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Introduction

* Perturbation theory is one of the few universal tools to study quantum field
theories

* However, to fully understand an interacting quantum field theory, it is
necessary to go beyond perturbation theory and eventually explore also the

strong-coupling regime

* This is in general a very difficult problem but, when there is a high amount of
symmetry, significant progress can be made, thanks to the combined use of

* Integrability
* Localization
* Holography



Introduction

e This is in fact the case of A/ = 4 SYM, where several exact results have been
obtained over the years:

e 2-and 3-point functions of protected scalar operators

e v.e.v. of BPS Wilson-loop

* cusp anomalous dimension

* Brehmsstrahlung function

* integrated 4-point functions of superconformal primaries

e octagon form factors in 4-point functions of very heavy scalar operators



N =4
« N =4 SU(N) SYM is the “simplest” gauge theory

* It is a superconformal theory with AdSs x Sy as holographic dual

e Simplest operators involving the fields of the vector multiplet (in N/ = 2 language)

* Chiral operators

Op(z) = tr¢"(x) primary operators with dimension n

* Wilson loop

1 . . 1 —\ -
W = NtrPeXp [édT(ZA“ aH + ﬁ(¢—|— ¢)‘ZED}



N =4

* Since the theory is conformal the form of 2 and 3 point functions is fixed

_ G
* 2-point function <On(ﬂi‘) On(y)> — iz — y[2"
. . e Gnl no2,Mn3
* 3-point function (O, (z) O, (y) Oy (2)) = n2,

o= 2Py - o

* |In the t'"Hooft planar limit (N — oo) the structure constants

Gnl,ng,ng L \/nl n2 ng

Cnl Nna,Nn3 —
, 7 \/Gnl \/Gn2 \/Gng N

. . 2
are Independent on the COUpllng A= NgYM ! Lee, Minwalla, Rangamani, Seiberg, 1998




N =4 Structure Constant

* This result has been obtained in the weak and in the strong regime with very

different techniques

weak coupling

0

strong coupling

0.0

»

A

SYM perturbation
theory

(Feynman diagrams)

Cnl 102,103

B \/nl nNo N3

N

»

AdS/CFT
correspondence

(Witten diagrams)

Lee, Minwalla, Rangamani, Seiberg, 1998

* |In this case we have a simple weak/strong extrapolation!



N =4 Wilson loop

e The case is different for the circular Wilson
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N =4 Wilson loop

e The case is different for the circular Wilson

weak coupling strong coupling

SYM perturbation 0O 00
theor >
/ A

1+@+®+..-
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— 1+ = 4.
(W) +8+192+

Erickson, Semenoff, Zarembo, 2000




N =4 Wilson loop

e The case is different for the circular Wilson

weak coupling strong coupling
SYM perturbation 0O 00 AdS/CFT
theory by correspondence
Y
1 + + 4. minimal area law
in AdS5

<W>:1_|_é_|_)\_2_|_ <W>_ \/X—%logA—l—%log%_|_...
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Erickson, Semenoff, Zarembo, 2000 Maldacena, 1998



N =4 Wilson loop

e The case is different for the circular Wilson

weak coupling strong coupling
SYM perturbation 0O 00 AdS/CFT
theory by correspondence
I
1 + + 4. minimal area law
in AdS5

<W>:1_|_é_|_)‘_2_|_... (W) = VA—5%log A+ 3 log 2+

38 ' 192 — €

Erickson, Semenoff, Zarembo, 2000 Maldacena, 1998
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Introduction

* As mentioned, there are many other examples of exact results in N =4 SYM

* Finding exact results in non-maximally supersymmetric theories like N/ = 2
theories is more challenging!

* In this talk | discuss a class of N' = 2 conformal theories in 4d where:
* One can find exact results, valid for all values of the coupling constant

* One can test the AdS/CFT holographic correspondence in a non-maximally
supersymmetric context



Introduction

* As mentioned, there are many other examples of exact results in N =4 SYM

* Finding exact results in non-maximally supersymmetric theories like N/ = 2
theories is more challenging!

* |n this talk | discuss a class of NV = 2 conformal theories in 4d:

N = 2 quiver gauge theories
SU(N) x SU(N) x --- x SU(N)

T ™

M times

e For simplicity in this talk | will consider the case M=2 \@1)/



Plan of the talk

« N/ = 2 quiver gauge theories:

e Exact results from localization

* Strong coupling expansion
* Wilson loop

e Conclusions



N =2 Quiver Theory



N =2 Quiver Theory

* |t is the “next-to-simplest” 4d gauge theory after N/ = 4 SYM
* |t arises as a Zo orbifold of N/ =4 SYM
* [t admits a simple string theory realization in terms of fractional D3-branes

N =2 SYM
N =2
SU/ NS)Y'V' SU(N)
N =4 SYM % %\/ﬁ
SU@2N) | \/ L
\ < H _/\ /\/ [\-
] \) \/ [~ L\/
o — | |
——~



N =2 Quiver Theory

SU(N) x SU(N) gauge group @
(
1 vector AI =0 -1

In each node: { 1 complex scalar¢ in the adjoint
+ fermions \
\

Between nodes: 2N bi-fundamental hypermultiplets ) p

1
V2

O Tuntwisted O~ twisted
( Zosymmetric) ( Zo anti-symmetric )

Local operators: Oki(x) =

(tr do ()" £ tr ¢y (az)k)

— function =0



N =2 Quiver Theory

* We are interested in studying 2- and 3-point functions and the corresponding
structure constants in the planar limit:

+ VZa R== G:I:
(O (@) O ) = 17— GE

+ 4, A+ Giot e \/GJF\/Gi\/Gi
<Ok (33) OE (y) Op (Z)> — |£C —z]2k|y—z]2£ k ¢ p
(p=k+1)

» The coefficients G , G,j;g,p : C,f,g,p are non trivial functions of N and A

* How can we compute them?



N =2 Quiver Theory

* At weak coupling one could use standard Feynman diagrams

-

«

— )

free propagators

e at tree level (A=0) O} (x) | / O (y)

* at loop level

done at the first orders....

Billd, Fucito, Lerda, Morales, Stanev, Wen, 2017 interaction vertices
Billo, Galvagno, Lerda, 2019




Localization

* A much more efficient way to compute these correlators is through
localization

which for a theory on a compact manifold (like a 4-sphere) reduces path
integrals to finite dimensional integrals in a

matrix model Pestun, 2007

* This method applies to the partition function, the v.e.v. of circular Wilson
loops, and the chiral/anti-chiral correlators

Baggio, Niarchos, Papadodimas, 2014, 2015
Gerchkovitz, Gomis, Ishtiaque et al, 2016
Rodriguez-Gomez, Russo, 2016

Billo, Fucito, Lerda, Morales, Stanev, Wen, 2017



Localization

* We are interested in computing correlators in R* but, since our theory is
conformal, we can easily map them to correlators in S4

~—_————

matrlx model

* and then exploit the power of localization to reduce the computation to a
matrix model correlator

conformal map localization

Quiver theory 1~ Quiver theory 1~ Matrix

on R* on S* model




Matrix model

e For our Zsy quiver theory the matrix model contains two N x N Hermitian
matrices ag and aq, corresponding to the v.e.v’s of o and @1

* The partition function is

—tr a? 2
Z = /( H dar e raf) !Z1_1oop><st’
I—0.1 (/y =1 when N —— 00

with \Zl_looplz — ¢~ and, in the large N limit

odd Riemann C-values

N

oo 2m
Sint = 2 Z z:(—l)mﬂC <87T)2\N) <21T> S (tr a%m_k — tr a%m_k) (tr alg — tr alf)

2m
m:2 k;:2

Galvagno, Preti 2020



Matrix model

 Since ¢r(x) —> ar one may think that

1 1
OF (x :—(tr 2)F + tr xk) ; (trak itrak) = AF
e (2) 7 bo(x) ¢1(x) 75\t a 1 k
* However, Oi (x)'s do not have self-contractions, while A‘s do, so the correct
map has to send (’),f(x) into the normal-ordered operator

Op(z) — OF =1A7i= ) My A

1<k
* and we have /\
_ GE
(OF(x) O (y)) = —E— +— (0;F0F)=G;  andsimilarly for the

— 2
[z =yl 3-point functions



Free matrix model (S, =0)

* |In the free Gaussian model, in the planar limit, one finds
Nk

k44
N\ —=—-1

k{p
+ Aty (Y + Nt Ot
<Ok Oe >o — k( 9 ) 5’%5 <Ok Oe Op >0 2\/5( 9 5k+€,p
1 NNk
° TaY I + —_ + i — _
Defining the normalized operators Py N O |, , with Gi = k( 5 )
one has
<Pki P€i>o = Ok, ¢ : > !
VEklp k /
<PI:P£iPz;_L>0 - V2N Ok+£,p

like in A" = 4 SYM (up to the V2 due to the orbifold)



Interacting matrix model

e Let us notice that the interaction action

oo 2m
Sint = 2 Z Z(—l)m+k (&T%N) (2;:) CQ;,; (trag™ " —trai™ ") (traf— traf)

m=2 k=2

depends only on the twisted operators:

1 |
S. = _Z P~ X. , P~ with k, ¢ both even or both odd,
e 2 ; kML otherwise zero

with

Xeo = —8VEL ) (=1)7 (k+ £+ 2p)! Chtt+2p—1 ( A
p=0

k+0+2p
2

plk+p)!l+p)(k+L+p) k+ L+ 2p \ 1672



Interacting matrix model

e Let us notice that the interaction action

oo 2m
Sint = 2 Z Z(—l)m%(&r%]v) (2;:) CQ;,; (trag™ " —trai™ ") (traf— traf)

m=2 k=2

depends only on the twisted operators:

1 .
S. = _Z P~ X. , P~ with k, ¢ both even or both odd,
t 2 ; k kLT otherwise zero
with |
k02K > dt el t\/7 tf
X, = —8(—1) " Vi J( )J( )
ot =1 /0 t (et —1)2 or )\ o

Beccaria, Billo, Galvagno, Hasan, Lerda, 2020
Beccaria, Dunne, Tseytlin, 2021;
Beccaria, Billo, M.F,, Lerda, Pini, 2021 + ...



Interacting matrix model

e Let us notice that the interaction action

oo 2m
Sint = 2 Z Z(—l)m+k (&T%N) (2;:) 2m =1 (trag™ " —trai™ ") (traf— traf)

2m
m=2 k=2

depends only on the twisted operators:

1 .
Sy = —— P~ X. , P~ with k, ¢ both even or both odd,
¢ 2 ; kKL otherwise zero
with |
k02K > dt et t\/X tﬂ
X, o = —8(—1)5 k4 J (—) J (—)
ot =1 /0 t (et —1)2 “\or ) \on

This convolution of Bessel functions contains the exact dependence of S;,.+
on the coupling constant |



The X matrix

The structure of
the X matrix is

X =

(Xz,z Xoa Xaog
Xa2 Xaa Xyg
X62 Xea X6

Xeven —

\

(X2,2

0

X4.2

0

X6.,2

0

\

Thus it is convenient to define

o

0 Xou 0 Xog O
X3z 0 X35 0 X3z
0 X474 0 X476 0
Xs3 0 Xs5 0 X7
0 X6’4 0 X6,6 0
X7z 0 X755 0 Xgy

Xodd _

n

X33 X35 Xz7
Xs53 Xs5 Xs57

X733 X KXoz

n




Interacting matrix model

* Given this expression for the interaction action
1 _ _
Sint — _5 Zpk Xk,épg
k0
» the 2-point functions of the untwisted operators do not change, and in the
planar limit one has

P P e S Pl P (e=5m
<P1:P£+>:<k : >O N <k £>O O:<P/3LP£+>0

<6_Sint>0 N —00 WO




Interacting matrix model

* Given this expression for the interaction action
1 _ _
Sint — _5 ;Pk Xk,épg

* For the twisted operators instead

o (P Ppe i)
<Pk PE > o <€_Sim>0

~ (PPt [ (PP S g+ (P BT Yo (S| + -

N |

\ | Y
Y
OOt gk X gk Xieo oy
» -+ » X > + ———— + ..




Interacting matrix model

* Given this expression for the interaction action

1 _ _
Sint — _5 ;Pk Xk,épg

* For the twisted operators instead

o 1
<Pk P£> — 5k,€+xk,€+Xi,g+"' — (—)ke = Dk,ﬁ k 14

Exact expression in Al



Interacting matrix model

e Also the 3-point functions can be computed in a similar way

k 0k ¢k ¢ k 0
o "
_|_ . 7
e Y+Y+Y+m ) \\r
|
p p ]')

p
Z\/kglp/D D
— 0.0 Yp.p
e/p/ \/§N
o s 5100 - ()
Defining  de Z\F 00 Z\F )0 one gets
fdgdp

<PI:FP£_PP_>: V2 N



Interacting matrix model| === Recap

1
+ The 2-point funct P- P = (—) =)
e 2-point functions (P P;) %) w
_ VEkd,d _
* The 3-point functions (PSP, Py = L de—ZWDM
V2 N 7

e Everything is formally expressed in terms of the X matrix

t

Xpo = —8(-1) 3 \/H/Ooocff ( — Jk(ﬂ) Jz(ﬂ)

el — 1) 2T 27

These formulas contains the exact dependence on the coupling constant !



Interacting matrix model| === Recap

1
The 2-point functi Po P = (—) — D
e 2-point functions (P P;) %) w
_ Vkd,d =
The 3-point functions (PSP, Py = Sl de=) VD
V2 N 7

However the P, are NOT the operators O, we are interested in, since
VO Py =0 |, ,but  O; = /Gy P

The correlators of the O, ‘s are combinations of the one of the P, s



2-point functions

det (1 — nginl])

det (1 — X[e?;f]en)

e After the normal

ordering one finds Gon = <02_” 02_”> = Yon

det (1 — Xedd )

N _ — — _ [n+1]
GZn—I—l o <02n—|—1 02n—|—1 — g2n—|—1 det (1 _Xodd)
kd
Nk
* where G, = k(;) and, for example,
(57— \ (X(,,é M X \
even Xlo2 Xaa Ryp - odd X33 Xpo <57
X[Q] — | Xd2 Xea KXo - X[3] = | Xt3 Xps Xog oo




2-point functions

e After the normal
ordering one finds

det (1 - X([%qﬁnu)

det (1 — X¢ve)

det (1 - Xffr?il])

GZ—n—I—l — <02—n—|—1 OZ—n—l—l — g2n—|—1 det (1 B X([),,;i]d)

These formulas are valid for any value of A |



2-point functions

weak coupling

0 00

strong coupling

0&4
_ det (1 - Xfﬁiil])
Gont1 = Gont1 det (1 — X‘[)d]d)

e Using the small A expansion of the Bessel functions, one obtains the weak-
coupling expansions. For example:

N+ + ONY)

3 N3 [1 5G5 ys, 105G\, 1701¢

Gy = 25676 109678 65536710

* The perturbative expansions have a finite radius of convergence A\ ~ 72 but
they can be re-summed a la Padé and extended beyond that limit.



2-point functions

weak coupling strong coupling

0 00

/(oo

det (1 - Xfﬁil}) z

det (1 — X‘[)S]d)

Goni1 = G2nt1

 More interestingly, we can derive analytically the strong-coupling expansions
of the 2-point functions. In fact



The X matrix at large A

The large A behaviour of the X matrix can be obtained by Mellin-Barnes techniques

Xodd -~ ~\S + O()\O) with Beccar{a, Billo, M.F,, Lerda , Pini, 2021
A—> 00 Beccaria, Dunne, Tseytlin, 2021 + ...
\\\\ 1 e o o
(1. o O 0 0 0 \
1 IRENE o2 ..
R S ) 0 0
2 i N IR
| 0 3v35 <. 6 T~ 64/T -l 02 0
-1 L JRRS
S = 5 0 0 6:/7 "~ 10T \/1_1\\ 0
1672 | | 0 0 U2 el Tl
15v/1T~~._ 157>~ 3./T43__
S gt -
0 0 0 0 N




2-point functions

weak coupling strong coupling

0 00

A
/(oo

det ( Xfﬁil}) z

det (1 — X‘[)?f]d)

Goni1 = G2nt1

 More interestingly, we can derive analytically the strong-coupling expansions
of the 2-point functions. In fact
xedd XS 4+ O\Y)

A— 00

e Heuristically

odd
det b(_ XOdd) -~ det(A S) det % X [n+1] ) N l
A—00 det (>]< XOdd> A—oo A




2-point functions

weak coupling strong coupling

0 00

/(oo

det (1 - Xfﬁil}) z

det (1 — X‘[)?f]d)

Goni1 = G2nt1

 More interestingly, we can derive analytically the strong-coupling expansions
of the 2-point functions. In fact

8m4n (2n +1)

_ _3
2n-+1 A:oo g2n—1—1 h\ + O()\ 2)
- 8m2n(2n —1 3
o~ Gl ot

A— 00 A\



2-point functions ===  Numerical checks

weak coupling strong coupling
0 o0
0.030+ A e o
: odd n
—\ _ G det (1 X[n—l—l])
I\ — Y2 1
0025, el = P et (1 — Xodd)
AN o N=50
AU A N=100
0.020 o Monte Carlo simulations

0015

» Strong coupling
0.010} Padé
0.005}

1000 1500 2000 2500 3000 3500 4000



2-point functions

e Actually, one can do more and derive the full strong-coupling expansion

m] VA 3 VA
log {det (1 — Xﬁ\;]e )_ = T — <2n — 5) lOg ( 47_‘_) + Bgn_l + f2n—1
1T VA 1 VA
log | det (1-X¢4")| = ¥ = (20— 5 ) 1og (5 ) + Ban + fan
Beccaria, Korchemsky, Tseytlin, 2022
where
B, = —6log A + % + %logQ — k log2 + logI'(k) A = Gleisher constant
fr = —(2k — 3)(2k — 1) log (A) (2% — 5)(2k — 3)(4k% — 1) —3 VN =V —4log?2
16 A 32)\/3/2

35 1 |
2 2
— (2k —7)(2k — 5)(4k” — 9)(4k* — 1)256)\—’5/2 + O(F) + non-perturbative terms



2-point functions

N

VA k—1 ‘. ~ t-
< A ) [1 T (k a 1)<2k o 1)(2]{7 — 3) )\/3/2 Uub-leading corrections

4k (k —1)

G, =G )

/\/

Leading Order term

— (k= 1)(2k — 3)(2k — 5)(4k? — 1) 169;;2 + 0(;3)]

+ non-perturbative terms

weak coupling strong coupling
0 A 0
V G,; &O‘
47‘(‘2 k (]C — 1) 3
— - A2
G, s Gr + O(N) G, N O ) + O\ 2)



3-point functions

* Asimilar analysis can be done for 3-point functions

* The calculations are simplified by observing that 3-point functions are
related to the 2-point functions by an exact Ward-like identity

L 1 _ _
Graw = (O 07 05) = oo\ (k4000 G (400G /(04 202G

Billo, M.F.,Lerda, Pini, Vallarino, 2022

 From these results one sees that at the leading order in A

Gr,, = (0f OF op>—fNch “p -0\ /6 e




3-point functions

* Asimilar analysis can be done for 3-point functions

* The calculations are simplified by observing that 3-point functions are
related to the 2-point functions by an exact Ward-like identity

L 1 _ _
Graw = (O 07 05) = oo\ (k4000 G (400G /(04 202G

Billo, M.F.,Lerda, Pini, Vallarino, 2022

e From these results one can derive the structure constants

Gk,f,p

N Eeen

Ck,e,p —

1
_ m\/k—l—)\@(logGZ) \/f—l—)\(%(lOgGg_) \/P+)\8A(1OgG5>



Structure constants

weak coupling strong coupling
0 00

A

Cpy = f \//HAaA log G) /£ + A0x( logG \/p+Aa,\ (log Gy )

O~ k(L—1)(p—1)

kLD 30 \/_N Crtr 37 V2 N

It follows from the AdS/CFT correspondence !

Billo, M.F,,Lerda, Pini, Vallarino, 2022



Holographic description

* The holographic dual of the quiver theory is the orbifold AdSs x S°/Z
whose fixed locus is AdSs x S

* Asin any orbifold, we have the untwisted and the twisted sectors



Holographic description

* The holographic dual of the quiver theory is the orbifold AdSs x S°/Z
whose fixed locus is AdSs x S

* Asin any orbifold, we have the untwisted and the twisted sectors

* The untwisted operators O;" are dual to K.K. modes of the metric and the R-R 4-

form fluctuations (as in N’ = 4) sk, whose effective action (derived from Type |l
B sugra in d=10) is

3

-
2

S = 2;%0 /Ads5d5z VY [Z Ag (VMSZ VHsr + k(k —4)s, sk) + Z (Vk,g’p Sy. Sp Sp + C.C.)]

k>2 k0.

Maldacena, 1997;
Lee, Minwalla, Rangamani, Seiberg, 1998; ...



Holographic description

From this action, using the holographic dictionary

8TNgs = A\, oavi=R?2 1 _ 1

262, (2m) g2/t

one computes the 2- and 3- point
functions from Witten diagrams

Sk
and gets
ot N VEkLp e
REP AS0 2N kAP | x=0

likein N =4




Holographic description

* The twisted operators O, are dual to K.K. modes of the twisted scalars 7
obtained by wrapping the NS-NS and R-R 2-forms on the exceptional 2-cycle

1 1 Gukov, 1998;
2o B(Z) C(g) Billo, M.F., Galvagno, Lerda,Pini, 2021
€ e

2o’

* Their effective action (derived from localizing Type Il B sugra at the orbifold fixed
point) is

2ma’)? 1 . . .
5= 12 ) / d’z/g [Z 2 (Vum Vi + k(k — 4)1; nk) + ) (Wk,e,p Sk g Mp + C-C-)] 2m
10 JAdSs k>2 \ v 1 k.l.p
Gukov, 1998
Wi s, = — (k+l—p)k+p—Ok+1+p-2)(k+L+p—4) Billo, ML.F., Lerda, Pini, Vallarino, 2022

N|

25 (k+1)



Holographic description

From this action, using the holographic dictionary

SWNgS:)\, a/\/X:RQ R (271'0/)2: 1 :”.:2(2]\[)21 1
4Kk7, 2(2m)%g2a’? (2m)3 A R*

one computes the 2- and 3- point
functions from Witten diagrams

and gets

Bl 3\ oo \/iN

First explicit check of the AdS/CFT correspondence in a non-maximally susy set-up.

in agreement with the localization result!



Holographic description === open questions

* The systematic strong-coupling expansion found for the structure constant

_ (LO) [ A\ 2 (1) G3 (2) Cs (3) (3
Crtp = Chtp ()\/) {1+ k:Ep)\/3/2_|_ k:ep)\/5/2+ ke,pﬁjL"'

once the gauge/gravity dictionary o’v/A = R2 is used, has the same form
expected for closed string amplitudes and, since at the moment explicit
calculations beyond the supergravity limit do not seem to be possible, this
analysis provides a very strong prediction for the string corrections.

* There is however a case in which a check of the AdS/CFT correspondence at the
string level seems possible... Ashok, Billd, M.F., Lerda, work in progress



Holographic description === open questions

* When we consider a Z,, quiver theory with M > 3, also 3-point functions of only
twisted operator are non trivial

G, =(080]0)), a+B+v=0modM Billd, M.F., Lerda, Pini, Vallarino, 2022

 From the field (and matrix) theory they are on the same footing of the others
and, at strong coupling

Gl (k-1DU{-1)(p-1) 1
ng N e ; Y A:oo \/ \/MN — Gk 6P )\—> )\3/2
Jarala




Holographic description === open questions

* When we consider a Z,, quiver theory with M > 3, also 3-point functions of only
twisted operator are non trivial

G}f,g,p = {(0¢ 05 Oy, a+pB+vy=0modM Billo, M.F.,, Lerda, Pini, Vallarino, 2022
 From the holographic point of view, since A~Y2 x o/ this means that the TTT-
couplings must have an extra power of o’ with respect to the UTT ones

1 T /3 . .
T T e (O X (v stringy coupling!
Grop T k.l.p gy piNg

Ashok, Billo, M.F., Lerda, work in progress



Wilson loop



Wilson loop

* Localization can also be exploited to compute correlators of local operators in a

defect CFT with Wilson loop.
* |n case of circular Wilson loop in the fundamental representation, this amounts
to insert in the matrix model correlators the operator

1 g
W = — trex —~— a
N p<\/§ )

* In A =4 many exacts results are known and in particular

2
WY = —— I, (V) ) — VG, In(V))
(W) 7 (V) (WO, (2)) = Y- ol

Erickson, Semenoff, Zarembo, 2000 Semenoff, Zarembo, 2001



Wilson loop

* In A/ = 2 some exacts results are known for the large N limit in the quiver
theory (or its orientifold — E-theory) Pini, Vallarino 2023

* 1-point function of twisted chiral operator in presence of Wilson loop:

Wp, (A, N _ |
(WO, (z)) = (AN) where wy, (A, N) can be obtained in the same way

(2 \x!)n discussed for local operators, for instance
1 ©.@)
w3 ()‘7 N) — N Z \/EDS,m Im(\/x) DS,m — V g3 D3,m

m=1



Wilson loop

* In A/ = 2 some exacts results are known for the large N limit in the quiver
theory (or its orientifold — E-theory) Pini, Vallarino 2023
* 1-point function of twisted chiral operator in presence of Wilson loop:

wn, (A, V) where wy, (A, N) ca be obtained in the same way
(27T W) discussed for local operators, for odd n

(WO, (1)) =

wn, (A, N) = Z\/_Dnm m (V) ZZ&M (A\)V/Gi Dy i

(=3 k=3

These formulas are valid for any value of A |



Wilson loop

In N = 2 some exacts results are known for the large N limit in the quiver
theory (or its orientifold — E-theory) Pini, Vallarino 2023

1-point function of twisted chiral operator in presence of Wilson loop:

wn () wn (L N) = ZWDW LV

O, (x)) = =
WO = G

(WO,
(WOn)lo

The strong coupling regime is obtained by carefully studying the ratio
with a mix of analytical and numerical techniques

WO n—1 Pini, Vallarino 2023
<§/VO KTO — \/X (47T T 2-69) Korchemsky, Pini, Vallarino, work in progress
mn




Mass deformation of N =4



N = 2* Gauge theories

N = 2*gauge theories are mass deformation of A/ = 4 in which we give mass
to the scalars of the adjoint hypers

* The sphere partition function of A/ = 2* has a non-trivial mass dependence
coming from Zi_1e0p and, at leading order in m?,

Zn—or = Zn—4 (1+m? M(X) + O(m?)) M(A) = (M(X,a) )o



N = 2* Gauge theories

N = 2*gauge theories are mass deformation of A/ = 4 in which we give mass
to the adjoint hypers

* The sphere partition function of A/ = 2* has a non-trivial mass dependence
coming from Zi_1e0p and, at leading order in m?,

Zn—g+ = Zn=4 (L+m? M(X) + O(m?)) M) = (M() a) o
* This leading term is interesting because

87- 87—- am2 ZN:Q*

0 X / dp (0,0, 0ROp) Oy =tre,  Op=tre;,

Binder, Chester, Pufu, Wang 2019
Dorigoni, Green, Wen 2021 + ...



N = 2* Gauge theories

N = 2*gauge theories are mass deformation of A/ = 4 in which we give mass
to the scalars of the adjoint hypers

* The sphere partition function of A/ = 2* has a non-trivial mass dependence
coming from Zi_1e0p and, at leading order in m?,

Zn—or = Zn—4 (1+m? M(X) + O(m?)) M(A) = (M(X,a) )o

 The local operator M(\,a) can be expressed in a form very similar to S;,,; of the
quiver theory in term of an infinite matrix Kg g

M — i KePePr Kip = —(—1)"F \/H/Oodt 12 ot <t\/_> (t\/_)

’ t (et — 2T 2T
= 0
=0 e ﬁ 1)?
slightly different kernel from X |




N = 2* Gauge theories

N = 2*gauge theories are mass deformation of A/ = 4 in which we give mass
to the adjoint hypers

* The sphere partition function of A/ = 2* has a non-trivial mass dependence
coming from Zi_1e0p and, at leading order in m?,

Zn—or = Zn—4 (1+m? M(X) + O(m?)) M(A) = (M(X,a) )o

* Intermsof Kg, one easily finds
“dt  t2¢! | 167
M(\) = N*Kgg = N? / 1 —
M) o o t (et —1) 12\

Jy

(5)




N = 2* Gauge theories

N = 2% gauge theories are mass deformation of N’ = 4 in which we give mass
to the adjoint hypers

The sphere partition function of N/ = 2* has a non-trivial mass dependence
coming from Zi_1e0p and, at leading order in m?,

Zn—or = Zn—4 (1+m? M(X) + O(m?)) M(A) = (M(X,a) )o

In terms of Ky, one easily finds

N2
87 87—- 5’m22N:2* |m:0 — T (2 Kll — K22)
These are exact expressions in A and their strong coupling limit can be studied

with the techniques discussed for the scalar correlators!  ginger chester, pufu, Wang 2019
Dorigoni, Green, Wen 2021 +...



N = 2* Gauge theories

 The same reasoning can be applied to the study of the vev of a circular Wilson
loop in N = 2* gauge theories, where we may expect that

am2 <W>N:2*

m—0 X / dlu <W(’)h(’)h> Pufu, Rodriguez, Wang 2023

Billo, M.F., Galvagno, Lerda, work in progress

* Using the method discussed before one sees that, in the large N limit

Oz (W)n=2¢|m=0 VA
N = L/ ; V2r I (V) Ko,2r




N = 2* Gauge theories

 The same reasoning can be applied to the study of the vev of a circular Wilson
loop in N = 2* gauge theories, where we may expect that

. o Pufu, Rodriguez, Wang 2023
am2 <W>N:2 m=0 X / d,LL <W0h0h> Billo, M.F., Galvagno, Lerda, work in progress
* Using the method discussed before one sees that, in the large N limit
02 (W) Ar—9 | =
m? < >N_2 m=0 _ Russo, Zarembo 2013
<W>N:4

21V A /Ood W
0 (

A(VA st TGV [TRVA) V) —wh(VA) Jo(CVA)



N = 2* Gauge theories

 The same reasoning can be applied to the study of the vev of a circular Wilson
loop in N = 2* gauge theories, where we may expect that

(9m2 <W>N:2*

_n X du (WO, O Pufu, Rodriguez, Wang 2023
m=0 / H < h h> Billo, M.F., Galvagno, Lerda, work in progress

* This method reproduce the known results in the simple case of N' = 2* where
the leading m? contributions can be computed in the free matrix model

e But it can be used also to compute the effects of mass deformations in theories

(like the quiver gauge theory we have discussed) that are associated to
interacting matrix models!



Conclusions and Perspectives



Conclusions and Perspectives

 The X matrix we have used for the study of the A/ = 2 quiver theory is very
similar to the K matrix that appear in the study of the mass deformed theories
and also to the matrix that is used for the analysis of the cusp anomalous

dimension in A/ = 4 SYM via the BES equation Beisert, Eden, Staudacher, 2006

XBES _4( )k+£+2ke \/—/ : et_ljk( \/7> JE( \/7)

2T 27

* |n this case non-perturbative exponentially small corrections were systematically
studied and a resurgent transseries structure for the cusp anomalous dimension
was discovered.

e |t would be nice to see if the same studies could be done for the observables we
just discussed along the lines initiated in Beccaria, Korchemsky, Tseytlin, 2022



Conclusions and Perspectives

* The X matrix we have used for the study of the A/ = 2 quiver theory is very

similar to the K matrix that appear in the study of the mass deformed theories

and also to the matrix that is used in the study of the cusp anomalous dimension
in A/ = 4 SYM via the BES equation

* |n any case the formalism of the “X matrix” is much more general than it seems
at first sight and it would be nice to uncover a general pattern!



Thank you for your attention!



