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Outline

» Intro/Motivation
» Line defects in fermionic CFTs

1. Show the existence of a nontrivial defect IR fixed point
2. Calculate DCFT data
3. Check consistency with the g-theorem
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Introduction
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Conformal defect definition

A conformal defect is a non-local observable that preserves a
subgroup of the conformal group. In a d-dimensional space with a
p-dimensional defect, the full conformal group is broken to

SO(d+1,1) = SO(p +1,1) x SO(d — p)

Special cases
» Line defect: p=1
» Infinite straight line, circular defect, Wilson lines, ...

» Boundary or interface theory: p =d — 1
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General properties of conformal defects

» Local excitations emerge in the presence of the line defect

» Can have an RG flow along the defect while the bulk remains
at the same critical point

» Displacement operator present due to broken translational
invariance perpendicular to defect

0,T" (z) = D'(1)8%(x)

» For p-dimensional defect, displacement operator has protected
dimension p + 1
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General properties of conformal defects

» Bootstrap program for defect CFT based on crossing symmetry
between bulk channel and defect channel decomposition

I QD VR M.

» Several developments in recent years [Liendo, Rastelli, van Rees *12,

Bill6, Goncalves, Lauria, Meineri ’ 16, Lauria, Meineri, Trevisani *17 and 18,

Lemos, Liendo, Meineri, Sarkar *17]
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Gross-Neveu universality class

» Gross-Neveu (GN) with Ny Dirac fermions, each with
cq = 214/2] components

§=— / d'e (T o0 + 9 (W0)?)

»> U(Ny) symmetry
» Gross-Neveu-Yukawa (GNY)

2
S = /ddm <(8’“‘2‘9) — (Ui - O + g1s0;0") + 29254>

» “UV-complete” form of GN
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Gross-Neveu universality class

» Universality: Same CFT describes

GN UV fixed point at d =2+ ¢
GNY IR fixed point at d =4 — ¢

» Admits large IV expansion for general d € (2,4)

> Starting with GN description, use Hubbard-Stratonovich
auxiliary field o to trade four-fermi interaction for o¥; ¥

_ . 1 _ ] o2
S = —/ddx (xp COU 4+ —— o0, U — )
K VN 29N
» Physical relevance: GNY-type model proposed to describe
semi-metal to insulator transition in Hubbard model [Herbut
0606195] [Assaad, Herbut 1304.6340]
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Computing defect IR fixed point
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Setting up the line defect

The infinite straight line defect we consider is realized by
integrating an operator along a line

o0

Sdefect = SCFT + h/ dTO(T, X)

—0o0

» If O has scaling dimension slightly less than 1, h is weakly

relevant so we can hope to find a flow from the UV (h =0) t

an IR theory (h = hy)

» Similar setup considered in [Allais, Sachdev 1406.3022][Cuomo,
Komargodski, Mezei 2112.10634], with localized magnetic field in
O(N)

10/35



Line defect in Gross-Neveu

Gross-Neveu at large N

S = —/ddl‘ (‘Ifw O + \/lﬁa\lfillli>

N PLC))
Ay =1+

+ O(1/N?)
fi(d) <0 for d € (2,4)

Because f1(d) is negative, A, is slightly less than 1, so the
following term is weakly relevant

h / dro(r,x = 0)

11/35



Line defect in Gross-Neveu-Yukawa

Gross-Neveu-Yukawa model

2
S = /ddx <(8“28) — (\Tlfy LU+ gls\ilillli) + 3234>

3e
N+6

Ay is slightly less than 1, so the following term is weakly relevant

Ag=1- +O(e?)

h/de(T,x =0)
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Defect fixed points

» Use minimal subtraction scheme to renormalize defect
coupling. E.g., for GNY

oh
ho = M¢/? <h+€+...>

» Find 0h by requiring (s(z)) or (o(x)) to be finite
» Find (3;, as usual by requiring hg to be independent of
renormalization scale M

Oho

MW:0:#+#Bh+#5gl+#5gz

» g, and By, known from ordinary GNY, unchanged by presence
of defect
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Defect fixed points

» In both GN and GNY the defect fixed point h, is not
perturbatively small but O(1)

» Defect fixed points in GNY ind =4 — ¢

2 _{ 0 UV DCFT

108
6—N-++VN2+132N+36 + O(E) IR DCFT

» Defect fixed points in GN at large N

0 UV DCFT

2 d+57r§(d—3) _ _ - T d=1
h? _{ 2 2 (d—3)(d—2)(1~cos(nd))I'(=5=)I'(d) —&—O(%) IR DCFT

r(g_l)3F<%z)Bd((d_g)H%_2+(3—d)Hd_4_1>
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Extracting DCFT data
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» Automatically get one-point function coefficients since our
beta-function calculation involved computing (s(x)) and

{o(2))
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> Automatically get one-point function coefficients since our
beta-function calculation involved computing (s(z)) and

{o(2))

(sl = Vo g2 el
Ix[4s 7 " 6 - N++/N2+ 132N + 36
Noao d—3)(d-1
(@) = e @ == d-3)d-1)

(d - 2)d ((d ~3)Hy _,+ (3~ d)Ha s — 1)

with Ny, N, the two-point function normalizations of s and o
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» Automatically get one-point function coefficients since our
beta-function calculation involved computing (s(x)) and

{o(2))

VNsas 5 27
<5(x)> = AL as =
x| 2 6 — N + /N2 + 132N + 36
Nosas d—3)d-1
(@) = e, @b = (d=-3)d-1)

(d - 2)d ((d —3)Hy ,+(3—d)Hy s — 1)

with Ny, N, the two-point function normalizations of s and o

» Since s is identified with o (up to normalization) their 1-point
function coefficients coincide in the overlapping regime of
validity:

o Large N

a? =5, 3/84 O(1/N)

2 d=4—e¢

a; — 3/8+ O(e)
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Summary of defect scaling dimensions

GNY d=4—¢ Large N

Leading defect 14+ -5 ¢ 242 -nsin( 5 )r( 45t
scalar (N+6) Nd(d—2)x3/21 (4~ 1)

Transverse spin [

60120 1+14+0(+
defect scalars +i+0(x)

L+1 + (N+6)(1+2D) €

U(N) fundamen- 3.7 40 1 oL
tal defect fermions 2 +1+0(e) 5+ +0(%)

P Lowest twist operators for a given transverse spin [

» [ is quantum number under SO(d — 1) = group of rotations
around the defect

» Scalars in symmetric traceless representation of SO(d — 1)
» Fermions in spin [ + 1/2 representation of Spin(d — 1)
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Summary of defect scaling dimensions

defect scalars

GNY d=4—¢ Large N
Leading defect -
scalar
Transverse spin [ 6(1—1

U(N) fundamen-
tal defect fermions

34+1 +0(e)

i +o(d)

» Lowest twist operators for a given transverse spin [

» [ is quantum number under SO(d — 1) = group of rotations
around the defect

» Scalars in symmetric traceless representation of SO(d — 1)

» Fermions in spin | + 1/2 representation of Spin(d — 1)
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Leading defect scalar

» Stress-tensor localized on defect (away from fixed point) is
related to beta function of defect coupling:

» Differentiate both sides w.r.t. renormalization scale M. Note
dimension of T fixed to 1

9B
Az =1
o
» This gives
A(3) =1+ (N(—ji—G)E Large N, 1+%E
A(é’):l— 2d+2(d—1)51n( d)F(d2 ) i 1+£6
Naa—2yedr (¢ - 1) N

» 5 is irrelevant in IR DCFT. No other candidate for relevant
operator on defect = IR DCFT is stable
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Summary of defect scaling dimensions

scalar

GNY d=4—¢ Large N
Leading defect 14 6 _ 2942 (d—1) sin( T4 )T (451)
~+6) € Nd(d—2)73/21(4-1)

Transverse spin [
defect scalars

6(1—1)

L+1 + mream €

1+140(%)

U(N) fundamen-
tal defect fermions

841 4+ 0(e)

41 +0(%)
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Summary of defect scaling dimensions

scalar

GNYd=4-¢ Large N
Leading defect 14 6 _ 29F2@-1)sin(5)r( 45
N+6) Na(d-2)7°/2r(2-1)

Transverse spin [
defect scalars

_e-l)
B - N+6)(1+2D) ©

1+140(%)

U(N) fundamen-
tal defect fermions

Bl o

B o)
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Classical dimensions of defect operators

> Map theory to H? x S92

» Expand in eigenfunctions and perform a Kaluza-Klein
reduction on S92 to obtain a tower of operators on H?>

» Use AdS/CFT dictionary to read off dimensions of defect
scalars and fermions
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Map to H? x S92
Wey! rescaling to go from flat space to H2 x S4—2

dp® +dr*
ds? = p? (% +d323d72> = P2ds%s, gaon
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Map to H? x S72 (GNY)
Wey! rescaling to go from flat space to H2 x S4—2

d d
ds® = p (u + dssd 2> = p2d5§{2xsd—2

Recall GNY action with Ny fermions, each with c; components

2 . — .
Sany = /ddx <@ _ (\ij.a\lﬂ +g13\Ili\I/Z) + gi 4) —|—ho/d7's 7,0)
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Map to H? x S72 (GNY)
Wey! rescaling to go from flat space to H2 x S4—2

d d
ds® = p (u + dssd 2> = p2d5§{2xsd—2

Recall GNY action with Ny fermions, each with ¢4 components

2 . — .
Sany = /ddx (@ _ (\I/w.a\lﬂ +g13\Ili\I/Z) + gi 4) —|—ho/d7's 7,0)

2 f— p—
Sony = depdd—2Q((vu5) + (d Q)g}d 4) 2

p2 5 s — (\I/l’y . V‘lﬂ + glyoslilillli)

H2xS8d—2

+ 922—4034) + ho/de(T7 0)
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Map to H? x S72 (GNY)
Wey! rescaling to go from flat space to H2 x S4—2

d d
ds® = p <u + dSSd 2> = p2d5§_12><sd—2

Recall GNY action with Ny fermions, each with ¢4 components

2 . — .
Seny = /ddx (@ _ (\i:,y L Ov —l—gls\lli\IlZ) gi 4) + ho/drs(r, 0)
1

drdp - > (d—2)(d—4 - ; -
Seny = %pdd QQ((v;S) + ( )8( )szf(qm-v\y Jrgl,oS‘I/i\I/)

H2xSd—2
20 4
+ o1 S ) —i—ho/de(T,O)
Representation of gamma matrices in H? x S92

1
/T
w cd—2-dimensional identity
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Decompose into eigenfunctions of Laplacian and Dirac
operator on H? x S92

Laplacian and Dirac operators decompose as [Camporesi, Higuchi
95050009, ...]

(VQ)HQXSGZ—2 = v%ﬂ + véd—2
(W)H2><Sd*2 - WHQ ® I+ 03 X Wsd72
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Decompose into eigenfunctions of Laplacian and Dirac
operator on H? x S92

Laplacian and Dirac operators decompose as [Camporesi, Higuchi
95050009, ...]

(VQ)H2><Sd*2 = V%{Z + v%’d—Q
(W)HQXsd72 = WH2 ® I+ 0'3 &® Wsd72

With eigenfunctions
(V) gos
+ : d +
(y7)Sd—2 Xim = +i |+ 9 1 Xim

Yim = —=l(l+d—3)Y,
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Decompose into eigenfunctions of Laplacian and Dirac

operator on H? x S92

Laplacian and Dirac operators decompose as [Camporesi, Higuchi
9505000, ...]

(V) arzxsi-2 = Vi + Vi
(V) ioxgiz =V ®1+0°® Vga-s
With eigenfunctions
(V*) gu-a
(V)seaxih =i (145 -1)
Scalar and fermion decompose as

s = }E:tlnz(paT)iinz
Im

Yim = —=l(l+d—3)Y,

U= (¢, @xh, + U ® Xi)

lm
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Decompose into eigenfunctions of Laplacian and Dirac
operator on H? x S%2 (GNY)

§ = 21m tim (P, T)Yim

Scalar and fermion decompose as { _ _
=3 (Y @ X + Vi @ Xirn)
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Decompose into eigenfunctions of Laplacian and Dirac
operator on H? x S%2 (GNY)

s = Zl,'m tlm(p: 7—))/l'rn

Scalar and fermion decompose as { _ _
P V=3 (Vi © X + Vi © Xin)

drd, V,.5)? d—2)(d—4 _ . o
Sany = %dd%ﬂ(( ;S) +( l‘( )527(‘11147‘V\I/’+g1,os\11¢‘1ﬂ)

H2xS5d=2

—+ 922—;1054> + ho /clﬂ's(T7 0)
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Decompose into eigenfunctions of Laplacian and Dirac
operator on H? x S%2 (GNY)

. = tlm(p: T))/lm
Scalar and fermion decompose as { = 2im _ _
P V=3 (Vi © X + Vi © Xi)

drd Vus)?  (d—2)(d-4 _ . Iy
Sany = T pdd 29(( 15) + ( L( )52*(‘1’1'7 -V +91,os\I/¢\I/Z)
H2xS5d=2 4

+ 79240 s4> + ho /dﬂ's(T7 0)

lNormaIization:/ Y[*m Yl/.m,/ - 6ll/drrr,rrz,’- / Xilm)('/i’ ;= O—Il/dm,m’
. S ’ ! . S‘Z m
drd m Vi, _ _

Sany _/ Pz[ m %(l(l+d—3)+ (d 2§d 4)) & mtim

-3 (wﬁanw?;n =i(l+4-1) (w?;)*asw?;) ] +
+
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Decompose into eigenfunctions of Laplacian and Dirac
operator on H? x S%2 (GNY)

. = tlm(p: T))/lm
Scalar and fermion decompose as { = 2im _ _
P V=3 (Vi © X + Vi © Xi)

drd Vus)?  (d—2)(d-4 _ . Iy
Sany = T pdd 29(( 15) + ( L( )52*(‘111'7 -V +91,os\I/¢\I/Z)
H2xS5d=2 4

+ 92240 4> Jrho/dﬂ's(T7 0)

lNormaIization:/ Y'I*m Y//.m/ - 6/l/drrr,rr7" / Xilnz)\'/j’: ;= 6/l/drrr,rr7’
. S‘ ’ ! . S‘Z m
drd m Vi, _ _

Sany _/ Pz[ m %(l(l+d—3)+ (d 2§d 4)) & mtim

-2 (wlimVHWzim i1+ 4-1) (zﬂ)TU%i@) } +
+
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Decompose into eigenfunctions of Laplacian and Dirac
operator on H? x S%2 (GNY)

. = tlm(p: T))/lm
Scalar and fermion decompose as { = 2im _ _
P V=3 (Vi © X + Vi © Xi)

Sany =

drd Vus)?2  (d—2)(d—4 - , -
T pdd 29(( ) + ( L( )SQf(WiV'V\I/’ +91,os\Il¢\I/l)
H2x8d-2 7

+ 92240 4> + ho /dﬂ's(T7 0)

ation: | [
lNormallzatlon. / . }I m Yy m! = =0 Smm’, / X im Xy T 0117 Omm/
Js2 J S

)

drd Vt th _ _
S(vNy_/ TPZ{ - 4 %(l(l—&-d—S)—i—W) t mtim

-2 (wmmw?;n +il(1+4-1) mmm) F\
+
L

Alf + %—Fm%
— 141

A S
l

I

|
+

3
>
[SIISWNIE
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Decompose into eigenfunctions of Laplacian and Dirac
operator on H? x S%2 (GN)

5= Y tim (p,7)Yim

Scalar and fermion decompose as { _ _
P V=5, (6 @ X + Wi, © Xira)

_ . 1 — .
Sagn =— / diz (\IIZ -8\111-1-—0\1!1-\1/’) +h/d'r o(r,x =0
GN Vg [ Wiy Vi Vgo( )

H2x5d=2
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Decompose into eigenfunctions of Laplacian and Dirac
operator on H? x S%2 (GN)

5= X tim (p,7)Yim

Scalar and fermion decompose as { _ _
P U =3 (6 @ X + Ui, ® Xin)

- . 1 - )
Son = — / dix\/g (\Iw L OUt 4+ —U\I!illl’) + h/dr\/ﬁa(r, x = 0)
VN
H2x5d=2
lNormalization: /S‘ yYZTm Y s = 01 6mmt s / X : lm X’l./m’ =6 Smm/
S2 S2

drd, — _
Sen = —/ ;2’3 lzzij (wavH2wﬁn i (144 1) (zpltn)*o?’wltn) +...
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Decompose into eigenfunctions of Laplacian and Dirac
operator on H? x S%2 (GN)

5= X tim (p,7)Yim

Scalar and fermion decompose as { _ _
P U =3 (6 @ X + Ui, ® Xin)

- . 1 _ .
San = — / iz g(\I/-'y-a\Ilz—i-—U\I!-\Il’)—l—h/dT o(t,x =0
f K \/N 7 \/§ ( )
H2x5d=2
lNormalization: /S‘ y’]Tmy'["m’ =6 Smm’, / X : lle./m/ =6 Smm/
S2 S2

/N

: drdp T4 + 4
San = */ 5 ZZ (wszH2wzm i
p ILm =+

I+2-1 (@lim)fﬂzswlim) +...
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Decompose into eigenfunctions of Laplacian and Dirac
operator on H? x S%2 (GN)

5= X tim (p,7)Yim

Scalar and fermion decompose as { _ _
P U =3 (6 @ X + Ui, ® Xin)

_ . 1 — .
San = — / dd:v\/g (\I/i’y SOt + ﬁa\llillﬂ) + h/d’r\/ﬁa(T7 x =0)

H2x8d-2
lNOrmB'IZatIOn-/S‘ y].myl’wl’ =01/ Omm/, / X im X/ = 01 Omum
S2 52
; drdp 4 + . = 3.+
Sen = 7/ 0? S (wlmWH2wlm +i (l +4-1 W) 1o, |+
ILm =+

1
Al =35+ |myl

— 25 41
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Summary of defect scaling dimensions

scalar

GNY d=4—¢ Large N
Leading defect 14 6 _ 2942 (d—1) sin( T2 )T (451)
™+6) € Nd(d—2)73/21(4-1)

Transverse spin [
defect scalars

6(1—1)

L+1+ (N+6)(1+21

)6

1+1 +0(%)

U(N) fundamen-
tal defect fermions

84 1+0(e)

L1+ 0(%)
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Summary of defect scaling dimensions

scalar

GNY d=4—¢ Large N
Leading defect 14 6 _ 29F2@-1)sin(5)r( 45
N+6) € Na(d—2)=3/2r(2-1)

Transverse spin [
defect scalars

6(1—1)

L+1+ (N+6)(1+21

)6

MSR-+o()

U(N) fundamen-
tal defect fermions

3414 0(e)

L1+ 0(%)
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Spinning defect scalars in large N

>
>

Look at defect operators induced by o in defect channel OPE
Two-point function of o is

hIN27? Ny
- v +7

R >

from defect identity
From [Liendo, Linke, Schomerus 1903.05222]: should have tower of

operators with dimensions 1 + [ 4+ 2m with [ the transverse
spin and m the degeneracy per transverse spin:

1
b2, fiisom
2 |X1||X2|ZZ m,lJ 1+i+2m,

L2 m=0 [=0

At d =4, bfnl = 0 unless m = 0 == have a tower of
operators with dimensions 1 + [ with degeneracy 0
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Summary of defect scaling dimensions

GNY d=4—¢ Large N
Leading defect 14 6 ¢ 292y sin(B)r(47t)
scalar (N+6) Nd(d—2)x%/2r(4-1)
Transverse spin [ 140+ 6(1—1) 1414 O(%)

defect scalars

(N+6)(1+2) €

U(N) fundamen-
tal defect fermions

3 4+140(e)

41+ 0()
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Summary of defect scaling dimensions

tal defect fermions

GNY d=4—¢ Large N
Leading defect 14 6 ¢ _29F2@-1)sin(5)r(452)
scalar (N+6) Nd(d-2)m>/2T(§~1)
Transverse spin [ 141+ - 1+140(%)
defect scalars N
U(N) fundamen- 2414 0(e) 14 0(L)
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Anomalous dimensions using equations of motion (GNY)

Lesson from [Rychkov, Tan 1505.00963]: can extract anomalous
dimensions using the following

(a) conformal symmetry constrains form of correlators
(b) operators satisfy an equation of motion at the WF fixed point
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Anomalous dimensions using equations of motion (GNY)

Lesson from [Rychkov, Tan 1505.00963]: can extract anomalous
dimensions using the following

(a) conformal symmetry constrains form of correlators

» The bulk-boundary two-point function in GNY is constrained
to take the form

- (- vv)l
(s(x)3(1",W)) = |X|As—AzS+l(x2 +(r— 7_/)2)&5

where w is a null auxiliary vector in embedding space, 7 in
direction of defect, x in transverse direction
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Anomalous dimensions using equations of motion (GNY)

Lesson from [Rychkov, Tan 1505.00963]: can extract anomalous
dimensions using the following

(a) conformal symmetry constrains form of correlators

» The bulk-boundary two-point function in GNY is constrained
to take the form

(s(z)8i(7', w)) =

ARG+ (r — )2) A

where w is a null auxiliary vector in embedding space, 7 in
direction of defect, x in transverse direction

(x-w)’

> Applying bulk laplacian gives
207 (244 —d +2)
x2 4 (17— 1)
(AS—Af+Z)(d—3+l—AS+A5’) ,
- st w

x2

V2(s(2)in(r', w)) =[
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Anomalous dimensions using equations of motion (GNY)

Lesson from [Rychkov, Tan 1505.00963]: can extract anomalous
dimensions using the following

(b) operators satisfy an equation of motion at the WF fixed point
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Anomalous dimensions using equations of motion (GNY)

Lesson from [Rychkov, Tan 1505.00963]: can extract anomalous
dimensions using the following

(b) operators satisfy an equation of motion at the WF fixed point

2 . — .
Sany = /ddaz\/g<@7 (\f}w VU + gls\Ili\I/l) + 3—154) + h/de(T, 0)
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Anomalous dimensions using equations of motion (GNY)

Lesson from [Rychkov, Tan 1505.00963]: can extract anomalous
dimensions using the following

(b) operators satisfy an equation of motion at the WF fixed point

Sany _/dd < us —<\Tli7~v\lli+gls\i/i\lli> + gz 4) —|—h/d7-s 7,0)

Applying bulk laplacian to bulk-boundary two-point function gives
two diagrams at O(e):
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Anomalous dimensions using equations of motion

Compare each side
207 (24, —d +2)
x2 4+ (1 —1/)2
(AS —Af+l) (d—3+l—As+Af)
- | s w

x2

v (s(a)autr's w) = |

V2 (s(x)si (', w)) = %(82(90))(8(93)&(7/»"‘7))
—gf/ddml<‘T’i\1’i($)‘i’j‘1’j(wl)>(5(901)@1(7'7W)>

The O(e) terms in the top line are contained in the anomalous
dimensions while the O(¢) terms in the bottom line are contained
in the bulk coupling constants

> We can use free theory propagators in the integrals
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Anomalous dimensions using equations of motion

After the dust settles we have
s oy 9¢
T TN+ 6)(1+ 20)
J¢ IR (€ ) N
(N +6)(1+20) (N+6)(1+20)"

Af =Ag+1+

» Anomalous dimensions of defect and bulk operators match as
| — o0, consistent with [Lemos, Liendo, Meineri, Sarkar 1712.08185]

Same technique can be used to find anomalous dimensions of
defect operators in O(N) with localized magnetic field

» Anomalous dimensions of defect scalars with transverse spin 0
and 1 computed in [Cuomo, Komargodski, Mezei 2112.10634]. Can
extend this to generic transverse spin [ using equation of
motion

30/35



Consistency with the g-theorem

» Consider a conformally equivalent setup: a circular line defect
of radius R

> |t was proven in [Cuomo, Komargodski, Raviv-Moshe 2108.01117] that
the following decreases monotonically under an RG flow
localized on the defect

0
=11- 1
(1 ryp ) oss

=logg at fixed points

where g is the expectation of the circular defect

g= <67hfd7—s>

logg _ log(Zbu|k+defect/Zbu|k)
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Consistency with the g-theorem

» In GNY we computed log g to first order in e at d =4 — ¢

logg = + 4+

and found consistency with the g-theorem

8le
=— <0
h=0  2(N +6) (6 N+ VNTE 132N+36)

log g‘ —logg

=hs
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Summary

» Found a defect IR fixed point using both € expansion and large
N techniques

» Computed various DCFT data and saw consistency in
overlapping regime of validity for € expansion and large N

» Checked consistency with the g-theorem
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Future directions

» GN model in d = 2 + € perturbed by a fermion bilinear
h [dr¥¥(r,0)
» Already infinite diagrams for free theory

(TU(2)) = O A @

» Test predictions using Monte-Carlo, similar to [Toldin, Assaad,
Wessel 1607.04270] where they determine scaling dimensions of
the defect operators for the pinning field defect in the Ising
CFTind=3
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Thank youl!
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