Line Defects in Fermionic CFTs

Liz Helfenberger

Princeton University

Based on 2211.11073 with S. Giombi and H. Khanchandani

Outline

- Intro/Motivation
- Line defects in fermionic CFTs

1. Show the existence of a nontrivial defect IR fixed point
2. Calculate DCFT data
3. Check consistency with the g-theorem

Introduction

Conformal defect definition

A conformal defect is a non-local observable that preserves a subgroup of the conformal group. In a d-dimensional space with a p-dimensional defect, the full conformal group is broken to

$$
S O(d+1,1) \rightarrow S O(p+1,1) \times S O(d-p)
$$

Special cases

- Line defect: $p=1$
- Infinite straight line, circular defect, Wilson lines, ...
- Boundary or interface theory: $p=d-1$

General properties of conformal defects

- Local excitations emerge in the presence of the line defect
- Can have an RG flow along the defect while the bulk remains at the same critical point
- Displacement operator present due to broken translational invariance perpendicular to defect

$$
\partial_{\mu} T^{\mu i}(x)=D^{i}(\tau) \delta^{d-1}(\mathbf{x})
$$

- For p-dimensional defect, displacement operator has protected dimension $p+1$

General properties of conformal defects

- Bootstrap program for defect CFT based on crossing symmetry between bulk channel and defect channel decomposition

- Several developments in recent years [Liendo, Rastelli, van Rees '12, Billó, Goncalves, Lauria, Meineri '16, Lauria, Meineri, Trevisani '17 and '18, Lemos, Liendo, Meineri, Sarkar '17]

Gross-Neveu universality class

- Gross-Neveu (GN) with N_{f} Dirac fermions, each with $c_{d}=2^{\lfloor d / 2\rfloor}$ components

$$
S=-\int d^{d} x\left(\bar{\Psi}_{i} \gamma \cdot \partial \Psi^{i}+\frac{g}{2}\left(\bar{\Psi}_{i} \Psi^{i}\right)^{2}\right)
$$

- $U\left(N_{f}\right)$ symmetry
- Gross-Neveu-Yukawa (GNY)

$$
S=\int d^{d} x\left(\frac{\left(\partial_{\mu} s\right)^{2}}{2}-\left(\bar{\Psi}_{i} \gamma \cdot \partial \Psi^{i}+g_{1} s \bar{\Psi}_{i} \Psi^{i}\right)+\frac{g_{2}}{24} s^{4}\right)
$$

- "UV-complete" form of GN

Gross-Neveu universality class

- Universality: Same CFT describes

$$
\left\{\begin{array}{l}
\text { GN UV fixed point at } d=2+\epsilon \\
\text { GNY IR fixed point at } d=4-\epsilon
\end{array}\right.
$$

- Admits large N expansion for general $d \in(2,4)$
- Starting with GN description, use Hubbard-Stratonovich auxiliary field σ to trade four-fermi interaction for $\sigma \bar{\Psi}_{i} \Psi^{i}$

$$
S=-\int d^{d} x\left(\bar{\Psi}_{i} \gamma \cdot \partial \Psi^{i}+\frac{1}{\sqrt{N}} \sigma \bar{\Psi}_{i} \Psi^{i}-\frac{\sigma^{2}}{2 g N}\right)
$$

- Physical relevance: GNY-type model proposed to describe semi-metal to insulator transition in Hubbard model [Herbut 0606195] [Assaad, Herbut 1304.6340]

Computing defect IR fixed point

Setting up the line defect

The infinite straight line defect we consider is realized by integrating an operator along a line

$$
S_{\mathrm{defect}}=S_{\mathrm{CFT}}+h \int_{-\infty}^{\infty} d \tau O(\tau, \mathbf{x})
$$

- If O has scaling dimension slightly less than $1, h$ is weakly relevant so we can hope to find a flow from the UV $(h=0)$ to an IR theory ($h=h_{*}$)
- Similar setup considered in [Allais, Sachdev 1406.3022][Cuomo, Komargodski, Mezei 2112.10634], with localized magnetic field in $O(N)$

Line defect in Gross-Neveu

Gross-Neveu at large N

$$
\begin{gathered}
S=-\int d^{d} x\left(\bar{\Psi}_{i} \gamma \cdot \partial \Psi^{i}+\frac{1}{\sqrt{N}} \sigma \bar{\Psi}_{i} \Psi^{i}\right) \\
\Delta_{\sigma}=1+\frac{f_{1}(d)}{N}+O\left(1 / N^{2}\right) \\
f_{1}(d)<0 \text { for } d \in(2,4)
\end{gathered}
$$

Because $f_{1}(d)$ is negative, Δ_{σ} is slightly less than 1 , so the following term is weakly relevant

$$
h \int d \tau \sigma(\tau, \mathbf{x}=0)
$$

Line defect in Gross-Neveu-Yukawa

Gross-Neveu-Yukawa model

$$
\begin{gathered}
S=\int d^{d} x\left(\frac{\left(\partial_{\mu} s\right)^{2}}{2}-\left(\bar{\Psi}_{i} \gamma \cdot \partial \Psi^{i}+g_{1} s \bar{\Psi}_{i} \Psi^{i}\right)+\frac{g_{2}}{24} s^{4}\right) \\
\Delta_{s}=1-\frac{3 \epsilon}{N+6}+O\left(\epsilon^{2}\right)
\end{gathered}
$$

Δ_{s} is slightly less than 1 , so the following term is weakly relevant

$$
h \int d \tau s(\tau, \mathbf{x}=0)
$$

Defect fixed points

- Use minimal subtraction scheme to renormalize defect coupling. E.g., for GNY

$$
h_{0}=M^{\epsilon / 2}\left(h+\frac{\delta h}{\epsilon}+\ldots\right)
$$

- Find δh by requiring $\langle s(x)\rangle$ or $\langle\sigma(x)\rangle$ to be finite
- Find β_{h} as usual by requiring h_{0} to be independent of renormalization scale M

$$
M \frac{\partial h_{0}}{\partial M}=0=\#+\# \beta_{h}+\# \beta_{g_{1}}+\# \beta_{g_{2}}
$$

- $\beta_{g_{1}}$ and $\beta_{g_{2}}$ known from ordinary GNY, unchanged by presence of defect

Defect fixed points

- In both GN and GNY the defect fixed point h_{*} is not perturbatively small but $O(1)$
- Defect fixed points in GNY in $d=4-\epsilon$

$$
h_{*}^{2}=\left\{\begin{array}{cl}
\frac{0}{} \frac{\text { UV DCFT }}{} \frac{108}{6-N+\sqrt{N^{2}+132 N+36}}+O(\epsilon) & \text { IR DCFT }
\end{array}\right.
$$

- Defect fixed points in GN at large N

$$
h_{*}^{2}=\left\{\begin{array}{cc}
0 & \text { UV DCFT } \\
-\frac{2^{d+5} \pi^{\frac{3}{2}(d-3)}(d-3)(d-2)(1-\cos (\pi d)) \Gamma\left(\frac{d-1}{2}\right) \Gamma(d)}{\Gamma\left(\frac{d}{2}-1\right)^{3} \Gamma\left(\frac{d}{2}\right)^{3} d\left((d-3) H_{\frac{d}{2}-2}+(3-d) H_{d-4}-1\right)}+O\left(\frac{1}{N}\right) & \text { IR DCFT }
\end{array}\right.
$$

Extracting DCFT data

- Automatically get one-point function coefficients since our beta-function calculation involved computing $\langle s(x)\rangle$ and $\langle\sigma(x)\rangle$
- Automatically get one-point function coefficients since our beta-function calculation involved computing $\langle s(x)\rangle$ and $\langle\sigma(x)\rangle$

$$
\begin{array}{ll}
\langle s(x)\rangle=\frac{\sqrt{\mathcal{N}_{s}} a_{s}}{|\mathbf{x}|^{\Delta_{s}}}, & a_{s}^{2}=\frac{27}{6-N+\sqrt{N^{2}+132 N+36}} \\
\langle\sigma(x)\rangle=\frac{\sqrt{\mathcal{N}_{\sigma}} a_{\sigma}}{|\mathbf{x}|^{1}}, \quad a_{\sigma}^{2}=-\frac{(d-3)(d-1)}{(d-2) d\left((d-3) H_{\frac{d}{2}-2}+(3-d) H_{d-4}-1\right)}
\end{array}
$$

with $\mathcal{N}_{s}, \mathcal{N}_{\sigma}$ the two-point function normalizations of s and σ

- Automatically get one-point function coefficients since our beta-function calculation involved computing $\langle s(x)\rangle$ and $\langle\sigma(x)\rangle$
$\langle s(x)\rangle=\frac{\sqrt{\mathcal{N}_{s}} a_{s}}{|\mathbf{x}|^{\Delta_{s}}}, \quad a_{s}^{2}=\frac{27}{6-N+\sqrt{N^{2}+132 N+36}}$
$\langle\sigma(x)\rangle=\frac{\sqrt{\mathcal{N}_{\sigma}} a_{\sigma}}{|\mathbf{x}|^{1}}, \quad a_{\sigma}^{2}=-\frac{(d-3)(d-1)}{(d-2) d\left((d-3) H_{\frac{d}{2}-2}+(3-d) H_{d-4}-1\right)}$
with $\mathcal{N}_{s}, \mathcal{N}_{\sigma}$ the two-point function normalizations of s and σ
- Since s is identified with σ (up to normalization) their 1-point function coefficients coincide in the overlapping regime of validity:

$$
\begin{array}{ll}
a_{s}^{2} \xrightarrow{\text { Large N }} 3 / 8+O(1 / N) \\
a_{\sigma}^{2} \xrightarrow{d=4-\epsilon} 3 / 8+O(\epsilon)
\end{array}
$$

Summary of defect scaling dimensions

	GNY $d=4-\epsilon$	Large N
Leading defect scalar	$1+\frac{6}{(N+6)} \epsilon$	$1-\frac{2^{d+2}(d-1) \sin \left(\frac{\pi d}{2}\right) \Gamma\left(\frac{d-1}{2}\right)}{N d(d-2) \pi^{3 / 2} \Gamma\left(\frac{d}{2}-1\right)}$
Transverse spin l defect scalars	$1+l+\frac{6(1-l)}{(N+6)(1+2 l)} \epsilon$	$1+l+O\left(\frac{1}{N}\right)$
$U(N)$ fundamen- tal defect fermions	$\frac{3}{2}+l+O(\epsilon)$	$\frac{d-1}{2}+l+O\left(\frac{1}{N}\right)$

- Lowest twist operators for a given transverse spin l
- l is quantum number under $S O(d-1)=$ group of rotations around the defect
- Scalars in symmetric traceless representation of $S O(d-1)$
- Fermions in spin $l+1 / 2$ representation of $\operatorname{Spin}(d-1)$

Summary of defect scaling dimensions

	GNY $d=4-\epsilon$	Large N
Leading defect scalar	$1+\frac{6}{(N+6)} \epsilon$	$1-\frac{2^{d+2}(d-1) \sin \left(\frac{\pi d}{2}\right) \Gamma\left(\frac{d-1}{2}\right)}{N d(d-2) \pi^{3 / 2} \Gamma\left(\frac{d}{2}-1\right)}$
Transverse spin l defect scalars	$1+l+\frac{6(1-l)}{(N+6)(1+2 l)} \epsilon$	$1+l+O\left(\frac{1}{N}\right)$
$U(N)$ fundamen- tal defect fermions	$\frac{3}{2}+l+O(\epsilon)$	$\frac{d-1}{2}+l+O\left(\frac{1}{N}\right)$

- Lowest twist operators for a given transverse spin l
- l is quantum number under $S O(d-1)=$ group of rotations around the defect
- Scalars in symmetric traceless representation of $S O(d-1)$
- Fermions in spin $l+1 / 2$ representation of $\operatorname{Spin}(d-1)$

Leading defect scalar

- Stress-tensor localized on defect (away from fixed point) is related to beta function of defect coupling:

$$
T_{D}(\tau)=\beta_{h} \hat{s}(\tau)
$$

- Differentiate both sides w.r.t. renormalization scale M. Note dimension of T_{D} fixed to 1

$$
\Delta_{\hat{s}}=1+\frac{\partial \beta_{h}}{\partial h}
$$

- This gives

$$
\begin{aligned}
& \Delta(\hat{s})=1+\frac{6}{(N+6)} \epsilon \xrightarrow{\text { Large } \mathrm{N}} 1+\frac{6}{N} \epsilon \\
& \Delta(\hat{\sigma})=1-\frac{2^{d+2}(d-1) \sin \left(\frac{\pi d}{2}\right) \Gamma\left(\frac{d-1}{2}\right)}{N d(d-2) \pi^{\frac{3}{2}} \Gamma\left(\frac{d}{2}-1\right)} \xrightarrow{d=4-\epsilon} 1+\frac{6}{N} \epsilon
\end{aligned}
$$

- \hat{s} is irrelevant in IR DCFT. No other candidate for relevant operator on defect \Longrightarrow IR DCFT is stable

Summary of defect scaling dimensions

	GNY $d=4-\epsilon$	Large N
Leading defect scalar	$1+\frac{6}{(N+6)} \epsilon$	$1-\frac{2^{d+2}(d-1) \sin \left(\frac{\pi d}{2}\right) \Gamma\left(\frac{d-1}{2}\right)}{N d(d-2) \pi^{3 / 2} \Gamma\left(\frac{d}{2}-1\right)}$
Transverse spin l defect scalars	$1+l+\frac{6(1-l)}{(N+6)(1+2 l)} \epsilon$	$1+l+O\left(\frac{1}{N}\right)$
$U(N)$ fundamen- tal defect fermions	$\frac{3}{2}+l+O(\epsilon)$	$\frac{d-1}{2}+l+O\left(\frac{1}{N}\right)$

Summary of defect scaling dimensions

	GNY $d=4-\epsilon$	Large N
Leading defect scalar	$1+\frac{6}{(N+6)} \epsilon$	$1-\frac{2^{d+2}(d-1) \sin \left(\frac{\pi d}{2}\right) \Gamma\left(\frac{d-1}{2}\right)}{N d(d-2) \pi^{3 / 2} \Gamma\left(\frac{d}{2}-1\right)}$
Transverse spin l defect scalars	$1+l+\frac{6(1-l)}{(N+6)(1+2 l)} \epsilon$	$1+l+O\left(\frac{1}{N}\right)$
$U(N)$ fundamen- tal defect fermions	$\frac{3}{2}+l+O(\epsilon)$	$\frac{d-1}{2}+l+O\left(\frac{1}{N}\right)$

Classical dimensions of defect operators

- Map theory to $H^{2} \times S^{d-2}$
- Expand in eigenfunctions and perform a Kaluza-Klein reduction on S^{d-2} to obtain a tower of operators on H^{2}
- Use AdS/CFT dictionary to read off dimensions of defect scalars and fermions

Map to $H^{2} \times S^{d-2}$
Weyl rescaling to go from flat space to $H^{2} \times S^{d-2}$

$$
d s^{2}=\rho^{2}\left(\frac{d \rho^{2}+d \tau^{2}}{\rho^{2}}+d s_{S^{d-2}}^{2}\right)=\rho^{2} d s_{H^{2} \times S^{d-2}}^{2}
$$

Map to $H^{2} \times S^{d-2}(\mathrm{GNY})$

Weyl rescaling to go from flat space to $H^{2} \times S^{d-2}$

$$
d s^{2}=\rho^{2}\left(\frac{d \rho^{2}+d \tau^{2}}{\rho^{2}}+d s_{S^{d-2}}^{2}\right)=\rho^{2} d s_{H^{2} \times S^{d-2}}^{2}
$$

Recall GNY action with N_{f} fermions, each with c_{d} components

$$
S_{G N Y}=\int d^{d} x\left(\frac{\left(\partial_{\mu} s\right)^{2}}{2}-\left(\bar{\Psi}_{i} \gamma \cdot \partial \Psi^{i}+g_{1} s \bar{\Psi}_{i} \Psi^{i}\right)+\frac{g_{2}}{24} s^{4}\right)+h_{0} \int d \tau s(\tau, \mathbf{0})
$$

Map to $H^{2} \times S^{d-2}(\mathrm{GNY})$

Weyl rescaling to go from flat space to $H^{2} \times S^{d-2}$

$$
d s^{2}=\rho^{2}\left(\frac{d \rho^{2}+d \tau^{2}}{\rho^{2}}+d s_{S^{d-2}}^{2}\right)=\rho^{2} d s_{H^{2} \times S^{d-2}}^{2}
$$

Recall GNY action with N_{f} fermions, each with c_{d} components

$$
\begin{aligned}
S_{G N Y}= & \int d^{d} x\left(\frac{\left(\partial_{\mu} s\right)^{2}}{2}-\left(\bar{\Psi}_{i} \gamma \cdot \partial \Psi^{i}+g_{1} s \bar{\Psi}_{i} \Psi^{i}\right)+\frac{g_{2}}{24} s^{4}\right)+h_{0} \int d \tau s(\tau, \mathbf{0}) \\
\downarrow & \\
S_{G N Y}=\int_{H^{2} \times S^{d-2}} \frac{d \tau d \rho}{\rho^{2}} d^{d-2} \Omega\left(\frac{\left(\nabla_{\mu} s\right)^{2}}{2}\right. & +\frac{(d-2)(d-4)}{8} s^{2}-\left(\bar{\Psi}_{i} \gamma \cdot \nabla \Psi^{i}+g_{1,0} s \bar{\Psi}_{i} \Psi^{i}\right) \\
& \left.+\frac{g_{2,0}}{24} s^{4}\right)+h_{0} \int d \tau s(\tau, \mathbf{0})
\end{aligned}
$$

Map to $H^{2} \times S^{d-2}(\mathrm{GNY})$

Weyl rescaling to go from flat space to $H^{2} \times S^{d-2}$

$$
d s^{2}=\rho^{2}\left(\frac{d \rho^{2}+d \tau^{2}}{\rho^{2}}+d s_{S}^{2}{ }^{d-2}\right)=\rho^{2} d s_{H^{2} \times S^{d-2}}^{2}
$$

Recall GNY action with N_{f} fermions, each with c_{d} components

$$
\begin{aligned}
S_{G N Y}=\int d^{d} x\left(\frac{\left(\partial_{\mu} s\right)^{2}}{2}-\left(\bar{\Psi}_{i} \gamma \cdot \partial \Psi^{i}\right.\right. & \left.\left.+g_{1} s \bar{\Psi}_{i} \Psi^{i}\right)+\frac{g_{2}}{24} s^{4}\right)+h_{0} \int d \tau s(\tau, \mathbf{0}) \\
\downarrow & \\
S_{G N Y}=\int_{H^{2} \times S^{d-2}} \frac{d \tau d \rho}{\rho^{2}} d^{d-2} \Omega\left(\frac{\left(\nabla_{\mu} s\right)^{2}}{2}\right. & +\frac{(d-2)(d-4)}{8} s^{2}-\left(\bar{\Psi}_{i} \gamma \cdot \nabla \Psi^{i}+g_{1,0} s \bar{\Psi}_{i} \Psi^{i}\right) \\
& \left.+\frac{g_{2,0}}{24} s^{4}\right)+h_{0} \int d \tau s(\tau, \mathbf{0})
\end{aligned}
$$

Representation of gamma matrices in $H^{2} \times S^{d-2}$

$$
\gamma^{\gamma^{1}=\sigma^{1}} \otimes \underset{c_{d-2} \text {-dimensional identity }}{I, \quad \gamma^{2}=\sigma^{2} \otimes I, \quad \gamma^{i}=\sigma^{3} \otimes \Gamma^{i}}
$$

Pauli matrix

Decompose into eigenfunctions of Laplacian and Dirac operator on $H^{2} \times S^{d-2}$

Laplacian and Dirac operators decompose as [Camporesi, Higuchi 9505009, ...]

$$
\begin{aligned}
\left(\nabla^{2}\right)_{H^{2} \times S^{d-2}} & =\nabla_{H^{2}}^{2}+\nabla_{S^{d-2}}^{2} \\
(\not \nabla)_{H^{2} \times S^{d-2}} & =\not \nabla_{H^{2}} \otimes I+\sigma^{3} \otimes \not \nabla_{S^{d-2}}
\end{aligned}
$$

Decompose into eigenfunctions of Laplacian and Dirac operator on $H^{2} \times S^{d-2}$

Laplacian and Dirac operators decompose as [Camporesi, Higuchi 9505009, ...]

$$
\begin{aligned}
\left(\nabla^{2}\right)_{H^{2} \times S^{d-2}} & =\nabla_{H^{2}}^{2}+\nabla_{S^{d-2}}^{2} \\
(\not \nabla)_{H^{2} \times S^{d-2}} & =\not \nabla_{H^{2}} \otimes I+\sigma^{3} \otimes \not \nabla_{S^{d-2}}
\end{aligned}
$$

With eigenfunctions

$$
\begin{aligned}
\left(\nabla^{2}\right)_{S^{d-2}} Y_{l m} & =-l(l+d-3) Y_{l m} \\
(\not \nabla)_{S^{d-2}} \chi_{l m}^{ \pm} & = \pm i\left(l+\frac{d}{2}-1\right) \chi_{l m}^{ \pm}
\end{aligned}
$$

Decompose into eigenfunctions of Laplacian and Dirac operator on $H^{2} \times S^{d-2}$

Laplacian and Dirac operators decompose as [Camporesi, Higuchi 9505009, ...]

$$
\begin{aligned}
\left(\nabla^{2}\right)_{H^{2} \times S^{d-2}} & =\nabla_{H^{2}}^{2}+\nabla_{S^{d-2}}^{2} \\
(\not \nabla)_{H^{2} \times S^{d-2}} & =\not{ }_{H^{2}} \otimes I+\sigma^{3} \otimes \not \nabla_{S^{d-2}}
\end{aligned}
$$

With eigenfunctions

$$
\begin{aligned}
\left(\nabla^{2}\right)_{S^{d-2}} Y_{l m} & =-l(l+d-3) Y_{l m} \\
(\not \nabla)_{S^{d-2}} \chi_{l m}^{ \pm} & = \pm i\left(l+\frac{d}{2}-1\right) \chi_{l m}^{ \pm}
\end{aligned}
$$

Scalar and fermion decompose as

$$
\begin{aligned}
s & =\sum_{l, m} t_{l m}(\rho, \tau) Y_{l m} \\
\Psi & =\sum_{l, m}\left(\psi_{l m}^{+} \otimes \chi_{l m}^{+}+\psi_{l m}^{-} \otimes \chi_{l m}^{-}\right)
\end{aligned}
$$

Decompose into eigenfunctions of Laplacian and Dirac operator on $H^{2} \times S^{d-2}$ (GNY)

Scalar and fermion decompose as $\left\{\begin{array}{l}s=\sum_{l, m} t_{l m}(\rho, \tau) Y_{l m} \\ \Psi=\sum_{l, m}\left(\psi_{l m}^{+} \otimes \chi_{l m}^{+}+\psi_{l m}^{-} \otimes \chi_{l m}^{-}\right)\end{array}\right.$

Decompose into eigenfunctions of Laplacian and Dirac operator on $H^{2} \times S^{d-2}$ (GNY)

Scalar and fermion decompose as $\left\{\begin{array}{l}s=\sum_{l, m} t_{l m}(\rho, \tau) Y_{l m} \\ \Psi=\sum_{l, m}\left(\psi_{l m}^{+} \otimes \chi_{l m}^{+}+\psi_{l m}^{-} \otimes \chi_{l m}^{-}\right)\end{array}\right.$

$$
\begin{aligned}
S_{G N Y}=\int_{H^{2} \times S^{d-2}} \frac{d \tau d \rho}{\rho^{2}} d^{d-2} \Omega\left(\frac{\left(\nabla_{\mu} s\right)^{2}}{2}\right. & +\frac{(d-2)(d-4)}{8} s^{2}-\left(\bar{\Psi}_{i} \gamma \cdot \nabla \Psi^{i}+g_{1,0} s \bar{\Psi}_{i} \Psi^{i}\right) \\
& \left.+\frac{g_{2,0}}{24} s^{4}\right)+h_{0} \int d \tau s(\tau, \mathbf{0})
\end{aligned}
$$

Decompose into eigenfunctions of Laplacian and Dirac operator on $H^{2} \times S^{d-2}$ (GNY)

Scalar and fermion decompose as $\left\{\begin{array}{l}s=\sum_{l, m} t_{l m}(\rho, \tau) Y_{l m} \\ \Psi=\sum_{l, m}\left(\psi_{l m}^{+} \otimes \chi_{l m}^{+}+\psi_{l m}^{-} \otimes \chi_{l m}^{-}\right)\end{array}\right.$

$$
\begin{aligned}
S_{G N Y}=\int_{H^{2} \times S^{d-2}} \frac{d \tau d \rho}{\rho^{2}} d^{d-2} \Omega\left(\frac{\left(\nabla_{\mu} s\right)^{2}}{2}\right. & +\frac{(d-2)(d-4)}{8} s^{2}-\left(\bar{\Psi}_{i} \gamma \cdot \nabla \Psi^{i}+g_{1,0} s \bar{\Psi}_{i} \Psi^{i}\right) \\
& \left.+\frac{g_{2,0}}{24} s^{4}\right)+h_{0} \int d \tau s(\tau, \mathbf{0})
\end{aligned}
$$

1 Normalization: $\int_{S^{2}} Y_{l, m}^{*} Y_{l^{\prime}, m^{\prime}}=\delta_{l l^{\prime}} \delta_{m m^{\prime}}, \quad \int_{S^{2}} \chi^{ \pm}{ }_{l m} \chi_{l^{\prime} m^{\prime}}^{ \pm}=\delta_{l l^{\prime}} \delta_{m m^{\prime}}$
$S_{G N Y}=\int \frac{d \tau d \rho}{\rho^{2}} \sum_{l, m}\left[\frac{\nabla_{\mu} t_{l, m}^{*} \nabla^{\mu} t_{l, m}}{2}+\frac{1}{2}\left(l(l+d-3)+\frac{(d-2)(d-4)}{4}\right) t_{l, m}^{*} t_{l, m}\right.$
$\left.-\sum_{ \pm}\left(\bar{\psi}_{l m}^{ \pm} \nabla_{H^{2}} \psi_{l m}^{ \pm} \pm i\left(l+\frac{d}{2}-1\right)\left(\bar{\psi}_{l m}^{ \pm}\right)^{\dagger} \sigma^{3} \psi_{l m}^{ \pm}\right)\right]+\ldots$

Decompose into eigenfunctions of Laplacian and Dirac operator on $H^{2} \times S^{d-2}$ (GNY)

Scalar and fermion decompose as $\left\{\begin{array}{l}s=\sum_{l, m} t_{l m}(\rho, \tau) Y_{l m} \\ \Psi=\sum_{l, m}\left(\psi_{l m}^{+} \otimes \chi_{l m}^{+}+\psi_{l m}^{-} \otimes \chi_{l m}^{-}\right)\end{array}\right.$

$$
\begin{aligned}
S_{G N Y}=\int_{H^{2} \times S^{d-2}} \frac{d \tau d \rho}{\rho^{2}} d^{d-2} \Omega\left(\frac{\left(\nabla_{\mu} s\right)^{2}}{2}\right. & +\frac{(d-2)(d-4)}{8} s^{2}-\left(\bar{\Psi}_{i} \gamma \cdot \nabla \Psi^{i}+g_{1,0} s \bar{\Psi}_{i} \Psi^{i}\right) \\
& \left.+\frac{g_{2,0}}{24} s^{4}\right)+h_{0} \int d \tau s(\tau, \mathbf{0})
\end{aligned}
$$

\downarrow Normalization: $\int_{S^{2}} Y_{l, m}^{*} Y_{l^{\prime}, m^{\prime}}=\delta_{l l^{\prime}} \delta_{m m^{\prime}}, \quad \int_{S^{2}} \chi^{ \pm}{ }_{l m} \chi_{l^{\prime} m^{\prime}}^{ \pm}=\delta_{l l^{\prime}} \delta_{m m^{\prime}}$

$$
S_{G N Y}=\int \frac{d \tau d \rho}{\rho^{2}} \sum_{l, m}\left[\frac{\nabla_{\mu} t_{l, m}^{*} \nabla^{\mu} t_{l, m}}{2}+\frac{1}{2}\left(l(l+d-3)+\frac{(d-2)(d-4)}{4}\right) t_{l, m}^{*} t_{l, m}\right.
$$

$$
\left.-\sum_{ \pm}\left(\bar{\psi}_{l m}^{ \pm} \not \nabla_{H^{2}} \psi_{l m}^{ \pm} \pm i\left[\left(l+\frac{d}{2}-1\right)\right]\left(\bar{\psi}_{l m}^{ \pm}\right)^{\dagger} \sigma^{3} \psi_{l m}^{ \pm}\right)\right]+\ldots
$$

Decompose into eigenfunctions of Laplacian and Dirac operator on $H^{2} \times S^{d-2}$ (GNY)

Scalar and fermion decompose as $\left\{\begin{array}{l}s=\sum_{l, m} t_{l m}(\rho, \tau) Y_{l m} \\ \Psi=\sum_{l, m}\left(\psi_{l m}^{+} \otimes \chi_{l m}^{+}+\psi_{l m}^{-} \otimes \chi_{l m}^{-}\right)\end{array}\right.$

$$
\begin{aligned}
S_{G N Y}=\int_{H^{2} \times S^{d-2}} \frac{d \tau d \rho}{\rho^{2}} d^{d-2} \Omega\left(\frac{\left(\nabla_{\mu} s\right)^{2}}{2}\right. & +\frac{(d-2)(d-4)}{8} s^{2}-\left(\bar{\Psi}_{i} \gamma \cdot \nabla \Psi^{i}+g_{1,0} s \bar{\Psi}_{i} \Psi^{i}\right) \\
& \left.+\frac{g_{2,0}}{24} s^{4}\right)+h_{0} \int d \tau s(\tau, \mathbf{0})
\end{aligned}
$$

\downarrow Normalization: $\int_{S^{2}} Y_{l, m}^{*} Y_{l^{\prime}, m^{\prime}}=\delta_{l l^{\prime}} \delta_{m m^{\prime}}, \quad \int_{S^{2}} \chi^{ \pm}{ }_{l m} \chi_{l^{\prime} m^{\prime}}^{ \pm}=\delta_{l l^{\prime}} \delta_{m m^{\prime}}$

$$
S_{G N Y}=\int \frac{d \tau d \rho}{\rho^{2}} \sum_{l, m}\left[\frac{\nabla_{\mu} t_{l, m}^{*} \nabla^{\mu} t_{l, m}}{2}+\frac{1}{2}\left(l(l+d-3)+\frac{(d-2)(d-4)}{4}\right)\right] t_{l, m}^{*} t_{l, m}
$$

Decompose into eigenfunctions of Laplacian and Dirac

 operator on $H^{2} \times S^{d-2}(\mathrm{GN})$Scalar and fermion decompose as $\left\{\begin{array}{l}s=\sum_{l, m} t_{l m}(\rho, \tau) Y_{l m} \\ \Psi=\sum_{l, m}\left(\psi_{l m}^{+} \otimes \chi_{l m}^{+}+\psi_{l m}^{-} \otimes \chi_{l m}^{-}\right)\end{array}\right.$

$$
S_{G N}=-\int_{H^{2} \times S^{d-2}} d^{d} x \sqrt{g}\left(\bar{\Psi}_{i} \gamma \cdot \partial \Psi^{i}+\frac{1}{\sqrt{N}} \sigma \bar{\Psi}_{i} \Psi^{i}\right)+h \int d \tau \sqrt{g} \sigma(\tau, \mathbf{x}=0)
$$

Decompose into eigenfunctions of Laplacian and Dirac operator on $H^{2} \times S^{d-2}(\mathrm{GN})$

Scalar and fermion decompose as $\left\{\begin{array}{l}s=\sum_{l, m} t_{l m}(\rho, \tau) Y_{l m} \\ \Psi=\sum_{l, m}\left(\psi_{l m}^{+} \otimes \chi_{l m}^{+}+\psi_{l m}^{-} \otimes \chi_{l m}^{-}\right)\end{array}\right.$

$$
\begin{aligned}
& S_{G N}=-\int_{H^{2} \times S^{d-2}} d^{d} x \sqrt{g}\left(\bar{\Psi}_{i} \gamma \cdot \partial \Psi^{i}+\frac{1}{\sqrt{N}} \sigma \bar{\Psi}_{i} \Psi^{i}\right)+h \int d \tau \sqrt{g} \sigma(\tau, \mathbf{x}=0) \\
& \quad{ }^{\text {Normalization: }} \int_{S^{2}} Y_{l, m}^{*} Y_{l^{\prime}, m^{\prime}}=\delta_{l l^{\prime}} \delta_{m m^{\prime}}, \quad \int_{S^{2}} \chi^{ \pm}{ }_{l m} \chi_{l^{\prime} m^{\prime}}^{ \pm}=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \\
& S_{G N}=-\int \frac{d \tau d \rho}{\rho^{2}} \sum_{l, m} \sum_{ \pm}\left(\bar{\psi}_{l m}^{ \pm} \nabla_{H^{2}} \psi_{l m}^{ \pm} \pm i\left(l+\frac{d}{2}-1\right)\left(\bar{\psi}_{l m}^{ \pm}\right)^{\dagger} \sigma^{3} \psi_{l m}^{ \pm}\right)+\ldots
\end{aligned}
$$

Decompose into eigenfunctions of Laplacian and Dirac operator on $H^{2} \times S^{d-2}(\mathrm{GN})$

Scalar and fermion decompose as $\left\{\begin{array}{l}s=\sum_{l, m} t_{l m}(\rho, \tau) Y_{l m} \\ \Psi=\sum_{l, m}\left(\psi_{l m}^{+} \otimes \chi_{l m}^{+}+\psi_{l m}^{-} \otimes \chi_{l m}^{-}\right)\end{array}\right.$

$$
\begin{aligned}
& S_{G N}=-\int_{H^{2} \times S^{d-2}} d^{d} x \sqrt{g}\left(\bar{\Psi}_{i} \gamma \cdot \partial \Psi^{i}+\frac{1}{\sqrt{N}} \sigma \bar{\Psi}_{i} \Psi^{i}\right)+h \int d \tau \sqrt{g} \sigma(\tau, \mathbf{x}=0) \\
& \quad{ }^{\text {Normalization: }} \int_{S^{2}} Y_{l, m}^{*} Y_{l^{\prime}, m^{\prime}}=\delta_{l l^{\prime}} \delta_{m m^{\prime}}, \quad \int_{S^{2}} \chi^{ \pm}{ }_{l m} \chi_{l^{\prime} m^{\prime}}^{ \pm}=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \\
& S_{G N}=-\int \frac{d \tau d \rho}{\rho^{2}} \sum_{l, m} \sum_{ \pm}\left(\bar{\psi}_{l m}^{ \pm} \nabla_{H^{2}} \psi_{l m}^{ \pm} \pm i\left(l+\frac{d}{2}-1\right)\left(\bar{\psi}_{l m}^{ \pm}\right)^{\dagger} \sigma^{3} \psi_{l m}^{ \pm}\right)+\ldots
\end{aligned}
$$

Decompose into eigenfunctions of Laplacian and Dirac operator on $H^{2} \times S^{d-2}(\mathrm{GN})$

Scalar and fermion decompose as $\left\{\begin{array}{l}s=\sum_{l, m} t_{l m}(\rho, \tau) Y_{l m} \\ \Psi=\sum_{l, m}\left(\psi_{l m}^{+} \otimes \chi_{l m}^{+}+\psi_{l m}^{-} \otimes \chi_{l m}^{-}\right)\end{array}\right.$

$$
\begin{gathered}
S_{G N}=-\int_{H^{2} \times S^{d-2}} d^{d} x \sqrt{g}\left(\bar{\Psi}_{i} \gamma \cdot \partial \Psi^{i}+\frac{1}{\sqrt{N}} \sigma \bar{\Psi}_{i} \Psi^{i}\right)+h \int d \tau \sqrt{g} \sigma(\tau, \mathbf{x}=0) \\
\text { Normalization: } \int_{S^{2}} Y_{l, m}^{*} Y_{l^{\prime}, m^{\prime}}=\delta_{l l^{\prime}} \delta_{m m^{\prime}}, \quad \int_{S^{2}} \chi^{ \pm}{ }_{l m} \chi_{l^{\prime} m^{\prime}}^{ \pm}=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \\
S_{G N}=-\int \frac{d \tau d \rho}{\rho^{2}} \sum_{l, m} \sum_{ \pm}\left(\bar{\psi}_{l m}^{ \pm} \not \nabla_{H^{2}} \psi_{l m}^{ \pm} \pm i\left(l+\frac{d}{2}-1\right)\left(\bar{\psi}_{l m}^{ \pm}\right)^{\dagger} \sigma^{3} \psi_{l m}^{ \pm}\right)+\ldots \\
\downarrow \\
\hat{\Delta}_{l}^{f}=\frac{1}{2}+\left|m_{f}\right| \\
=\frac{d-1}{2}+l
\end{gathered}
$$

Summary of defect scaling dimensions

	GNY $d=4-\epsilon$	Large N
Leading defect scalar	$1+\frac{6}{(N+6)} \epsilon$	$1-\frac{2^{d+2}(d-1) \sin \left(\frac{\pi d}{2}\right) \Gamma\left(\frac{d-1}{2}\right)}{N d(d-2) \pi^{3 / 2} \Gamma\left(\frac{d}{2}-1\right)}$
Transverse spin l defect scalars	$1+l+\frac{6(1-l)}{(N+6)(1+2 l)} \epsilon$	$1+l+O\left(\frac{1}{N}\right)$
$U(N)$ fundamen- tal defect fermions	$\frac{3}{2}+l+O(\epsilon)$	$\frac{d-1}{2}+l+O\left(\frac{1}{N}\right)$

Summary of defect scaling dimensions

	GNY $d=4-\epsilon$	Large N
Leading defect scalar	$1+\frac{6}{(N+6)} \epsilon$	$1-\frac{2^{d+2}(d-1) \sin \left(\frac{\pi d}{2}\right) \Gamma\left(\frac{d-1}{2}\right)}{N d(d-2) \pi^{3 / 2} \Gamma\left(\frac{d}{2}-1\right)}$
Transverse spin l defect scalars	$1+l+\frac{6(1-l)}{(N+6)(1+2 l)} \epsilon$	$1+l+O\left(\frac{1}{N}\right)$
$U(N)$ fundamen- tal defect fermions	$\frac{3}{2}+l+O(\epsilon)$	$\frac{d-1}{2}+l+O\left(\frac{1}{N}\right)$

Spinning defect scalars in large N

- Look at defect operators induced by σ in defect channel OPE
- Two-point function of σ is

$$
\left\langle\sigma\left(x_{1}\right) \sigma\left(x_{2}\right)\right\rangle=\underbrace{\frac{h_{*}^{2} \mathcal{N}_{\sigma}^{2} \pi^{2}}{\left|\mathbf{x}_{1}\right|\left|\mathbf{x}_{2}\right|}}_{\text {from }}+\frac{\mathcal{N}_{\sigma}}{x_{12}^{2}}
$$

- From [Liendo, Linke, Schomerus 1903.05222]: should have tower of operators with dimensions $1+l+2 m$ with l the transverse spin and m the degeneracy per transverse spin:

$$
\frac{1}{x_{12}^{2}}=\frac{1}{\left|\mathbf{x}_{1}\right|\left|\mathbf{x}_{2}\right|} \sum_{m=0}^{\infty} \sum_{l=0}^{\infty} b_{m, l}^{2} \hat{f}_{1+l+2 m, l}
$$

- At $d=4, b_{m, l}^{2}=0$ unless $m=0 \Longrightarrow$ have a tower of operators with dimensions $1+l$ with degeneracy 0

Summary of defect scaling dimensions

	GNY $d=4-\epsilon$	Large N
Leading defect scalar	$1+\frac{6}{(N+6)} \epsilon$	$1-\frac{2^{d+2}(d-1) \sin \left(\frac{\pi d}{2}\right) \Gamma\left(\frac{d-1}{2}\right)}{N d(d-2) \pi^{3 / 2} \Gamma\left(\frac{d}{2}-1\right)}$
Transverse spin l defect scalars	$1+l+\frac{6(1-l)}{(N+6)(1+2 l)} \epsilon$	$1+l+O\left(\frac{1}{N}\right)$
$U(N)$ fundamen- tal defect fermions	$\frac{3}{2}+l+O(\epsilon)$	$\frac{d-1}{2}+l+O\left(\frac{1}{N}\right)$

Summary of defect scaling dimensions

	GNY $d=4-\epsilon$	Large N
Leading defect scalar	$1+\frac{6}{(N+6)} \epsilon$	$1-\frac{2^{d+2}(d-1) \sin \left(\frac{\pi d}{2}\right) \Gamma\left(\frac{d-1}{2}\right)}{N d(d-2) \pi^{3 / 2} \Gamma\left(\frac{d}{2}-1\right)}$
Transverse spin l defect scalars	$1+l+\frac{6(1-l)}{(N+6)(1+2 l)} \epsilon$	$1+l+O\left(\frac{1}{N}\right)$
$U(N)$ fundamen- tal defect fermions	$\frac{3}{2}+l+O(\epsilon)$	$\frac{d-1}{2}+l+O\left(\frac{1}{N}\right)$

Anomalous dimensions using equations of motion (GNY)

Lesson from [Rychkov, Tan 1505.00963]: can extract anomalous dimensions using the following
(a) conformal symmetry constrains form of correlators
(b) operators satisfy an equation of motion at the WF fixed point

Anomalous dimensions using equations of motion (GNY)

Lesson from [Rychkov, Tan 1505.00963]: can extract anomalous dimensions using the following
(a) conformal symmetry constrains form of correlators
(b) operators satisfy an equation of motion at the WF fixed point

- The bulk-boundary two-point function in GNY is constrained to take the form

$$
\left\langle s(x) \hat{s}_{l}\left(\tau^{\prime}, \mathbf{w}\right)\right\rangle=\frac{(\mathbf{x} \cdot \mathbf{w})^{l}}{|\mathbf{x}|^{\Delta_{s}-\hat{\Delta}_{l}^{s}+l}\left(\mathbf{x}^{2}+\left(\tau-\tau^{\prime}\right)^{2}\right)^{\hat{\Delta}_{l}^{s}}}
$$

where \mathbf{w} is a null auxiliary vector in embedding space, τ in direction of defect, \mathbf{x} in transverse direction

Anomalous dimensions using equations of motion (GNY)

Lesson from [Rychkov, Tan 1505.00963]: can extract anomalous dimensions using the following
(a) conformal symmetry constrains form of correlators

- The bulk-boundary two-point function in GNY is constrained to take the form

$$
\left\langle s(x) \hat{s}_{l}\left(\tau^{\prime}, \mathbf{w}\right)\right\rangle=\frac{(\mathbf{x} \cdot \mathbf{w})^{l}}{|\mathbf{x}|^{\Delta_{s}-\hat{\Delta}_{l}^{s}+l}\left(\mathbf{x}^{2}+\left(\tau-\tau^{\prime}\right)^{2}\right)^{\hat{\Delta}_{l}^{s}}}
$$

where \mathbf{w} is a null auxiliary vector in embedding space, τ in direction of defect, \mathbf{x} in transverse direction

- Applying bulk laplacian gives

$$
\begin{aligned}
\nabla^{2}\left\langle s(x) \hat{s}_{l}\left(\tau^{\prime}, \mathbf{w}\right)\right\rangle= & {\left[\frac{2 \hat{\Delta}_{l}^{s}\left(2 \Delta_{s}-d+2\right)}{\mathbf{x}^{2}+\left(\tau-\tau^{\prime}\right)^{2}}\right.} \\
& \left.-\frac{\left(\Delta_{s}-\hat{\Delta}_{l}^{s}+l\right)\left(d-3+l-\Delta_{s}+\hat{\Delta}_{l}^{s}\right)}{\mathbf{x}^{2}}\right]\left\langle s(x) \hat{s}_{l}\left(\tau^{\prime}, \mathbf{w}\right)\right\rangle
\end{aligned}
$$

Anomalous dimensions using equations of motion (GNY)

Lesson from [Rychkov, Tan 1505.00963]: can extract anomalous dimensions using the following
(a) conformal symmetry constrains form of correlators
(b) operators satisfy an equation of motion at the WF fixed point

Anomalous dimensions using equations of motion (GNY)

Lesson from [Rychkov, Tan 1505.00963]: can extract anomalous dimensions using the following
(a) conformal symmetry constrains form of correlators
(b) operators satisfy an equation of motion at the WF fixed point

$$
S_{G N Y}=\int d^{d} x \sqrt{g}\left(\frac{\left(\nabla_{\mu} s\right)^{2}}{2}-\left(\bar{\Psi}_{i} \gamma \cdot \nabla \Psi^{i}+g_{1} s \bar{\Psi}_{i} \Psi^{i}\right)+\frac{g_{2}}{24} s^{4}\right)+h \int d \tau s(\tau, \mathbf{0})
$$

Anomalous dimensions using equations of motion (GNY)

Lesson from [Rychkov, Tan 1505.00963]: can extract anomalous dimensions using the following
(b) operators satisfy an equation of motion at the WF fixed point
$S_{G N Y}=\int d^{d} x \sqrt{g}\left(\frac{\left(\nabla_{\mu} s\right)^{2}}{2}-\left(\bar{\Psi}_{i} \gamma \cdot \nabla \Psi^{i}+g_{1} s \bar{\Psi}_{i} \Psi^{i}\right)+\frac{g_{2}}{24} s^{4}\right)+h \int d \tau s(\tau, \mathbf{0})$
Applying bulk laplacian to bulk-boundary two-point function gives two diagrams at $O(\epsilon)$:

$$
\begin{aligned}
\nabla^{2}\left\langle s(x) \hat{s}_{l}\left(\tau^{\prime}, \mathbf{w}\right)\right\rangle= & \left\langle\left(\frac{g_{2}}{6} s^{3}+g_{1} \bar{\Psi}_{i} \Psi^{i}\right) \hat{s}_{l}\left(\tau^{\prime}, \mathbf{w}\right)\right\rangle \\
= & \frac{g_{2}}{2}\left\langle s^{2}(x)\right\rangle\left\langle s(x) \hat{s}_{l}\left(\tau^{\prime}, \mathbf{w}\right)\right\rangle \\
& \quad-g_{1}^{2} \int d^{d} x_{1}\left\langle\bar{\Psi}_{i} \Psi^{i}(x) \bar{\Psi}_{j} \Psi^{j}\left(x_{1}\right)\right\rangle\left\langle s\left(x_{1}\right) \hat{s}_{l}\left(\tau^{\prime}, \mathbf{w}\right)\right\rangle
\end{aligned}
$$

Anomalous dimensions using equations of motion

Compare each side

$$
\begin{aligned}
\nabla^{2}\left\langle s(x) \hat{s}_{l}\left(\tau^{\prime}, \mathbf{w}\right)\right\rangle= & {\left[\frac{2 \hat{\Delta}_{l}^{s}\left(2 \Delta_{s}-d+2\right)}{\mathbf{x}^{2}+\left(\tau-\tau^{\prime}\right)^{2}}\right.} \\
& \left.\quad-\frac{\left(\Delta_{s}-\hat{\Delta}_{l}^{s}+l\right)\left(d-3+l-\Delta_{s}+\hat{\Delta}_{l}^{s}\right)}{\mathbf{x}^{2}}\right]\left\langle s(x) \hat{s}_{l}\left(\tau^{\prime}, \mathbf{w}\right)\right\rangle \\
\nabla^{2}\left\langle s(x) \hat{s}_{l}\left(\tau^{\prime}, \mathbf{w}\right)\right\rangle= & \frac{g_{2}}{2}\left\langle s^{2}(x)\right\rangle\left\langle s(x) \hat{s}_{l}\left(\tau^{\prime}, \mathbf{w}\right)\right\rangle \\
& \quad-g_{1}^{2} \int d^{d} x_{1}\left\langle\bar{\Psi}_{i} \Psi^{i}(x) \bar{\Psi}_{j} \Psi^{j}\left(x_{1}\right)\right\rangle\left\langle s\left(x_{1}\right) \hat{s}_{l}\left(\tau^{\prime}, \mathbf{w}\right)\right\rangle
\end{aligned}
$$

The $O(\epsilon)$ terms in the top line are contained in the anomalous dimensions while the $O(\epsilon)$ terms in the bottom line are contained in the bulk coupling constants

- We can use free theory propagators in the integrals

Anomalous dimensions using equations of motion

After the dust settles we have

$$
\begin{aligned}
\hat{\gamma}_{l}^{s} & =\gamma_{s}+\frac{9 \epsilon}{(N+6)(1+2 l)} \\
\hat{\Delta}_{l}^{s} & =\Delta_{s}+l+\frac{9 \epsilon}{(N+6)(1+2 l)}=1+l+\frac{6(1-l)}{(N+6)(1+2 l)} \epsilon
\end{aligned}
$$

- Anomalous dimensions of defect and bulk operators match as $l \rightarrow \infty$, consistent with [Lemos, Liendo, Meineri, Sarkar 1712.08185]
Same technique can be used to find anomalous dimensions of defect operators in $O(N)$ with localized magnetic field
- Anomalous dimensions of defect scalars with transverse spin 0 and 1 computed in [Cuomo, Komargodski, Mezei 2112.10634]. Can extend this to generic transverse spin l using equation of motion

Consistency with the g-theorem

- Consider a conformally equivalent setup: a circular line defect of radius R
- It was proven in [Cuomo, Komargodski, Raviv-Moshe 2108.01117] that the following decreases monotonically under an RG flow localized on the defect

$$
\begin{aligned}
s & =\left(1-R \frac{\partial}{\partial R}\right) \log g \\
& =\log g \quad \text { at fixed points }
\end{aligned}
$$

where g is the expectation of the circular defect

$$
\begin{aligned}
g & =\left\langle e^{-h \int d \tau s}\right\rangle \\
\log g & =\log \left(Z^{\text {bulk+defect }} / Z^{\text {bulk }}\right)
\end{aligned}
$$

Consistency with the g-theorem

- In GNY we computed $\log g$ to first order in ϵ at $d=4-\epsilon$

and found consistency with the g-theorem

$$
\left.\log g\right|_{h=h_{*}}-\left.\log g\right|_{h=0}=-\frac{81 \epsilon}{2(N+6)\left(6-N+\sqrt{N^{2}+132 N+36}\right)}<0
$$

Summary

- Found a defect IR fixed point using both ϵ expansion and large N techniques
- Computed various DCFT data and saw consistency in overlapping regime of validity for ϵ expansion and large N
- Checked consistency with the g-theorem

Future directions

- GN model in $d=2+\epsilon$ perturbed by a fermion bilinear $h \int d \tau \bar{\Psi} \Psi(\tau, \mathbf{0})$
- Already infinite diagrams for free theory

- Test predictions using Monte-Carlo, similar to [Toldin, Assaad, Wessel 1607.04270] where they determine scaling dimensions of the defect operators for the pinning field defect in the Ising CFT in $d=3$

Thank you!

