Cosmological Bootstrap in Slow Motion

Sadra Jazayeri Institut d'Astrophysique de Paris

Based on works with

Sébastien Renaux-Petel, Enrico Pajer, David Stefanyszyn, Harry Goodhew, Gordon Lee

Disclaimer: references incomplete

European Research Council Established by the European Commission

GE D E S I

- Cosmological Correlators from a Boundary Perspective
- Bootstrap Elements
- Cosmological Phonon Collider
- Final Remarks

Cosmological Correlators from a Boundary Perspective

• Lat time wave function of the universe/cosmological correlators are the only fundamental observables in Cosmology

• Lat time wave function of the universe/cosmological correlators are the only fundamental observables in Cosmology

quasi-dS background $ds^2 = a^2(\eta)(-d\eta^2 + d\mathbf{x}^2)$ $a(\eta) \sim -\frac{1}{\eta H}$

weakly coupled QFT $S = S_2[\phi] + S_{\mathrm{I}}[\phi]$

Pros	Cons
Explicitly unitary	Complex nested time integrals
(Hermitian Hamiltonian)	(lack of time translation in cosmology)
Explicitly local	Complex massive field mode
(local interactions at vertices)	functions
Explicit invariance under putative	Redundancies
symmetries	field redefinitions
(e.g. de Sitter isometries)	Gauge/Diff transformations

• The way out in flat space: on-shell methods

• Shifting the perspective: cosmological bootstrap aims at directly finding the boundary correlators without following the bulk time evolution

2017-2022: Arkani-Hamed, Baumann, Benincasa, Duaso Pueyo, Goodhew, Gorbenko, Jazayeri, Joyce, Lipstein, Lee McFadden, Meltzer, Melville, Pajer, Penedones, Pimentel, Sleight, Salehi-Vaziri, Stefanyszyn, Tarona

Earlier works: Bzowski et al (2011,2012, 2013), Raju (2012), Kundo et al (2013, 2015), Maldacena and Pimentel(2011)

Bootstrap Elements

I. Observables

• The wave function of the universe is approximately Gaussian. (Perturbative) departures from Gaussianity can be systematically captured with a set of wave function coefficients.

$$\Psi[\eta_{0},\phi] = \exp\left[-\sum_{n=2}^{+\infty} \frac{1}{n!} \int_{\mathbf{k}_{1}...\mathbf{k}_{n}} \psi_{n}(\{k\},\{\mathbf{k}\})(2\pi)^{3} \delta_{\mathrm{D}}^{(3)} \left(\sum_{a=1}^{n} \mathbf{k}_{a}\right) \phi(\mathbf{k}_{1}) \cdots \phi(\mathbf{k}_{n})\right]$$

"external energies"
$$k_{4}$$

I. Observables

• The wave function of the universe is approximately Gaussian. (Perturbative) departures from Gaussianity can be systematically captured with a set of wave function coefficients.

$$\Psi[\eta_0, \phi] = \exp\left[-\sum_{n=2}^{+\infty} \frac{1}{n!} \int_{\mathbf{k}_1...\mathbf{k}_n} \psi_n(\{k\}, \{\mathbf{k}\}) (2\pi)^3 \delta_{\mathrm{D}}^{(3)} \left(\sum_{a=1}^n \mathbf{k}_a\right) \phi(\mathbf{k}_1) \cdots \phi(\mathbf{k}_n)\right]$$

 $\psi_4(k_1, k_2, k_3, k_4, s, t)$ "internal energies" $s = |\mathbf{k}_1 + \mathbf{k}_2|, \quad t = |\mathbf{k}_1 + \mathbf{k}_3|, \quad u = |\mathbf{k}_1 + \mathbf{k}_4|$

Dilation Sym.
$$\Rightarrow \psi_n(\lambda \mathbf{k}_1, ..., \lambda \mathbf{k}_n) = \lambda^3 \psi_n(\mathbf{k}_1, ..., \mathbf{k}_n)$$

$$\psi_{4} = \int_{-\infty(1-i\epsilon)}^{0} a^{4}(\eta) d\eta a^{4}(\eta') d\eta' \partial_{\eta}^{\#} K(k_{1},\eta) \partial_{\eta}^{\#} K(k_{2},\eta) \partial_{\eta}^{\#} K(k_{3},\eta') \partial_{\eta}^{\#} K(k_{4},\eta')$$

$$\times F_{L}(\mathbf{k}_{1},\mathbf{k}_{2}) F_{R}(\mathbf{k}_{3},\mathbf{k}_{4}) G(s,\eta,\eta')$$
spatial derivatives
$$K(k,\eta) = \frac{\phi_{k}^{+}(\eta)}{\phi_{k}^{+}(\eta_{0})}$$

$$G(s,\eta,\eta') = i \left(\phi_{s}^{-}(\eta)\phi_{s}^{+}(\eta')\theta(\eta-\eta') + \eta \leftrightarrow \eta'\right) - i \frac{\phi_{s}^{-}(\eta_{0})}{\phi_{s}^{+}(\eta_{0})}\phi_{s}^{+}(\eta)\phi_{s}^{+}(\eta')$$

• Toy model: ϕ^3 in flat space (the wave function of the ground state in Minkowski)

contact diagram

Single exchange diagram

$$S = \int d\eta \, d^3 \mathbf{x} \left(-\frac{1}{2} (\partial_\mu \phi)^2 - \lambda \phi^3 \right) \xrightarrow{k_1 \atop k_2 \atop k_3}$$

٠

positive frequency mode function

$$\phi_k^+(\eta) = \frac{1}{\sqrt{2k}} e^{ik\eta}$$

$$\psi_3(k_1, k_2, k_3) = i3!\lambda \int_{-\infty(1-i\epsilon)} d\eta \, e^{i(k_1 + k_2 + k_3)\eta} = \frac{6\lambda}{k_1 + k_2 + k_3}$$

$$\psi_4 = \frac{-36\lambda^2}{(k_1 + k_2 + k_3 + k_4)(k_1 + k_2 + s)(k_3 + k_4 + s)}$$

II. Analyticity (for Bunch-Davis)

• The bulk integral representation of the wave function coefficient defines an analytic function on the lower-half complex plane of external energies.

 $\lim_{\eta \to -\infty} K(k,\eta) \propto \exp(+ik\eta) \qquad \qquad \text{Im}(k) < 0$

• The only allowed singularities (at tree-level) for each diagram are when the total energy of the graph or any of its subgraphs goes to zero. The residue of these singularities are related to flat-space amplitudes Raju 2012

$$E_T = k_1 + k_2 + k_3 + k_4 \to 0$$

II. Analyticity (for Bunch-Davis)

• The bulk integral representation of the wave function coefficient defines an analytic function on the lower-half complex plane of external energies.

 $\lim_{\eta \to -\infty} K(k,\eta) \propto \exp(+ik\eta) \qquad \qquad \text{Im}(k) < 0$

• The only allowed singularities (at tree-level) for each diagram are when the total energy of the graph or any of its subgraphs goes to zero. The residue of these singularities are related to flat-space amplitudes Raju 2012

$$E_T = k_1 + k_2 + k_3 + k_4 \rightarrow 0$$
$$E_L = k_1 + k_2 + s \rightarrow 0$$
$$E_R = k_3 + k_4 + s \rightarrow 0$$

Also see R. Porto, D. Green 2020

• For scattering amplitudes, unitarity is encoded in the non-perturbative Optical Theorem:

$$\operatorname{Im}(\operatorname{Im}(\operatorname{S})) = -\sum_{\alpha} (\operatorname{S})^{\alpha} (\operatorname{$$

• In perturbation theory, the optical theorem is the consequence of Cutkosky rules

Im
$$\int \propto \int \frac{d^4 p_{\text{loop}}}{(2\pi)^4} \times \int$$

Underpinning principles: reality of the couplings + $\operatorname{Im} \frac{1}{p^2 - m^2 + i \, 0^+} = -\pi \delta(p^2 - m^2)$

• Non-perturbative optical theorem for the wave function

$$U^{\dagger}(t)U(t) = 1 \Rightarrow \Psi_{\text{boundary}}$$
?

• In perturbation theory still we have

 $g^* = g$ reality of the couplings

 $K(k,\eta) = K^*(e^{-i\pi}k,\eta)$ Hermitian analyticity

 $\operatorname{Im} G(s, \eta, \eta') = 2P(s, \eta_0) \operatorname{Im} K(s, \eta) \operatorname{Im} K(s, \eta') \qquad \text{Image-factorization}$

Goodhew, SJ, Pajer 2020 Goodhew, SJ, Pajer, Lee 2021 Meltzer 2020

• These properties lead to a set of cutting rules for correlators similar to cutkosky rules in flat space. For example, for a tree-level exchange diagram one finds the following single-cut rule:

$$\psi_4(k_1, k_2, k_3, k_4, s) + \psi_4^*(-k_1, -k_2, -k_3, -k_4, s) = 2P_s \left(\psi_3(k_1, k_2, s) + \psi_3^*(-k_1, -k_2, s)\right) \left(\psi_3(k_3, k_4, s) + \psi_3^*(-k_3, -k_4, s)\right)$$

• These properties lead to a set of cutting rules for correlators similar to cutkosky rules in flat space. For example, for a tree-level exchange diagram one finds the following single-cut rule:

 $\psi_4(k_1, k_2, k_3, k_4, s) + \psi_4^*(-k_1, -k_2, -k_3, -k_4, s) = 2P_s \left(\psi_3(k_1, k_2, s) + \psi_3^*(-k_1, -k_2, s)\right) \left(\psi_3(k_3, k_4, s) + \psi_3^*(-k_3, -k_4, s)\right)$

Valid under very general assumptions about free theory:

- Bunch davis initial condition
- Accelerating FLRW background No dS symmetry needed
- Any mass and spin

• Non-perturbative statement?

 $[\phi(\eta_1, \mathbf{x}_1), \phi(\eta_2, \mathbf{x}_2)] = 0$ (spacelike pairs) $\Rightarrow \Psi_{\text{boundary}}$?

• In PT: only a strong version of locality and for massless fields

SJ, Pajer, Stefanyszyn 2021

$$\mathcal{L}_I = \sum_{n,m} \partial^n_\mu \, \phi^m \,, n \ge 0$$

 $\psi_4(k_1, k_2, k_3, k_4, s)$ finite at s = 0

• For massive-exchange diagrams: a boundary differential equation for the four-point function. For example,

$$\psi_4(k_1, k_2, k_3, k_4, s) = -\frac{4ig^2}{\eta_0^4} \int \frac{d\eta}{\eta^2} \frac{d\eta'}{\eta'^2} e^{i(k_1 + k_2)\eta} e^{i(k_3 + k_4)\eta'} G(s, \eta, \eta')$$

dS scale invariance:
$$\psi_4 = -\frac{4g^2}{\eta_0^4 s} F(u = \frac{s}{k_1 + k_2}, v = \frac{s}{k_3 + k_4})$$

• For massive-exchange diagrams: a boundary differential equation for the four-point function. For example,

$$\mathcal{O}_p(\eta)G_p(\eta,\eta') = \delta(\eta-\eta')$$

$$\mathcal{O}_k(\eta)K_k(\eta) = 0$$
$$\left[u^2(1-u^2)\partial_u^2 - 2u^3\partial_u + (\mu^2 + \frac{1}{4}) \right] F(u,v) = \frac{g^2uv}{u+v}$$

Bulk Local EOM's

Boundary differential equation

• For massive-exchange diagrams: a boundary differential equation for the four-point function. For example,

+ a similar PDE with $\ \ u, \partial_u
ightarrow v, \partial_v$

Cosmological Phonon Collider

Arkani-Hamed, Baumann, Lee, Pimentel 2018 /+ many works

Cosmological phonon collider

• Inflation can be seen as a phase of matter in which the time translation symmetry is spontaneously broken. The fluctuations around the vaccum can be described with a **Goldstone boson** that non-linearly realizes the broken time diffeomorphism

$$\phi = t + \pi(t, \mathbf{x})$$
 $\zeta \sim -H\pi$

$$S_{\pi} = \int d\eta \, d^3 \mathbf{x} \, a^2 \epsilon H^2 M_{\rm Pl}^2 \left[\frac{1}{c_s^2} \left(\pi'^2 - c_s^2 (\partial_i \pi)^2 \right) - \frac{1}{a} \left(\frac{1}{c_s^2} - 1 \right) \left(\pi' (\partial_i \pi)^2 + \frac{A}{c_s^2} \pi'^3 \right) + \dots \right]$$

(speed of sound) (large boost breaking interactions)

Cheung et al 2007

$$S_{\sigma}^{(2)} = \int d\eta d^3 \boldsymbol{x} \, a^2 \left(\frac{1}{2} \sigma'^2 - \frac{1}{2} (\partial_i \sigma)^2 - \frac{1}{2} m^2 a^2 \sigma^2 \right)$$
(unit sound speed)

Cosmological phonon collider

$$S_{\pi\sigma} = \int d\eta d^3 \mathbf{x} \, a^2 \, \left(\rho a \pi'_c \sigma + \frac{1}{\Lambda_1} \pi'^2_c \sigma + \frac{c_s^2}{\Lambda_2} (\partial_i \pi_c)^2 \sigma \right) \qquad \pi_c = \sqrt{2\epsilon} H M_{\rm Pl} c_s^{-1} \pi$$

Cosmological phonon collider

$$S_{\pi\sigma} = \int d\eta d^3 \mathbf{x} \, a^2 \, \left(\rho a \pi'_c \sigma + \frac{1}{\Lambda_1} \pi'^2_c \sigma + \frac{c_s^2}{\Lambda_2} (\partial_i \pi_c)^2 \sigma \right) \qquad \pi_c = \sqrt{2\epsilon} H M_{\rm Pl} c_s^{-1} \pi$$

 $E = c_s |\mathbf{k}|$ modified dispersion relation

mode function for free fields

$$\pi_c^{\pm}(k,\eta) = \frac{iH}{\sqrt{2c_s^3 k^3}} (1 \pm ic_s k\eta) \exp(\mp ic_s k\eta),$$

$$\sigma_+(k,\eta) = \frac{\sqrt{\pi H}}{2} \exp(-\pi \mu/2) \exp(i\pi/4)(-\eta)^{3/2} H_{i\mu}^{(1)}(-k\eta)$$

 $k_{
m L}/k_{
m S}$

 $k_{\rm L}/k_{\rm S}$

• A major simplification occurs in that, based on Feynman rules for the individual diagrams, one can see that the single exchange diagrams for massless field can be related to the <u>de Sitter invariant four-point function</u> of a conformally coupled field

• A major simplification occurs in that, based on Feynman rules for the individual diagrams, one can see that the single exchange diagrams for massless field can be related to the <u>de Sitter invariant four-point function</u> of a conformally coupled field

$$\langle \zeta(\mathbf{k}_{1})\zeta(\mathbf{k}_{2})\zeta(\mathbf{k}_{3})\rangle = \hat{W}(k_{1},k_{2},k_{3},\partial_{k_{i}}) \lim_{k_{4}\to 0} \varphi^{2} \varphi^$$

• The breaking of boost manifests itself both in the weight-shifting operators (boost breaking vertices) and also in the argument of the four-point function (different speeds of propagation)

• Therefore, the seed four-point function should be anaytically continued beyond the region allowed by triangle inequality. This fact hugely complicates the computation

• Therefore, the seed four-point function should be anaytically continued beyond the region allowed by triangle inequality. This fact hugely complicates the computation

$$\begin{array}{c} k_{1}, k_{2}, k_{3} \rightarrow c_{s}k_{1}, c_{s}k_{2}, c_{s}k_{3} \\ k_{4} \rightarrow 0 \\ s = |\mathbf{k}_{4} + \mathbf{k}_{3}| \rightarrow 0 \\ u \rightarrow \frac{k_{3}}{c_{s}(k_{1} + k_{2})}, v \rightarrow \frac{1}{c_{s}} \end{array}$$

u and v might be outside the unit disk

$$\begin{bmatrix} u^{2}(1-u^{2})\partial_{u}^{2}-2u^{3}\partial_{u}+(\mu^{2}+\frac{1}{4})\end{bmatrix} F(u,v) = \frac{g^{2}uv}{u+v}$$

$$F(u,v) = \sum_{m,n=0}^{\infty} (a_{mn}+b_{mn}\log(u))u^{-m}\left(\frac{u}{v}\right)^{n} + \sum_{\pm\pm}\beta_{\pm\pm}f_{\pm}(u)f_{\pm}(v)$$

$$f(u,v) = \sum_{m,n=0}^{\infty} (a_{mn}+b_{mn}\log(u))u^{-m}\left(\frac{u}{v}\right)^{n} + \sum_{\pm\pm}\beta_{\pm\pm}f_{\pm}(u)f_{\pm}(v)$$
Fixed by the cutting rule and analyticity at u=1
$$f(u,v) = \sum_{m,n=0}^{\infty} (a_{mn}+b_{mn}\log(u))u^{-m}\left(\frac{u}{v}\right)^{n} + \sum_{\pm\pm}\beta_{\pm\pm}f_{\pm}(u)f_{\pm}(v)$$

$$f(u,v) = \sum_{m,n=0}^{\infty} (a_{mn}+b_{mn}\log(u))u^{-m}\left(\frac{u}{v}\right)^{n} + \sum_{\pm\pm}\beta_{\pm\pm}f_{\pm}(u)f_{\pm}(v)$$
Fixed by the cutting rule and analyticity at u=1
$$f(u,v) = \sum_{m,n=0}^{\infty} (a_{mn}+b_{mn}\log(u))u^{-m}\left(\frac{u}{v}\right)^{n} + \sum_{\pm\pm}\beta_{\pm\pm}f_{\pm}(u)f_{\pm}(v)$$

je-i • Low speed collider $\bigvee m < H/c_s$

Final Remarks

- Cosmological bootstrap offers a powerful set of tools for computing cosmological correlators by shifting our focus from the bulk of spacetime to its boundary.
- On the theoretical frontier: (i) loop diagrams (ii)UV-IR relations at the level of correlators and positivity bounds for EFT operators in Cosmology (iii)non-perturbative bootstrap methods, etc.
- Further to Cosmological Phonon Collider: more general diagrams with multiple particle exchanges, potentially with larger non-Gaussianity, incorporating boost-bteaking massive spinning fields, etc.