$ Maldacena-Wilson loop operator $W = \text{tr } P e^{\oint dt \left(i\dot{x}^{\mu}A_{\mu} + |\dot{x}|\theta^I \Phi^I \right)}$ generic $x^{\mu}(t)$ closed loop, $\theta^I(t)$ unit 6-vector: "locally" susy • max 16 susy $-\frac{1}{2}$ BPS: infinite straight line (or circle), $\theta^I = \text{const}$ $x^0 = t \in (-\infty, \infty), \ \theta^I \Phi^I = \Phi_6$ $W = \text{tr} P e^{\int dt (iA_t + \Phi_6)}$

• local $O_i(t)$ on WL: gauge inv correlator [Drukker, Kawamoto 06]

$$\left\langle O_1(t_1)O_2(t_2)\cdots O_n(t_n)\right\rangle$$

$$\equiv \langle \operatorname{tr} P[O_1(t_1) \ e^{\int dt(iA_t + \Phi_6)} \ O_2(t_2) \ \cdots \ O_n(t_n) \ e^{\int dt(iA_t + \Phi_6)}] \rangle$$

operator insertions are equivalent to deformations of WL
 [Drukker, Kawamoto:06; Cooke, Dekel, Drukker:17]

• O(t): $OSp(4^*|4)$ reps with dim Δ and rep of "internal" $SO(3) \times SO(5)$

- correlators define "defect" CFT₁ on the line
 [Drukker et al:06; Sakaguchi, Yoshida:07; Cooke et al:17]
 determined by spectrum of dims and OPE coeffs
- $\langle ... \rangle$ correlators satisfy all usual properties of CFT
- "elementary excitations": short rep of OSp(4*|4)
 8 bosonic + 8 fermionic operators with protected Δ:

5 scalars: Φ^a ($\Delta = 1$) that do not couple to WL;

- 3 "displacement operators": $\mathbb{F}_{ti} \equiv iF_{ti} + D_i\Phi_6 \ (\Delta = 2)$
- protected dims: exact 2-point functions in planar SYM $\left\langle \Phi^{a}(t_{1})\Phi^{b}(t_{2})\right\rangle = \delta^{ab}\frac{C_{\Phi}(\lambda)}{t_{12}^{2}}, \quad \left\langle \mathbb{F}_{ti}(t_{1})\mathbb{F}_{tj}(t_{2})\right\rangle = \delta_{ij}\frac{C_{\mathbb{F}}(\lambda)}{t_{12}^{4}}$ $C_{\Phi}(\lambda) = 2B(\lambda), \quad C_{\mathbb{F}}(\lambda) = 12B(\lambda), \quad B(\lambda) = \frac{\sqrt{\lambda}I_{2}(\sqrt{\lambda})}{4\pi^{2}I_{1}(\sqrt{\lambda})}$

 $B(\lambda)$ – Bremsstrahlung function [Correa, Henn, Maldacena, Sever:12] • 3-point functions of elementary bosonic operators vanish by $SO(3) \times SO(5)$ symmetry

• 4-point: $G(t_1, ..., t_2; \lambda)$ constrained by 1d conf symm

 $AdS_5 \times S^5$ string theory

• WL \rightarrow open string minimal surfaces in AdS₅ ending on contour defining WL operator at the boundary

• $\frac{1}{2}$ -BPS Wilson line or circle:

minimal surface= AdS_2 embedded in AdS_5

• fundamental open string stretched in AdS₅:

preserves same $OSp(4^*|4)$ as $\frac{1}{2}$ -BPS WL

1d conf group SO(2, 1) realized as isometry of AdS_2

• expanding string action around AdS₂ surface:

AdS₂ multiplet of fluctuations transverse to string:

5 (
$$m^2 = 0$$
) scalars y^a in S^5 ; 3 ($m^2 = 2$) scalars x^i in AdS₅;

8 ($m^2 = 1$) fermions [Drukker, Gross, AT:00]

• identify 8+8 fields in AdS₂ with elementary CFT₁ insertions [Sakaguchi, Yoshida:07; Faraggi, Pando Zayas:11; Fiol et al:13]

AdS/CFT: add open-string sector (strings end at bndry) → gauge-inv operators = WL with insertions of local operators
insertions of ops with protected dims
dual to "light" fields on AdS₂ string world-sheet
m² = Δ(Δ − d) for AdS_{d+1} scalar masses and CFT_d dims: massless S⁵ fields y^a dual to Φ^a in CFT₁ with Δ = 1 massive AdS₅ fields xⁱ dual to F_{ti} with Δ = 2

Strategy:

string action \rightarrow interaction vertices for "light" AdS₂ fields \rightarrow tree-level Witten diagrams in AdS₂ \rightarrow prediction for 4-point functions of protected ops on WL: expansion parameter $\frac{1}{\sqrt{\lambda}}$: $S = \frac{\sqrt{\lambda}}{2\pi} \int d^2 \sigma \sqrt{h} \partial x \partial x + ...$ (cf. $\frac{1}{N^2}$ in AdS₅ sugra: $S = N^2 \int d^5 x \sqrt{g} R + ...$) • AdS₂ QFT: expect superstring action UV finite

 \rightarrow AdS₂/CFT₁ duality should hold for any $T = \frac{\sqrt{\lambda}}{2\pi}$

• compute tree-level 4-point functions

use OPE to extract strong coupling corrections to dims of "2-particle" ops built of 2 of protected insertions: $\Phi \partial_t^n \Phi$, etc.

compare with localization to YM_2 , etc.

AdS₅ × S⁵ string in static gauge \rightarrow AdS₂ QFT bosonic part of superstring action in AdS₅ × S⁵ ($T = \frac{\sqrt{\lambda}}{2\pi}$)

$$S_B = \frac{1}{2}T \int d^2 \sigma \sqrt{h} h^{\mu\nu} \Big[\frac{1}{z^2} \left(\partial_\mu x^r \partial_\nu x^r + \partial_\mu z \partial_\nu z \right) + \frac{\partial_\mu y^a \partial_\nu y^a}{(1 + \frac{1}{4}y^2)^2} \Big]$$

$$\sigma^{\mu} = (t,s), \ r = (0,i) = (0,1,2,3), \ a = 1,...,5$$

minimal surface for straight Wilson line at Euclidean boundary

$$z = s$$
 , $x^0 = t$, $x^i = 0$, $y^a = 0$

induced metric is AdS₂: $g_{\mu\nu}d\sigma^{\mu}d\sigma^{\nu} = \frac{1}{s^2}(dt^2 + ds^2).$

Aim: study correlators of small fluctuations of "transverse"
 2d fields (xⁱ, y^a) near AdS₂ minimal surface

$$ds_{AdS_5}^2 = \frac{(1 + \frac{1}{4}x^2)^2}{(1 - \frac{1}{4}x^2)^2} ds_{AdS_2}^2 + \frac{dx^i dx^i}{(1 - \frac{1}{4}x^2)^2}, \qquad ds_{AdS_2}^2 = \frac{1}{z^2} (dx_0^2 + dz^2)$$

• Nambu action in static gauge $S_B = T \int d^2 \sigma \sqrt{h} = T \int d^2 \sigma L_B$ $h_{\mu\nu} = \frac{(1+\frac{1}{4}x^2)^2}{(1-\frac{1}{4}x^2)^2} g_{\mu\nu}(\sigma) + \frac{\partial_{\mu}x^i \partial_{\nu}x^i}{(1-\frac{1}{4}x^2)^2} + \frac{\partial_{\mu}y^a \partial_{\nu}y^a}{(1+\frac{1}{4}y^2)^2} , \qquad g_{\mu\nu} = \frac{1}{s^2} \delta_{\mu\nu}$ • action of straight fundamental string in $AdS_5 \times S^5$ along *z*: 2d theory of 3+5 scalars + 8 fermions in AdS₂ with $SO(2,1) \times [SO(3) \times SO(6)]$ symmetry $L_B = L_2 + L_{4x} + L_{2x,2y} + L_{4y} + \dots$ $L_2 = \frac{1}{2}g^{\mu\nu}\partial_{\mu}x^i\partial_{\nu}x^i + x^ix^i + \frac{1}{2}g^{\mu\nu}\partial_{\mu}y^a\partial_{\nu}y^a$ $L_{4\gamma} = \frac{1}{8} (g^{\mu\nu} \partial_{\mu} x^{i} \partial_{\nu} x^{i})^{2} - \frac{1}{4} (g^{\mu\nu} \partial_{\mu} x^{i} \partial_{\nu} x^{j}) (g^{\rho\kappa} \partial_{\rho} x^{i} \partial_{\kappa} x^{j})$ $+\frac{1}{4}x^{i}x^{i}(g^{\mu\nu}\partial_{\mu}x^{j}\partial_{\nu}x^{j})+\frac{1}{2}x^{i}x^{i}x^{j}x^{j}$ $L_{2x,2y} = \frac{1}{4} (g^{\mu\nu} \partial_{\mu} x^{i} \partial_{\nu} x^{i}) (g^{\rho\kappa} \partial_{\rho} y^{a} \partial_{\kappa} y^{a}) - \frac{1}{2} (g^{\mu\nu} \partial_{\mu} x^{i} \partial_{\nu} y^{a}) (g^{\rho\kappa} \partial_{\rho} x^{i} \partial_{\kappa} y^{a})$ $L_{4\nu} = -\frac{1}{4} (y^b y^b) (g^{\mu\nu} \partial_{\mu} y^a \partial_{\nu} y^a) + \frac{1}{8} (g^{\mu\nu} \partial_{\mu} y^a \partial_{\nu} y^a)^2$ $-\frac{1}{4}(g^{\mu\nu}\partial_{\mu}y^{a}\partial_{\nu}y^{b})(g^{\rho\kappa}\partial_{\rho}y^{a}\partial_{\kappa}y^{b})$ $x^i = 3 \times [m^2 = 2]$ and $y^a = 5 \times [m^2 = 0] + 8$ fermions with $m^2 = 1$ in AdS₂ • 2d theory is UV finite, dual to CFT₁ for any $T = \frac{\sqrt{\lambda}}{2\pi}$

• bndry correlators $\langle O(t_1)O(t_2)...O(t_n) \rangle$ reproduced

by AdS₂ amplitudes of string sigma model (series in $\frac{1}{\sqrt{\lambda}}$)

$$\left\langle O(t_1)O(t_2)...O(t_n) \right\rangle_{\text{SYM}} = \left\langle X(t_1)X(t_2)...X(t_n) \right\rangle_{\text{AdS}_2}, \qquad X = (x,y)$$

e.g tree Witten diagrams with bulk-to-bndry props

•
$$y^a \to O \sim \Phi^a$$
 ($a = 1, ..., 5$) with $\Delta = 1$
 $x^i \to O \sim \mathbb{F}_{it}$ ($i = 1, 2, 3$) with $\Delta = 2$

- *L_B*: no 3-vertices; 4-point tree-level correlators from 4-vertices
- 4-point function of $O_{\Delta}(t)$ restricted by SO(2,1) $\langle O_{\Delta}(t_1)O_{\Delta}(t_2)O_{\Delta}(t_3)O_{\Delta}(t_4)\rangle = \frac{1}{(t_{12}t_{34})^{2\Delta}} \mathcal{G}(\chi), \qquad \chi = \frac{t_{12}t_{34}}{t_{13}t_{24}}$ $u \equiv \frac{t_{12}^2 t_{34}^2}{t_{13}^2 t_{24}^2} = \chi^2, \qquad v \equiv \frac{t_{14}^2 t_{23}^2}{t_{13}^2 t_{24}^2} = (1-\chi)^2$
- $\mathcal{G}(\chi)$: OPE in conf blocks in d = 1 [Dolan, Osborn:11]

$$\mathcal{G}(\chi) = \sum_{h} c_{\Delta,\Delta;h} \chi^{h} {}_{2}F_{1}(h,h,2h,\chi)$$

Example: 4-point function of S⁵ fluctuations

$$\left\langle \Phi^{a_1}(t_1)\Phi^{a_2}(t_2)\Phi^{a_3}(t_3)\Phi^{a_4}(t_4) \right\rangle$$

 $= \left\langle y^{a_1}(t_1)y^{a_2}(t_2)y^{a_3}(t_3)y^{a_4}(t_4) \right\rangle_{AdS_2} = \frac{\left[C_{\Phi}(\lambda)\right]^2}{t_{12}^2 t_{34}^2}G^{a_1a_2a_3a_4}(\chi)$
 $\left\langle y^{a_1}(t_1)y^{a_2}(t_2) \right\rangle_{AdS_2} = \left\langle \Phi^{a_1}(t_1)\Phi^{a_2}(t_2) \right\rangle = \delta^{a_1a_2}\frac{C_{\Phi}(\lambda)}{t_{12}^2}$
 $G^{a_1a_2a_3a_4}(\chi) = \delta^{a_1a_2}\delta^{a_3a_4} + O(\chi)$ – non-trivial function of λ

$$\begin{split} \Phi_{\rm conn}^{a_1a_2a_3a_4} &= \frac{(\mathcal{C}_{\Delta=1})^2}{t_{12}^2 t_{34}^2} G_{(1)}^{a_1a_2a_3a_4}(\chi) \\ G_S^{(1)}(\chi) &= -\frac{2(\chi^4 - 4\chi^3 + 9\chi^2 - 10\chi + 5)}{5(\chi - 1)^2} + \frac{\chi^2(2\chi^4 - 11\chi^3 + 21\chi^2 - 20\chi + 10)}{5(\chi - 1)^3} \log|\chi| \\ &- \frac{2\chi^4 - 5\chi^3 - 5\chi + 10}{5\chi} \log|1 - \chi| , \\ G_T^{(1)}(\chi) &= -\frac{\chi^2(2\chi^2 - 3\chi + 3)}{2(\chi - 1)^2} + \frac{\chi^4(\chi^2 - 3\chi + 3)}{(\chi - 1)^3} \log|\chi| - \chi^3 \log|1 - \chi| , \\ G_A^{(1)}(\chi) &= \frac{\chi(-2\chi^3 + 5\chi^2 - 3\chi + 2)}{2(\chi - 1)^2} + \frac{\chi^3(\chi^3 - 4\chi^2 + 6\chi - 4)}{(\chi - 1)^3} \log|\chi| - (\chi^3 - \chi^2 - 1) \log|1 - \chi| , \end{split}$$

• allows to determine strong-coupling asymptotics of CFT₁ correlators

Recent progress: combining with bootstrap and integrability OPE coefficients of unprotected operators
[Niarchos, Papageorgakis et al 23; Cavaglia, Gromov, Julius, Preti 22; Barrat, Lliendo, Peveri 22; Bliard 22; Liendo, Meneghelli, Mitev 18; ...] M2 branes and 2-defects: $AdS_7/CFT_6 \rightarrow AdS_3/CFT_2$ [Drukker, Giombi, Zhou, AT 2020]

analog AdS_2/CFT_1 : defect AdS_3/CFT_2

• surface operators in 6d (2,0) theory at large N: dual description as probe M2 ending on defect in $AdS_7 \times S^4$

- $\frac{1}{2}$ -BPS operator: R^2 or S^2 conformal defect in CFT₆
- dual M2 brane has AdS₃ geometry: encodes 2d conf symm defines defect CFT₂ for surface operator
- \perp fluctuations of M2 brane: dual to protected ops on 2-surface
- M2 brane action: AdS_3 Witten diagrams \rightarrow strong coupling expansion of defect CFT correlators (+OPE, superconformal Ward identities, etc.)
- 1-loop M2 brane dets: conf anomaly of spherical defect at order N^0

- (2,0) 6d CFT on multiple M5-branes: SU(N) generalization of (2,0) tensor multiplet: B_{mn} with $H_{mnk} = H^*_{mnk}$
- + 5 real scalars Φ^I + 4 symplectic Majorana fermions
- in abelian theory: locally-susy surface operator (cf. M5's described by M2's ending on strings coupled to *B*)

$$W = \exp\left(\int d^2x \left[i_{\frac{1}{2}} e^{\mu\nu} \partial_{\mu} X^m \partial_{\nu} X^n B_{mn}(X) + \sqrt{g(X)} \Phi_5(X)\right]\right)$$

defect in (1,2) plane: $\exp \int d^2x [i B_{12}(X) + \Phi_5(X)]$

- $OSp(8^*|4)$ broken to $[OSp(4^*|2)]^2$: bosonic $SO(2,2) \times SO(4) \times SO(4)$
- ops on defect: short multiplet of $4 \perp$ scalars Φ_a , $\Delta = 2$,
- 4 displacement ops $D_i = \mathbb{H}_{12i} \equiv iH_{12i} + \partial_i \Phi_5, \Delta = 3$
- 8 fermions with $\Delta = 5/2$
- dual description of $\frac{1}{2}$ -BPS surface operator:

probe M2-brane with 3-volume ending on 2-plane at bndry \mathbb{R}^6 of AdS₇ stretched along *z* of AdS₇ and localized at point in S^4

- action of M2: induced 3-geometry in static gauge is AdS_3 transverse fluctuations: $4 y^a$ (S^4 fluctuations) with $m^2 = 0$; $4 x^i$ (AdS₇ flucts \perp 3-surface) with $m^2 = 3$; 8 fermions with $m^2 = \frac{9}{4}$
- correlators of these define 2d defect CFT
- AdS₃/CFT₂: dual boundary ops should have dims $\Delta = 2, 3$ and $\frac{5}{2}$ matching those of ops on the defect
- correlators of $X^{I} = (x^{i}, y^{a})$ in inverse eff tension expansion

$$T_2 = a^3 T_2 = \frac{2}{\pi} N \quad (a = \text{radius of AdS}_7)$$

define large *N* limit of 6d correlators of $\mathcal{O}_I = (\mathbb{H}_{12i}, \Phi_a)$ on defect

$$\left\langle \mathcal{O}(\vec{x}_1)\cdots\mathcal{O}(\vec{x}_n)\right\rangle = \left\langle X(\vec{x}_1)\cdots X(\vec{x}_n)\right\rangle_{\mathrm{AdS}_3}$$

• cf. WL in $\mathcal{N} = 4$ SYM: there can also compute weak-coupling expansion of correlators on gauge side but not in (2,0) 6d theory lacking intrinsic definition; can mimic in abelian 6d tensor multiplet [Gustavsson 04] $\langle D^i(\vec{x}_1)D^j(\vec{x}_2) \rangle \sim \frac{1}{|\vec{x}_{12}|^6}$

Membrane action in $AdS_7 \times S^4$

M2-brane in AdS₇ × S⁴ dual to theory on N M5's $ds^2 = a^2 [ds^2_{AdS_7} + \frac{1}{4}ds^2_{S^4}]$, $a^3 = 8\pi N\ell_P^3$ $F_4 = \pi^2 a^3 \Omega_4$, $\int_{S^4} \Omega_4 = 1$, $\operatorname{vol}(S^4) = \frac{8\pi^2}{3}$ $S = S_1 + S_2$: $S_1 = T_2 \int d^3x \sqrt{\det h_{\mu\nu}}$, $h_{\mu\nu} = \partial_{\mu} X^M \partial_{\nu} X^N G_{MN}(X)$ $S_2 = -iT_2 \int d^3x \frac{1}{3!} \epsilon^{\mu\nu\lambda} C_{MNK}(X) \partial_{\mu} X^M \partial_{\nu} X^N \partial_{\lambda} X^K$ $T_2 = (2\pi)^{2/3} (2\kappa_{11}^2)^{-1/3} = \frac{1}{(2\pi)^2 \ell_P^3}$ • M2 solution: ending on R^2 or S^2 , induced AdS₃ geometry (cf. M2 intersecting stack of M5 over 2-plane is $\frac{1}{2}$ -BPS)

• effective tension (cf. $T_1 = \frac{a^2}{2\pi \alpha'} = \frac{\sqrt{\lambda}}{2\pi}$ for string in AdS₅ × S⁵)

$$T_2 = a^3 T_2 = \frac{2}{\pi} N$$

• quantum M2 brane corrections: $\frac{1}{N}$ corrections in (2,0) CFT₆

• *p*-brane in AdS_{d+1} with world volume ending along a *p*-plane

$$ds_{d+1}^2 = \frac{(1+\frac{1}{4}x^2)^2}{(1-\frac{1}{4}x^2)^2} ds_{p+1}^2 + \frac{dx^i dx^i}{(1-\frac{1}{4}x^2)^2}, \qquad ds_{p+1}^2 = \frac{1}{z^2} (dz^2 + dx^v dx^v)$$

 $v = 1, \dots, p$ and $i = 1, \dots, d - p$. minimal surface ending on *p*-plane at the boundary

$$\mathbf{x}^v = x^v$$
, $\mathbf{z} = z$, $\mathbf{x}^i = 0$, $ds_{p+1}^2 = rac{1}{z^2}(dz^2 + dx^v dx^v) \equiv g_{\mu
u}(x)dx^\mu dx^
u$

• static gauge in the *p*-brane action in $AdS_{d+1} \times S^n$

$$S_1 = T_p \int d^{p+1}x \sqrt{\det\left[\frac{(1+\frac{1}{4}x^2)^2}{(1-\frac{1}{4}x^2)^2}g_{\mu\nu} + \frac{\partial_{\mu}x^i\partial_{\nu}x^i}{(1-\frac{1}{4}x^2)^2} + \frac{\partial_{\mu}y^a\partial_{\nu}y^a}{(1+y^2)^2}\right]}$$

• expand in powers of fluctuations x^i and y^a

$$L = L_2 + L_{4x} + L_{2x,2y} + L_{4y} + \dots$$

$$L_2 = \frac{1}{2} \left[g^{\mu\nu} \partial_\mu x^i \partial_\nu x^i + (p+1) x^i x^i \right] + \frac{1}{2} g^{\mu\nu} \partial_\mu y^a \partial_\nu y^a$$

$$\begin{split} L_{4x} &= \frac{1}{8} (g^{\mu\nu} \partial_{\mu} x^{i} \partial_{\nu} x^{j})^{2} - \frac{1}{4} (g^{\mu\nu} \partial_{\mu} x^{i} \partial_{\nu} x^{j}) (g^{\rho\kappa} \partial_{\rho} x^{i} \partial_{\kappa} x^{j}) \\ &+ \frac{1}{4} p x^{i} x^{i} g^{\mu\nu} \partial_{\mu} x^{j} \partial_{\nu} x^{j} + \frac{1}{8} (p+1)^{2} x^{i} x^{i} x^{j} x^{j} , \\ L_{2x,2y} &= \frac{1}{4} (g^{\mu\nu} \partial_{\mu} x^{i} \partial_{\nu} x^{i}) (g^{\rho\kappa} \partial_{\rho} y^{a} \partial_{\kappa} y^{a}) - \frac{1}{2} (g^{\mu\nu} \partial_{\mu} x^{i} \partial_{\nu} y^{a}) (g^{\rho\kappa} \partial_{\rho} x^{i} \partial_{\kappa} y^{a}) \\ &+ \frac{1}{4} (p-1) x^{i} x^{i} g^{\mu\nu} \partial_{\mu} y^{a} \partial_{\nu} y^{a} , \\ L_{4y} &= -y^{b} y^{b} g^{\mu\nu} \partial_{\mu} y^{a} \partial_{\nu} y^{a} + \frac{1}{8} (g^{\mu\nu} \partial_{\mu} y^{a} \partial_{\nu} y^{a})^{2} - \frac{1}{4} (g^{\mu\nu} \partial_{\mu} y^{a} \partial_{\nu} y^{b}) (g^{\rho\kappa} \partial_{\rho} y^{a} \partial_{\kappa} y^{b}) \\ \text{string: } p = 1, \ d = 4, \ n = 5; \ \text{here } p = 2, \ d = 6, \ n = 4 \\ \text{get } 4 \ \text{AdS}_{7} x^{i} \ \text{with } m^{2} = 3 \ \text{and } S^{4} y^{a} \ \text{with } m^{2} = 0 \ \text{in } g_{\mu\nu} = \ \text{AdS}_{3} \\ \bullet \ \text{AdS}_{7} \times S^{4} \ \text{supermembrane action} \rightarrow 8 \times 3d \ \text{fermions with } m = \frac{3}{2} \\ \bullet \ WZ \ \text{term in } M2 \ \text{action} (Y^{A} Y^{A} = 1, \ A = 1, ..., 5; \ Y^{5} = \frac{1-y^{2}}{1+y^{2}}, \ Y^{a} = \frac{\frac{1}{2}y^{a}}{1+y^{2}}) \\ S_{2} &= -iT_{2} \int C_{3} = -\frac{iN}{32\pi} \int d^{4}x \ \epsilon_{ABCDE} \epsilon^{\mu\nu\lambda\rho} Y^{A} \partial_{\mu} Y^{B} \partial_{\nu} Y^{C} \partial_{\lambda} Y^{D} \partial_{\rho} Y^{E} \\ \bullet \ \text{topological } WZ \ \text{term should not be renormalized} \\ S_{1} &= \frac{N}{\pi} \int d^{3}x \ \sqrt{g} \ g^{\mu\nu} \partial_{\mu} y^{a} \partial_{\nu} y^{a} + \ldots \\ S_{2} &= -\frac{iN}{2\pi} \int d^{3}x \ \epsilon^{\mu\nu\lambda} \ \epsilon_{abcd} \ y^{a} \partial_{\mu} y^{b} \partial_{\nu} y^{c} \partial_{\lambda} y^{d} + \ldots \\ S_{2} &= -\frac{iN}{2\pi} \int d^{3}x \ \epsilon^{\mu\nu\lambda} \ \epsilon_{abcd} \ y^{a} \partial_{\mu} y^{b} \partial_{\nu} y^{c} \partial_{\lambda} y^{d} + \ldots \end{aligned}$$

- use this action to compute correlation functions as in AdS_2/CFT_1 case
- recent progress: [Drukker, Probst, Trepanier 20; Meneghelli, Trepanier 22, ...]

1-loop M2 partition function \rightarrow defect conformal anomaly [Drukker, Giombi, Zhou, AT 2020]

example of quantum M2 brane computation (cf. below)

• fluctuation dets near AdS₃ M2 solution with S^2 as boundary

$$F_{1-\text{loop}} = -\log Z = \frac{1}{2} \left[4\log \det(-\nabla^2 + 3) + 4\log \det(-\nabla^2) - 8\log \det \Delta_{\frac{1}{2}} \right]$$

no bulk log UV div in 3d, F_{1-loop} finite in analytic regularization

$$F_0^{(\Delta)} = \frac{1}{2} \log \det(-\nabla^2 + m^2) \Big|_{m^2 = \Delta(\Delta - 2)} = -\frac{(\Delta - 1)^3}{12\pi} \operatorname{vol}(\operatorname{AdS}_3)$$
$$F_{\frac{1}{2}}^{(\Delta)} = \frac{1}{2} \log \det(-\nabla^2 + \frac{1}{4}R + m^2) \Big|_{m=\Delta - 1} = -\frac{(\Delta - 1)}{12\pi} \left[\Delta(\Delta - 2) + \frac{1}{4} \right] \operatorname{vol}(\operatorname{AdS}_3)$$

• introduce IR cutoff R for AdS₃ with S² boundary:

$$vol(AdS_3) = -2\pi \log R$$
$$F_{1-loop} = 4F_0^{(\Delta=3)} + 4F_0^{(\Delta=2)} - 8F_{1/2}^{(\Delta=5/2)} = 3\log R$$

• tree-level + 1-loop eff action: $F = F_{\text{tree}} + F_{1-\text{loop}}$

$$F_{\text{tree}} = T_2 \text{vol}(\text{AdS}_3) = -2\pi T_2 \log R = -4N \log R$$

• coeff of log R is a conformal anomaly coefficient in defect CFT [surface defects: in general 3 conf anom coeffs [Schwimmer, Theisen 08] only one if *S*² defect]

$$F \equiv -b \log R$$
, $b = 2\pi T_2 - 3 + \mathcal{O}(T_2^{-1}) = 4N - 3 + \mathcal{O}(N^{-1})$

consistent with result of [Estes et al 18; Jensen et al 18] from entanglement entropy for "bubbling" M5-M2 geometry with M2-branes corresp to ¹/₂-BPS surface defect operator in (2,0) theory in large *su*(*N*) rep
interpolating to case of single M2 suggests exact expression

$$b = (N-1)(4+N^{-1}) = 4N-3-N^{-1}$$

Wilson loop in ABJM theory and quantum M2 brane [Giombi, AT 23]

use localization to check AdS/CFT at non-planar level
special example of ¹/₂ BPS Wilson loop
→ learn about structure of string loops in AdS
match quantum M2-brane correction in AdS₄ × S⁷/ℤ_k

and ABJM theory localization result for WL

1-loop M2: sum of ∞ set of string loops in $AdS_4 \times CP^3$

 existence of quantum supermembrane theory open question: formally non-renormalizable but semiclassical 1-loop computations are ok: no log UV div at 1-loop in 3d
 [Duff, Inami, Pope, Sezgin, Stelle 88; Bergshoeff, Sezgin, Townsend 88; Forste 99; Drukker, Giombi, Zhou, AT 20]

• evidence that semiclassical quantization of M2 brane is under control and gives non-trivial check of AdS₄/CFT₃ beyond planar limit

Plan:

- localization results for WL in SYM and ABJM
- matching leading order string theory results
- higher genus strong coupling terms $\sum_{n} c_n (\frac{g_s^2}{T})^n$: exp $(c_1 \frac{g_s^2}{T})$ in SYM and $(\sin \frac{2\pi}{k})^{-1}$ in ABJM
- $(\sin \frac{2\pi}{k})^{-1}$ as 1-loop M2 brane contribution
- generalizations

 $\frac{1}{2}$ BPS circular WL in SYM and ABJM

• $\mathcal{N} = 4 \; SU(N) \; \text{SYM:} \qquad \mathcal{W} = \text{Tr } Pe^{\int (iA+\Phi)}$ Localization \rightarrow Gaussian matrix model: any $N, \; g_{\text{YM}}^2$ [Erickson, Semenoff, Zarembo 00; Drukker, Gross 01; Pestun 07]

$$\langle \mathcal{W} \rangle = e^{\frac{N-1}{8N}g_{\rm YM}^2} L_{N-1}^1 \left(-\frac{1}{4}g_{\rm YM}^2\right)$$
$$L_n^1(x) \equiv \frac{1}{n!} \frac{d^n}{dx^n} \left(x^n e^{-x}\right)$$

Large *N*, fixed $\lambda = Ng_{YM}^2$:

$$\langle \mathcal{W} \rangle = N \Big[\frac{2}{\sqrt{\lambda}} I_1(\sqrt{\lambda}) + \frac{\lambda}{48N^2} I_2(\sqrt{\lambda}) + \dots \Big]$$
$$\lambda \gg 1: \qquad \langle \mathcal{W} \rangle = \frac{N}{\lambda^{3/4}} \sqrt{\frac{2}{\pi}} e^{\sqrt{\lambda}} + \dots$$

• ABJM: 3d $\mathcal{N} = 6 U(N)_k \times U(N)_{-k} \text{CS} + \text{bi-fund matter}$ [Aharony, Bergman, Jafferis, Maldacena 08]

low-energy limit of *N* M2's on $\mathbb{C}^4/\mathbb{Z}_k$ $z_i \to e^{\frac{2\pi i}{k}} z_i, \quad i = 1, 2, 3, 4$ large *N*: dual to M-theory on AdS₄ × S⁷/ \mathbb{Z}_k

large *k* with $\lambda = \frac{N}{k}$ =fixed: perturbative type IIA string on AdS₄ × CP³ can define $\frac{1}{2}$ BPS circular WL localization \rightarrow matrix model: for any N, k > 2[Drukker, Marino, Putrov 10; Klemm, Marino, Schiereck, Sarouush 12]

$$\langle \mathcal{W} \rangle = \frac{1}{2 \sin \frac{2\pi}{k}} \frac{\operatorname{Ai} \left[(\frac{\pi^2}{2}k)^{1/3} \left(N - \frac{k}{24} - \frac{7}{3k} \right) \right]}{\operatorname{Ai} \left[(\frac{\pi^2}{2}k)^{1/3} \left(N - \frac{k}{24} - \frac{1}{3k} \right) \right]}$$

• large *N* at fixed *k* ("M-theory regime"):

$$\operatorname{Ai}(x)\Big|_{x\gg1} \simeq \frac{e^{-\frac{2}{3}x^{3/2}}}{2\sqrt{\pi}x^{1/4}} \sum_{n=0}^{\infty} \frac{(-\frac{3}{4})^n \Gamma(n+\frac{5}{6})\Gamma(n+\frac{1}{6})}{2\pi n! x^{3n/2}}$$

$$\langle \mathcal{W} \rangle = \frac{1}{2 \sin \frac{2\pi}{k}} e^{\pi \sqrt{\frac{2N}{k}}} \left[1 - \frac{\pi \left(k^2 + 32\right)}{24\sqrt{2} k^{3/2}} \frac{1}{\sqrt{N}} + \mathcal{O}(\frac{1}{N}) \right]$$

• $N, k \gg 1, \lambda = \frac{N}{k}$: 't Hooft expansion ("string theory regime"):

$$\langle \mathcal{W} \rangle = \frac{1}{2 \sin \frac{2\pi\lambda}{N}} e^{\pi\sqrt{2\lambda}} \left[1 - \frac{\pi}{24\sqrt{2}} \frac{1}{\sqrt{\lambda}} + \mathcal{O}(\frac{1}{N}) \right]$$
$$= \frac{N}{4\pi\lambda} e^{\pi\sqrt{2\lambda}} \left[1 + \dots \right]$$

• string in AdS₅ × S⁵ and AdS₄ × CP³: g_s and $T = \frac{L_{ads}^2}{2\pi\alpha'}$

SYM:
$$g_{\rm s} = \frac{g_{\rm YM}^2}{4\pi} = \frac{\lambda}{4\pi N}$$
, $T = \frac{\sqrt{\lambda}}{2\pi}$, $\lambda = g_{\rm YM}^2 N$
ABJM: $g_{\rm s} = \frac{\sqrt{\pi} (2\lambda)^{5/4}}{N}$, $T = \frac{\sqrt{\lambda}}{\sqrt{2}}$, $\lambda = \frac{N}{k}$

• $\langle \mathcal{W} \rangle$ as disk part f. of string near AdS₂ minimal surface

$$ds^2 = \frac{L_{ads}^2}{z^2} (dr^2 + r^2 d\phi^2 + dx_s dx_s + dz^2), \quad r = \sqrt{1 - z^2}$$

$$\langle \mathcal{W} \rangle = Z_{\text{str}} = \frac{1}{g_{\text{s}}} Z_{1} + \mathcal{O}(g_{\text{s}}) , \qquad Z_{1} = \int [dx] \dots e^{-T \int d^{2} \sigma \mathcal{L}}$$

$$\text{SYM}: \quad \langle \mathcal{W} \rangle = \sqrt{\frac{2}{\pi}} \frac{N}{\lambda^{3/4}} e^{\sqrt{\lambda}} + \dots = \frac{1}{2\pi} \frac{\sqrt{T}}{g_{\text{s}}} e^{2\pi T} + \dots$$

$$\text{ABJM}: \quad \langle \mathcal{W} \rangle = \frac{N}{4\pi\lambda} e^{\pi\sqrt{2\lambda}} + \dots = \frac{1}{\sqrt{2\pi}} \frac{\sqrt{T}}{g_{\text{s}}} e^{2\pi T} + \dots$$

universal form at strong coupling [Giombi, AT 20]

$$\langle \mathcal{W} \rangle = c_0 \frac{\sqrt{T}}{g_s} e^{2\pi T} \left[1 + \mathcal{O}(T^{-1}) \right] + \mathcal{O}(g_s)$$

$$c_0 = \frac{1}{(\sqrt{2\pi})^{d-3}}$$
, $d = 5, 4$

reason: dual string theories in $AdS_n \times M^{10-n}$ are similar

•
$$e^{2\pi T} = e^{-T \operatorname{vol}(\operatorname{AdS}_2)}$$
, $\operatorname{vol}(\operatorname{AdS}_2) = -2\pi$

[Berenstein, Corrado, Fischler, Maldacena 98]

• \sqrt{T} from universal dependence of Z_1 on L_{ads}

•
$$c_0 = \frac{1}{(\sqrt{2\pi})^{d-3}} = \frac{1}{\sqrt{2\pi}} \bar{c}_0, \quad Z_1 \sim \bar{c}_0$$

[Drukker, Gross, AT 00; Kruczenski, Tirziu 08; Buchbinder, AT 14; ...]

extra 1/√2π: sensitive to defn of GS
 path integral measure; implicitly checked in
 ratio of 1/2 and 1/4 BPS WL's [Medina-Rincon, Zarembo, AT 18]
 will be found directly in ABJM case

by quantum M2 brane computation

1-loop string partition function in $AdS_d \times M^{10-d}$ near AdS_2 minimal surface

$$\log Z_1 = -\frac{1}{2} \log \frac{[\det(-\nabla^2 + 2)]^{d-2} \, [\det(-\nabla^2)]^{10-d}}{[\det(-\nabla^2 + \frac{1}{2})]^{2d-2} \, [\det(-\nabla^2 - \frac{1}{2})]^{10-2d}}$$

$$\log Z_1 = B_2 \log(L_{ads} \Lambda) + \log \bar{c}_1$$
, $B_2 = \frac{1}{4\pi} \int d^2 \sigma \sqrt{g} R^{(2)} = \chi$

• $B_2 = \zeta_{tot}(0) = \chi$: universal dependence on L_{ads} Λ should cancel against GS string measure: $\Lambda \rightarrow \frac{1}{\sqrt{\alpha'}}$

$$Z_1 \sim (\sqrt{T})^{\chi}$$
, $(Z_1)_{\rm disk} \sim \sqrt{T}$, $T = \frac{L_{\rm ads}^2}{2\pi \alpha'}$

• from dets on disk (d = 5, 4): $\bar{c}_0 = \frac{1}{(\sqrt{2\pi})^{d-4}}$

Higher genus corrections: $\chi = 1 - 2h$

- disk with *h* handles: $g_s^{-1} \to g_s^{\chi}$, $\sqrt{T} \to (\sqrt{T})^{\chi}$
- thus prediction on string side:

$$\langle \mathcal{W} \rangle = e^{2\pi T} \sum_{h=0}^{\infty} c_h \left(\frac{g_s}{\sqrt{T}}\right)^{2h-1} \left[1 + \mathcal{O}(T^{-1})\right]$$

remarkably is consistent with form of $\frac{1}{N}$ terms on gauge side

• SYM: $N \gg 1$, then $\lambda \gg 1$

$$\langle \mathcal{W} \rangle = e^{\frac{(N-1)\lambda}{8N^2}} L^1_{N-1}(-\frac{\lambda}{4N}) = e^{\sqrt{\lambda}} \sum_{h=0}^{\infty} \frac{\sqrt{2}}{96^h \sqrt{\pi} h!} \frac{\lambda^{\frac{3}{4}(2h-1)}}{N^{2h-1}} \left[1 + \mathcal{O}(\frac{1}{\sqrt{\lambda}}) \right]$$

•
$$\frac{g_s}{\sqrt{T}} \sim \frac{\lambda^{\frac{3}{4}}}{N}$$
 appears as expansion parameter

• from gauge theory: $c_h = \frac{1}{2\pi h!} \left(\frac{\pi}{12}\right)^h$, $c_0 = \frac{1}{2\pi}$

• large $T = \frac{\sqrt{\lambda}}{2\pi}$ terms at each order in $g_s = \frac{\lambda}{N}$: [Drukker, Gross]

$$\langle \mathcal{W} \rangle = W_1 e^H \left[1 + \mathcal{O}(T^{-1}) \right], \qquad W_1 = \frac{1}{2\pi} \frac{\sqrt{T}}{g_s} e^{2\pi T}$$

$$H \equiv \frac{\pi}{12} \, \frac{g_{\rm s}^2}{T} = \frac{1}{96\pi} \, \frac{\lambda^{3/2}}{N^2}$$

conjectured interpretation: "handle operator"

• computing even 1-loop (torus) string correction is challenge

but will derive analog of $\exp(\frac{\pi}{12} \frac{g_s^2}{T})$ from quantum M2 in ABJM

 $\frac{1}{N}$ expansion of $\frac{1}{2}$ BPS WL in ABJM

• in both $AdS_5 \times S^5$ and $AdS_4 \times CP^3$ universal form of expansion in small g_s , large *T*

$$\langle \mathcal{W} \rangle = e^{2\pi T} \frac{\sqrt{T}}{g_{s}} \left(c_{0} + \mathcal{O}(T^{-1}) + \frac{g_{s}^{2}}{T} \left[c_{1} + \mathcal{O}(T^{-1}) \right] + ... \right)$$

• ABJM: $\frac{g_{s}^{2}}{T} \sim \frac{\lambda^{2}}{N^{2}} = \frac{1}{k^{2}}$, corrections $T^{-1} \sim \frac{\sqrt{k}}{\sqrt{N}}$
exp of leading terms? no – from localization: $\frac{1}{\sin \frac{2\pi}{k}}$

$$\begin{split} \langle \mathcal{W} \rangle &= \frac{1}{2 \sin \frac{2\pi}{k}} e^{\pi \sqrt{\frac{2N}{k}}} \Big[1 + \mathcal{O}(\frac{1}{\sqrt{N}}) \Big] \\ &= \frac{1}{2 \sin \left(\sqrt{\frac{\pi}{2}} \frac{g_{\rm s}}{\sqrt{T}}\right)} e^{2\pi T} \Big[1 + O(T^{-1}) \Big], \quad \sqrt{\frac{\pi}{2}} \frac{g_{\rm s}}{\sqrt{T}} = \frac{2\pi\lambda}{N} = \frac{2\pi}{k} \\ &\frac{1}{2 \sin \left(\sqrt{\frac{\pi}{2}} \frac{g_{\rm s}}{\sqrt{T}}\right)} = \frac{\sqrt{T}}{\sqrt{2\pi}g_{\rm s}} \left[1 + \frac{\pi}{12} \frac{g_{\rm s}^2}{T} + \frac{7\pi^2}{1440} \left(\frac{g_{\rm s}^2}{T}\right)^2 + \ldots \right] \end{split}$$

Main claim: $\frac{1}{\sin \frac{2\pi}{k}}$ comes from

1-loop M2 contribution on $AdS_4 \times S^7 / \mathbb{Z}_k$

• large *N*, fixed *k*:

 $rac{1}{2}$ BPS WL described by M2-brane on AdS₂ × S¹

 $e^{-S_{M2}} = e^{\pi \sqrt{\frac{2N}{k}}}$ from classical M2 action

• 1-loop M2 correction $\rightarrow Z_1 = \frac{1}{\sin \frac{2\pi}{k}}$

• leading quantum M2 correction on $AdS_4 \times S^7 / \mathbb{Z}_k$ describes large *T* terms at all orders in g_s in IIA string theory on $AdS_4 \times CP^3$, i.e.

• highly non-trivial check of AdS_4/CFT_3 duality to all orders in $\frac{1}{N}$

Review of basics

$$S_{11} = \frac{1}{2\kappa_{11}^2} \int d^{11}x \sqrt{-G} \left(R - \frac{1}{2 \cdot 4!} F_{mnk\ell} F^{mnk\ell} + \cdots \right)$$

M2 action in 11d background [Bergshoeff, Sezgin, Townsend 87]

$$S_{\rm M2} = T_2 \int d^3\sigma \left[\sqrt{-\det g_{mn}} + \hat{C}_3 \right]$$

 $g_{mn} = G_{MN}(x) \Pi_m^M \Pi_n^N + \dots, \quad \hat{C}_3 = \frac{1}{6} \epsilon^{mnk} C_{MNK}(x) \Pi_m^M \Pi_n^N \Pi_k^K$ $\Pi_m^M = \partial_m x^M - i\bar{\theta}\Gamma^M \partial_m \theta, \qquad x^M = x^M(\sigma)$

$$2\kappa_{11}^2 = (2\pi)^8 \,\ell_P^9 \,, \qquad T_2 = (\frac{2\pi^2}{\kappa_{11}^2})^{1/3} = \frac{1}{(2\pi)^2 \ell_P^3}$$

$$ds_{11}^2 = e^{-\frac{2}{3}\phi} ds_{10}^2 + e^{\frac{4}{3}\phi} (dx_{11} + e^{-\phi}A)^2, \qquad x_{11} \sim x_{11} + 2\pi \bar{R}_{11}$$
$$g_s = e^{\phi}; \qquad R_{11} = g_s^{2/3} \bar{R}_{11}; \qquad 2\kappa_{10}^2 = (2\pi)^7 g_s^2 \alpha'^4$$

• M2 wrapped on $x_{11} \rightarrow \text{string}$ [Duff, Howe, Inami, Stelle 87]

$$T_2 = \frac{1}{(2\pi)^2 \,\ell_P^3}, \qquad T_1 = 2\pi \,\bar{R}_{11} \,T_2 = \frac{1}{2\pi\alpha'}$$

• 11d M2-brane solution [Duff, Stelle 90] $\rightarrow AdS_4 \times S^7$

$$ds_{11}^{2} = L^{2} \left(\frac{1}{4} ds_{AdS_{4}}^{2} + ds_{S^{7}}^{2} \right), \quad F_{4} = dC_{3} \sim \hat{N} \epsilon_{4},$$
$$\left(\frac{L}{\ell_{P}} \right)^{6} = 32\pi^{2}N$$

• M2 on orbifold: $AdS_4 \times S^7 / \mathbb{Z}_k$, $N \to Nk$

• S^7 as S^1 fibration over \mathbb{CP}^3 and \mathbb{Z}_k quotient

$$ds_{S^7}^2 = ds_{{\rm CP}^3}^2 + \frac{1}{k^2} (d\varphi + kA)^2$$
, $\varphi \equiv \varphi + 2\pi$

$$\begin{aligned} ds_{\mathrm{CP}^3}^2 &= \left[\frac{\delta_{sr}}{1+|w|^2} - \frac{w_s \bar{w}_r}{(1+|w|^2)^2}\right] dw^s d\bar{w}^r \\ dA &= i \left[\frac{\delta_{sr}}{1+|w|^2} - \frac{w_s \bar{w}_r}{(1+|w|^2)^2}\right] dw^r \wedge d\bar{w}^s \\ R_{11} &= \frac{\mathrm{L}}{k} , \qquad \frac{\mathrm{L}}{\ell_P} = (32\pi^2 Nk)^{1/6} \\ ds_{10}^2 &= L^2 \left(\frac{1}{4} ds_{AdS_4}^2 + ds_{\mathrm{CP}^3}^2\right), \qquad L = g_{\mathrm{s}}^{1/3} \mathrm{L} \\ g_{\mathrm{s}} &= \left(\frac{\mathrm{L}}{k \, \ell_P}\right)^{3/2} = \frac{\sqrt{\pi} \, (2\lambda)^{5/4}}{N} , \qquad \lambda = \frac{N}{k} \end{aligned}$$

$$T = \frac{L_{\text{ads}}^2}{2\pi\alpha'} = g_s^{2/3} \frac{L^2}{8\pi\alpha'} = \frac{\sqrt{\lambda}}{\sqrt{2}}, \qquad \frac{g_s^2}{8\pi T} = \frac{\lambda^2}{N^2} = \frac{1}{k^2}$$

• M-theory expansion:
$$\frac{L}{\ell_P} \gg 1$$

 $T_2 \equiv T_2 L^3 = \frac{1}{(2\pi)^2} \frac{L^3}{\ell_P^3} = \frac{1}{\pi} \sqrt{2kN} \gg 1$
or large *N* for fixed *k*

• $\frac{1}{2}$ BPS WL: probe M2 brane intersecting AdS₄ boundary (multiple M2's) over line or circle

- compute M2 partition function for $T_2 \gg 1$ compare to large *N*, fixed *k* expansion of $\langle W \rangle$
- AdS₂ × S¹ M2 solution dual $\frac{1}{2}$ -BPS Wilson loop: wrapping S_{φ}^{1} of S^{7}/\mathbb{Z}_{k} and AdS₂ of AdS₄

$$S_{M2} = \frac{1}{4} T_2 \frac{2\pi}{k} \operatorname{vol}(AdS_2) = -\pi \sqrt{\frac{2N}{k}}$$
$$e^{-S_{M2}} \text{ matches leading factor in } \langle \mathcal{W} \rangle$$

1-loop M2 brane partition function

- expand M2 action near $AdS_2 \times S^1$ solution fix 3d diff and κ -symm gauges \rightarrow 8+8 3d fluctuations
- spectrum of fluctuations [Sakaguchi, Shin, Yoshida 10] in static gauge: M2 coordinates

 $\sigma_1, \sigma_2 = \text{AdS}_2 \text{ directions}; \ \sigma_3 = \varphi$

- KK expansion of 3d fields in $\sigma_3 = (0, 2\pi)$: tower ($n = 0, \pm 1, ...$) of B+F 2d fields on AdS₂
- bosonic fluctuations in 2 \perp AdS₄ directions: tower of complex scalars η_n

$$m_{\eta_n}^2 = \frac{1}{4}(kn-2)(kn-4)$$
, $n \in \mathbb{Z}$

• fluctuations of CP³ directions: 3 complex ζ_n^s (s = 1, 2, 3)

$$m_{\zeta_n^s}^2 = \frac{1}{4}kn(kn+2)$$
 ,

• fermions: tower of 8 two-component spinors

 $m_{\vartheta_{n}^{a}} = \frac{1}{2}kn \pm 1 (3+3 \text{ modes}), \quad m_{\vartheta_{n}^{i}} = \frac{1}{2}kn (2 \text{ modes})$

- string limit k → ∞: n ≠ 0 modes decouple
 n = 0: same as 2d string fluctuations around AdS₂
 in IIA superstring on AdS₄ × CP³:
 B: 2 of m² = 2; 6 of m² = 0;
 F: 3+3 of m = ±1 and 2 of m = 0
 spectrum consistent with 2d susy: AdS₂ N = 1 multiplets
- scalar + Majorana fermion $m_B^2 = m_F(m_F 1)$

• 1-loop M2 partition function on $AdS_2 \times S^1$: $T_2 = L^3 T_2$

$$Z_{M2} = Z_1 e^{-S_{M2}} \left[1 + \mathcal{O}\left(\frac{1}{T_2}\right) \right], \qquad S_{M2} = -\frac{\pi}{k} T_2$$

$$Z_1 = \prod_{n=-\infty}^{\infty} \mathcal{Z}_n$$
, $\mathcal{Z}_0 = \mathrm{AdS}_4 \times \mathrm{CP}^3$ string on AdS_2

$$\mathcal{Z}_{n} = \frac{\left[\det\left(-\nabla^{2} - \frac{1}{2} + (\frac{kn}{2} + 1)^{2}\right)\right]^{\frac{3}{2}} \left[\det\left(-\nabla^{2} - \frac{1}{2} + (\frac{kn}{2} - 1)^{2}\right)\right]^{\frac{3}{2}} \det\left(-\nabla^{2} - \frac{1}{2} + (\frac{kn}{2})^{2}\right)}{\det\left(-\nabla^{2} + \frac{1}{4}(kn - 2)(kn - 4)\right) \left[\det\left(-\nabla^{2} + \frac{1}{4}kn(kn + 2)\right)\right]^{3}}$$

• compute dets by spectral zeta-function in AdS₂ [Drukker, Gross, AT 00; Buchbinder, AT 14]

$$\begin{split} &\Gamma_1 = \frac{1}{2} \log \det(-\nabla^2 + m^2) = -\frac{1}{2} \zeta(0; m^2) \log \Lambda^2 - \frac{1}{2} \zeta'(0; m^2) \\ &\zeta_B(0; m_B^2) = \frac{m_B^2}{2} + \frac{1}{6} \\ &\zeta_B'(0; m_B^2) = -\frac{1}{12} (1 + \log 2) - \int_0^{m_B^2 + \frac{1}{4}} dx \; \psi(\sqrt{x} + \frac{1}{2}) \\ &\zeta_F(0; m_F) = -\frac{m_F^2}{2} + \frac{1}{12} \\ &\zeta_F'(0; m_F) = -\frac{1}{6} + 2 \log A + |m_F| + \int_0^{m_F^2} dx \; \psi(\sqrt{x}) \end{split}$$

• cancellation of log UV ∞ in $\Gamma_1 = -\log Z_1$:

$$\zeta_{\text{tot}}(0) = \frac{1}{2} \sum_{n \in \mathbb{Z}} \left(-2 + 4 \right) = \sum_{n \in \mathbb{Z}} 1 = 1 + 2\zeta_R(0) = 0$$

contribution of all $n \neq 0$ massive KK modes cancels log UV div of AdS₄ × CP³ string (n = 0)

- cancellation was to be expected: no 1-loop log UV div in 3d theory
- *Z*¹ is thus finite:

$$\Gamma_1 = -\log Z_1 = -\frac{1}{2}\zeta'_{\text{tot}}(0)$$
, $\zeta'_{\text{tot}}(0) = \sum_{n=-\infty}^{\infty} \zeta'_{\text{tot}}(0;n)$

$$\begin{aligned} \zeta_{\text{tot}}'(0;n) &= 2\zeta_B' \left(0; \frac{1}{4} (kn-2)(kn-4) \right) + 6\zeta_B' \left(0; \frac{1}{4} kn(kn+2) \right) \\ &+ 3\zeta_F'(0; \frac{kn}{2} + 1) + 3\zeta_F'(0; \frac{kn}{2} - 1) + 2\zeta_F'(0; \frac{kn}{2}) \end{aligned}$$

• combining B and F: remarkable simplifications n = 0 string contribution =0 [Giombi, AT 20]; for n > 0:

$$\zeta'_{\text{tot}}(0;n) + \zeta'_{\text{tot}}(0;-n) = -2\log(\frac{k^2n^2}{4}-1)$$
, $k > 2$

$$\Gamma_{1} = \sum_{n=1}^{\infty} \log\left(\frac{k^{2}n^{2}}{4} - 1\right) = 2\sum_{n=1}^{\infty} \log\frac{kn}{2} + \sum_{n=1}^{\infty} \log\left(1 - \frac{4}{k^{2}n^{2}}\right)$$
$$\zeta_{R}(0) = -\frac{1}{2}, \qquad \zeta_{R}'(0) = -\frac{1}{2}\log(2\pi):$$
$$2\sum_{n=1}^{\infty} \log\frac{kn}{2} = -\log\frac{k}{4\pi}$$
• Euler's relation: $\sin \pi x = \pi x \prod_{n=1}^{\infty} (1 - \frac{x^{2}}{n^{2}})$
$$\sum_{n=1}^{\infty} \log(1 - \frac{k}{2}) = 1 = \left[\sum_{n=1}^{\infty} (1 - \frac{k}{2})\right] = 1 = \left(\frac{k}{2} + \frac{2\pi}{2}\right)$$

$$\sum_{n=1} \log \left(1 - \frac{4}{k^2 n^2} \right) = \log \left[\prod_{n=1} \left(1 - \frac{4}{k^2 n^2} \right) \right] = \log \left(\frac{\kappa}{2\pi} \sin \frac{2\pi}{k} \right)$$

• final result for k > 2 in precise agreement with localization

$$Z_1 = e^{-\Gamma_1} = \frac{1}{2\sin\frac{2\pi}{k}}$$

• final result $\Gamma_1 = \sum_{n=1}^{\infty} \log \left(\frac{k^2 n^2}{4} - 1\right)$ same as log of 1d determinant or contribution of loop of particle in inverted harmonic potential on circle $s \equiv s + 2\pi$

$$\Gamma = \frac{1}{2} \log \det' \left(-\frac{k^2}{4} \frac{d^2}{ds^2} - 1 \right) = \sum_{n=1}^{\infty} \log \left(\frac{k^2}{4} n^2 - 1 \right)$$

of all 2d fluctuation modes of M2 only 1 bosonic 1d mode survives after B-F cancellations deeper reason? (cf. localization)

• note: Riemann ζ_R used above is standard way to define 1d determinants in QM path integral

• cases of k = 1, 2 require a separate treatment:

$$\Gamma_1^{k=1} = \log 4$$
, $Z_1^{k=1} = \frac{1}{4}$
 $\Gamma_1^{k=2} = 0$, $Z_1^{k=2} = 1$

localization result for $\langle W \rangle$ is singular for k = 1, 2 may need reconsideration (cf. susy $\mathcal{N} = 6 \rightarrow 8$)

Generalizations and open problems

• $\frac{1}{\sqrt{N}}$ corrections: from higher M2 loops

expansion in effective M2 tension $T_2^{-1} = \frac{\pi}{\sqrt{2k}} \frac{1}{\sqrt{N}}$

$$\begin{split} \langle \mathcal{W} \rangle &= \frac{1}{2 \sin \frac{2\pi}{k}} e^{\pi \sqrt{\frac{2N}{k}}} \Big[1 - \frac{\pi (k^2 + 32)}{24\sqrt{2} k^{3/2}} \frac{1}{\sqrt{N}} + \mathcal{O}(\frac{1}{N}) \Big] \\ &= \frac{1}{2 \sin \frac{2\pi}{k}} e^{\frac{\pi^2}{k} T_2} \Big[1 - \frac{k^2 + 32}{24k} \frac{1}{T_2} + \mathcal{O}(\frac{1}{T_2^2}) \Big] \end{split}$$

• $\frac{1}{\sqrt{N}}$ ~ 2-loop M2 contribution UV finite despite apparent non-renormalizability? • analogy: GS string in $AdS_5 \times S^5$ is formally non-renormalizable but 2-loop $\frac{1}{\sqrt{\lambda}}$ correction to cusp anom dim is finite: $E - S = f(\lambda) \log S$ $f(\lambda) = a_0 \sqrt{\lambda} + a_1 + \frac{a_2}{\sqrt{\lambda}} + ...$ [Roiban, AT 07; Giombi, Ricci, Roiban, Vergu, AT 10] matches $f(\lambda)$ in SYM [Basso, Korchemsky, Kotanski 07]

- similar 2-loop result in $AdS_4 \times CP^3$ string case also UV finite [Bianchi, Bianchi, Bres, Forini, Vescovi 14]
- conjecture: UV div cancel also at higher M2 loops

• GS in $AdS_5 \times S^5$ or $AdS_4 \times CP^3$ constrained by integrability; hidden symmetry also in M2 theory?

• generalization to $\frac{1}{6}$ -BPS Wilson loop: from localization [Klemm et al 12]

$$\langle W_{\frac{1}{6}} \rangle = \frac{i}{2\sin\frac{2\pi}{k}} \sqrt{\frac{2N}{k}} e^{\pi\sqrt{\frac{2N}{k}}} (1+\dots)$$

origin of $\sqrt{\frac{2N}{k}}$ as in string case [Drukker, Plefka, Young 08] solution smeared over CP¹ in CP³: 0-modes $(\sqrt{T})^2 \sim \sqrt{\lambda}$

M2: should also be smeared: $T_2 \sim \sqrt{N}$ study fluctuations to get prefactor

• defect CFT defined by $\frac{1}{2}$ -BPS WL

as in $AdS_5 \times S^5$ or SYM case [Giombi, Roiban, AT 17]

or in $AdS_7 \times S^4$ or (2,0) 6d case [Drukker, Giombi, Zhou, AT 20]

• studied in string $AdS_4 \times CP^3$ regime: $N, k \gg 1, \lambda = \frac{N}{k}$ [Bianchi, Bliard, Forini, Griguolo, Seminara 20;

Gorini, Griguolo, Guerrini, Penati, Seminara, Soresina 22]

- M-theory regime of large N, fixed k limit:
- 1d defect: M2 on $AdS_2 \times S^1$
- 2d defect: M2 on AdS_3
- defect CFT interpretation of higher KK modes? correlators?
- conf anomaly of S^2 defect in 3d ABJM theory

 $\Gamma_{\text{tree}+\text{loop}} = -b \operatorname{vol}(\operatorname{AdS}_3), \quad b = b_0 \sqrt{N} + b_1 + O(\frac{1}{\sqrt{N}})$ $b_0 = \pi \sqrt{\frac{2}{k}}, \quad b_1 = k\text{-independent number}$ • Lesson: take quantum M2 brane seriously use it to derive 1/N strong coupling corrections to non-BPS observables not known from localization or integrability

• example: cusp anom dim in ABJM

at strong coupling beyond planar limit [Giombi, AT]

$$f(\lambda, N) = \sqrt{2\lambda} - \frac{5}{2\pi} \log 2 + q_1(k) + \mathcal{O}(\frac{1}{\sqrt{\lambda}})$$
$$q_1 = \frac{2\pi}{3k^2} + \frac{2\pi^3}{45k^4} + \dots = \frac{2\pi\lambda^2}{3N^2} + \frac{2\pi^3\lambda^4}{45N^4} + \dots$$

• similar recent computation of M2 brane instanton contribution to free energy of ABJM theory on S^3 [Beccaria, Giombi, AT 23] generalizing string computation in AdS₄ × CP³ [Gautason, Puletti, van Muiden 23]