Implications of Cosmological Dark Matter and Dark Radiation Constraints

Benjamin Wallisch

Based on work in preparation with Daniel Green and arXiv:2109.12088 with Daniel Green & Yi Guo

OKC BSM Group Meeting, Stockholm, October 2022

Early Universe

Observable Universe

Plan of the Talk

- Cosmic Microwave Background and Large-Scale Structure
- Dark Matter-Baryon Interactions
- Dark Radiation and Axion Couplings
- Conclusions

Plan of the Talk

- Cosmic Microwave Background and Large-Scale Structure
- Dark Matter-Baryon Interactions
- Dark Radiation and Axion Couplings
- Conclusions

In the early universe, photons and baryons were strongly coupled.

Perturbations excited sound waves in the photon-baryon fluid:

These acoustic oscillations have been observed...

... in the correlations of the cosmic microwave background (CMB) anisotropies:

... in the correlations of the cosmic microwave background (CMB) anisotropies:

... and in the distribution of galaxies in the universe via the spectrum of baryon acoustic oscillations (BAO):

Matter Power Spectrum

Why Consider Large-Scale Structure?

- Additional observational information.
- Complementary to cosmic microwave background observations.
- More observable modes: 2d (CMB) versus 3d (LSS).
- More statistical power (in principle).
- Accessibility of smaller scales (in principle).
- Vast observational effort in next few years: DES, DESI, LSST, Euclid, SPHEREx, ...

 \rightarrow Another window onto our universe!

Some Large-Scale Structure Observables

NASA, ESA and M. Brodwin

Plan of the Talk

- Cosmic Microwave Background and Large-Scale Structure
- Dark Matter-Baryon Interactions
- Dark Radiation and Axion Couplings
- Conclusions

• Effective description in terms of velocity-dependent cross-section:

$$\sigma(v) = \sigma_0 v^n$$

Linear Perturbation Theory

• Effective description in terms of velocity-dependent cross-section:

$$\sigma(v) = \sigma_0 v^n$$

• Boltzmann equations:

$$\begin{split} \dot{\delta}_{\chi} &= -\theta_{\chi} - \frac{h}{2} \,, \qquad \dot{\theta}_{\chi} = -\mathcal{H}\theta_{\chi} + c_{\chi}^{2}k^{2}\delta_{\chi} + R_{\chi}(\theta_{b} - \theta_{\chi}) \,, \\ \dot{\delta}_{b} &= -\theta_{b} - \frac{\dot{h}}{2} \,, \qquad \dot{\theta}_{b} = -\mathcal{H}\theta_{b} + c_{b}^{2}k^{2}\delta_{b} + R_{\gamma}(\theta_{\gamma} - \theta_{b}) + \frac{\rho_{\chi}}{\rho_{b}}R_{\chi}(\theta_{\chi} - \theta_{b}) \,. \end{split}$$

• Dark matter-baryon momentum exchange rate:

$$R_{\chi} = \frac{ac_n\rho_b\sigma_0}{m_{\chi} + m_H} \left(\frac{T_b}{m_H} + \frac{T_{\chi}}{m_{\chi}}\right)^{\frac{n+1}{2}} F_{\text{He}}$$

cf. Ma & Bertschinger (1995), Chen et al. (2002), Sigurdson et al. (2004), Dvorkin et al. (2014), Gluscevic & Boddy (2018), ...

Matter Power Spectrum

CMB Temperature Power Spectrum

 \rightarrow Planck constraints by Dvorkin (2014), Boddy & Gluscevic (2018), ...

But Remember: Gravitational Nonlinearities...

Matter Power Spectrum

Nonlinear spectrum computed using EFTofLSS.

Forecasts for Planck and BOSS

^{*}Cosmology with half of the dark matter interacting with baryons; the other half is collisionless

First Preliminary Bounds from BOSS DR12

^{*}Cosmology with half of the dark matter interacting with baryons; the other half is collisionless

Preliminary Projection on the Comparison Plot

Preliminary Forecasts for Future CMB and LSS Surveys

- CMB, i.e. Simons Observatory and CMB-S4:
 - could potentially improve the bounds by about 1-2 orders of magnitude,
 - with nonlinear CMB lensing contributing O(1) in sensitivity to linear CMB lensing
 - and a factor of up to 6 over linear unlensed TTTEEE-only.

- LSS, i.e. DESI, Euclid and more futuristic surveys:
 - may lead to sizable improvements, at least similar to CMB-S4,
 - details to be verified.

Plan of the Talk

- Cosmic Microwave Background and Large-Scale Structure
- Dark Matter-Baryon Interactions
- Dark Radiation and Axion Couplings
- Conclusions

Effective Number of Neutrinos

- Neutrinos: 41% of the radiation density in the universe $\rho_r = \left| 1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right| \rho_{\gamma}$
 - \rightarrow Leave gravitational imprint,
 - \rightarrow Can detect their energy density.
- Observable: "effective number of neutrinos" $N_{\text{eff}}^{\text{SM}} = 3.044$.

b

DM

Future Constraints from CMB and Large-Scale Structure

 \rightarrow Go beyond neutrinos and probe other light relics!

Future Constraints from CMB and Large-Scale Structure

 \rightarrow Go beyond neutrinos and probe other light relics!

Extra Light Species

Light and weakly interacting particles arise in many BSM models, e.g. from spontaneously broken global symmetries.

Classification of their interactions with the Standard Model in effective field theory:

Useful to classify according to spin \rightarrow dark scalars (e.g. axions), dark fermions, dark forces, gravitino.

Relic density $\rho_X(\Lambda)$ measured in terms of $N_{\text{eff}} = N_{\text{eff}}^{\text{SM}} + \Delta N_{\text{eff}}$:

$$\begin{split} \Delta N_{\rm eff}(T_F) &= \frac{\rho_X}{\rho_{\nu_i}} = 0.027 \, g_{*,X} \left(\frac{g_{*,\rm SM}}{g_{*}(T_F)} \right)^{4/3} \gamma^{-4/3} \\ & \uparrow & \uparrow \\ & f & \uparrow \\ & \text{effective number of relativistic} & \text{entropy production} \\ & \text{degrees of freedom} \end{split}$$

$$g_{*,X} = 1, \frac{4}{7}, 2, \dots$$
 for spin-0, $\frac{1}{2}, 1, \dots$ $g_{*,SM} = 106.75$

Relic density $\rho_X(\Lambda)$ measured in terms of $N_{\text{eff}} = N_{\text{eff}}^{\text{SM}} + \Delta N_{\text{eff}}$:

degrees of freedom

$$g_{*,X} = 1, \frac{4}{7}, 2, \dots$$
 for spin-0, $\frac{1}{2}, 1, \dots$ $g_{*,SM} = 106.75$

Assume:

- Negligible entropy production ($\gamma \approx 1$).
- Minimal extension of the Standard Model $(g_*(T \gg m_t) \approx g_{*,SM})$.

 $\longrightarrow \Delta N_{\text{eff}} \geq 0.027 g_{*,X}$

For a detailed discussion on these assumptions and more, see e.g. BW (2018)

cf. e.g. Baumann, Green & BW (2016)

Couplings to Standard Model Fermions

General Lagrangian:

$$\mathcal{L} = -\frac{\partial_{\mu}\phi}{\Lambda_{\psi}} \bar{\psi}_{i} \gamma^{\mu} \left(g_{V}^{ij} + g_{A}^{ij} \gamma^{5} \right) \psi_{j}$$

$$\rightarrow \frac{\phi}{\Lambda_{\psi}} \left(iH \bar{\psi}_{L,i} \left[\left(\lambda_{i} - \lambda_{j} \right) g_{V}^{ij} + \left(\lambda_{i} + \lambda_{j} \right) g_{A}^{ij} \right] \psi_{R,j} + \text{h.c.} \right) + \mathcal{O}(\phi^{2})$$

After the electroweak phase transition:

$$\mathcal{L} = i \frac{\phi}{\Lambda_{\psi}} \bar{\psi}_i \left[(m_i - m_j) g_V^{ij} + (m_i + m_j) g_A^{ij} \gamma^5 \right] \psi_j$$

Restrict to diagonal couplings:

$$\mathcal{L} = \mathrm{i}\frac{2m_i}{\Lambda_i}\phi\bar{\psi}_i\gamma^5\psi_i = \mathrm{i}\tilde{\epsilon}_i\phi\bar{\psi}_i\gamma^5\psi_i\,,\qquad \Lambda_i \equiv \Lambda_\psi/g_A^{ii}\,,\quad \tilde{\epsilon}_i \equiv \frac{2m_i}{\Lambda_i}$$

Rethermalization

For couplings to SM fermions after the electroweak phase transition:

Rethermalization

For couplings to SM fermions after the electroweak phase transition:

Remember: rethermalization at $H(T) \sim \Gamma(T)$

Avoid Rethermalization Abundance

Boltzmann-suppress the rethermalization abundance by requiring the would-be rethermalization temperature to be below the mass of the coupled SM fermion:

Avoid Rethermalization Abundance

Boltzmann-suppress the rethermalization abundance by requiring the would-be rethermalization temperature to be below the mass of the coupled SM fermion:

Axion-Fermion Interaction Rate

Calculation of the interaction rate without common approximations:

Here: muons, but similar for couplings to other massive SM fermions.

Solving the Boltzmann equation, we predict:

* Calculations for charm and bottom couplings are impacted by the QCD phase transition. Here: conservative estimate, might be larger.

Green, Guo & BW (2021)

Solving the Boltzmann equation, we predict:

* Calculations for charm and bottom couplings are impacted by the QCD phase transition. Here: conservative estimate, might be larger.

Green, Guo & BW (2021)

Our predictions in comparison to current and future constraints:

* Calculations for charm and bottom couplings are impacted by the QCD phase transition. Here: conservative estimate, might be larger.

Green, Guo & BW (2021)

Focusing on the couplings to leptons:

Constraints on Axion Couplings to Matter Fields

Exclusion of certain levels of $\Delta N_{\rm eff}$ leads to constraints on these axion couplings:

Axion-Fermion Interaction Rate

To compare the cosmological bounds to those from supernova cooling:

Comparison to Astrophysical and Terrestrial Constraints

Current and upcoming CMB surveys can put complimentary and competitive constraints on axion-fermion couplings by avoiding freeze-in:

Plan of the Talk

- Cosmic Microwave Background and Large-Scale Structure
- Dark Matter-Baryon Interactions
- Dark Radiation and Axion Couplings
- Conclusions

Conclusions

• CMB and LSS observations (and underlying theory) are now precise enough to put interesting constraints on fundamental physics, e.g. inflation, neutrinos, light relics and dark matter.

• EFT-of-LSS treatment allows for first bounds on dark matter-baryon scattering from BOSS galaxy clustering.

• Constraints on ΔN_{eff} do not only have implications on particle physics via freeze-out, but couplings to SM fermions can also be competitively constrained.

