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The Reed-Frost model

Ø Assumptions:
§ Latency of 1 time unit, instantaneous infectious period (discrete)
§ Each susceptible escapes infection from each infectious 

independently with probability       (non-random)
§ random number of susceptibles and infective in gen

Ø Then:
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Standard stochastic SIR model

Ø Population of      individuals

Ø Upon infection, each case   :
§ remains infectious for a duration            , iid
§ makes infectious contacts with each person in the population at 

the points of a homogeneous Poisson process with rate

Ø Contacted individuals, if susceptible, become infected

Ø Recovered individuals are immune to further infection

Ø Special cases:
§ Constant infectious period: 
§ Markovian case: 
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Time-varying-infectivity model (TVI) 

Ø Population of      individuals

Ø At time     after infection, each case :
§ makes infectious contacts with each person in the population at 

the points of an inhomogeneous Poisson process with rate

Ø Contacted individuals, if susceptible, become infected

Ø Individuals do not recover (often you make them recover after a 
fixed amount of time)

Ø Special cases:
§ Constant infectivity: 
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Random TVI model

Ø Population of      individuals

Ø At time     after infection, each case :
§ makes infectious contacts with each person in the population at 

the points of an inhomogeneous Poisson process with rate

Ø Contacted individuals, if susceptible, become infected

Ø Individuals do not recover (often you make them recover after a 
fixed amount of time)

Ø Special cases:
§ sSIR: 
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Key epidemiological quantities

Now focus on single (fast) epidemic in a large populations with few 
initial infectives only.

Can we provide some summary information of the full dynamics? 

Ø Time-independent quantities:
§ Threshold condition
§ Probability of a large outbreak
§ Epidemic final size
§ Critical vaccination coverage

Ø Time-dependent quantities:
§ Real-time growth rate
§ Duration of an epidemic



MULTI-TYPE MODELS

Next-generation matrix
Reproduction number
Final size
Growth rate



Multi-type models

Ø Distinguish individuals in “types”:
§ Identify epidemiologically relevant characteristics (age, sexual 

activity, geographical location…)
§ Describe the interaction of each type towards each other type

Ø Note that ”type” may be dependent or independent of infection
§ sometimes susceptibles have a type (e.g. age)
§ sometimes the type is attributed at the time of infection (e.g. strain)

Ø Most ideas carry on from single-type models:
§ Infectivity profiles
§ Small vs large population
§ Key epidemiological quantities of interest
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Multitype epidemic model

Ø Different types of individuals

Ø Define the next generation matrix (NGM):

where       is the average number of type- cases generated by a 
type- case, throughout the entire infectious period, in a fully 
susceptible population
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Multitype epidemic model

Ø Different types of individuals

Ø Define the next generation matrix (NGM):

where       is the average number of type- cases generated by a 
type- case, throughout the entire infectious period, in a fully 
susceptible population

Properties of the NGM:
§ Non-negative elements
§ We assume the matrix is primitive
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Perron-Frobenius theory

Ø Single dominant eigenvalue                 , which is positive and real

Ø “Dominant” eigenvector      has non-negative components

Ø For every starting condition, after a few generations, the 
proportions of cases of each type in a generation converge to the 
components of the dominant eigenvector     , with per-generation 
multiplicative factor 
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Exercise: find R0 by iterations 
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Exercise: find R0 by iterations 
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Perron-Frobenius theory

Ø Single dominant eigenvalue                 , which is positive and real

Ø “Dominant” eigenvector      has non-negative components

Ø For every starting condition, after a few generations, the 
proportions of cases of each type in a generation converge to the 
components of the dominant eigenvector     , with per-generation 
multiplicative factor 

Ø Define 

Ø Interpret “typical” case as a linear combination of cases of each 
type given by 
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Basic reproduction number R0

Naïve definition:

“    Average number of new cases generated by a typical case, 
throughout the entire infectious period, in a large and otherwise 
fully susceptible population    ”
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Final size

Ø Given:
§ number of individuals of type
§ fraction of population of type
§ elements of the NGM

Ø Let:
§ fraction of type     population ultimately infected

Ø Then:

and the overall fraction of the population infected is
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Real-time growth rate

Ø Single-type model:     
§ is the implicit solution of the Euler-Lotka equation

Ø Multitype model:
§ Construct the matrix

§ Compute its dominant eigenvalue             , which depends on             
§ is the implicit solution of 
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Fraction of types in real-time

Ø Once we have found    , we know that        has dominant 
eigenvalue 1

Ø The corresponding eigenvector      gives the (constant) proportions 
of individuals of each type present at any point during the 
exponentially growing phase

Ø Simple case: 
§ If                           , then

i.e.

§ so            , even if generations tend to overlap
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The problem of small mixing groups

Ø For large populations the concept of     ,   , small/large outbreak are 
useful, but result from a linearisation process (e.g. BP)

Ø In small populations, the linearisation is not possible but also not 
useful

Ø But if the population is large AND the number of individuals one 
interact with is small, the linearisation is useful, but not trivial

Ø Basic idea is still to imbed a branching process, though this is not 
always possible

Ø In general, one needs to solve the local dynamics, which are non-
linear because of local depletion of susceptibles

0R r
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Network models

Ø People connected by a static network of 
acquaintances

Ø Simple case: no short loops, i.e. locally tree-like
§ Repeated contacts
§ First case is special
§ is not a threshold
§ Define:

[ ]0 2 1| 1R X X= =E
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Network models
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§ Repeated contacts
§ First case is special
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§ Define:
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Basic reproduction number R0

Naïve definition:

“    Average number of new cases generated by a typical case, 
throughout the entire infectious period, in a large and otherwise 
fully susceptible population    ”

What is a typical case? 

What do we mean by fully susceptible population?



Network models

Ø People connected by a static network of 
acquaintances

Ø Simple case: no short loops, i.e. locally tree-like
§ Repeated contacts
§ First case is special
§ is not a threshold
§ Define:

Ø Difficult case: short loops, clustering
§ Maybe not even possible to use branching 

process approximation or define 

[ ]0 2 1| 1R X X= =E

[ ]1 1X =E
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Model illustration

Pellis, Ferguson & Fraser (2009)
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sSIR households model

Ø Population of       households with of size 

Ø Upon infection, each case   :
§ remains infectious for a duration            , iid
§ makes infectious contacts with each household member 

according to a homogeneous Poisson process with rate
§ makes contacts with each person in the population according to 

a homogeneous Poisson process with rate

Ø Contacted individuals, if susceptible, become infected

Ø Recovered individuals are immune to further infection
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Household size distribution

Ø maximum size of a household

Ø probability that a randomly selected household has size

Ø Then the probability that the household of a randomly selected 
individual has size     is:

Ø Every quantity of interest should simply be average over this 
distribution, e.g.
§ average epidemic size in a household of size 
§ then

where 
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Household reproduction number R*

Ø Consider a within-household epidemic 
started by one initial case 

Ø Define:
§ average household final size, 

excluding the initial case
§ average number of global 

infections an individual makes

Ø “Linearise” the epidemic process at the 
level of households:

Lµ =

Gµ =

( ): 1G LR µ µ* = +

Pellis, Ball & Trapman (2012)



Household reproduction number R*

Ø Consider a within-household epidemic 
started by one initial case 

Ø Define:
§ average household final size, 

excluding the initial case
§ average number of global 

infections an individual makes

Ø “Linearise” the epidemic process at the 
level of households:
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Individual reproduction number RI

Ø Attribute all further cases in a household to the primary case

Ø is the dominant eigenvalue of        :

Ø More weight to the first case than it should be 
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Individual reproduction number RI

Ø Attribute all further cases in a household to the primary case

Ø is the dominant eigenvalue of        :

Ø More weight to the first case than it should be 
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Further improvement: R2

Ø Approximate tertiary cases:
§ average number of cases infected by the primary case
§ Assume that each secondary case infects       further cases
§ Choose                       , such that                                                                    

so that the household epidemic yields the correct final size

Ø Then:

and       is the dominant eigenvalue of 
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Opposite approach: RHI

Ø All household cases contribute equally

Ø Less weight on initial cases than what it 
should be

:
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Opposite approach: RHI

Ø All household cases contribute equally

Ø Less weight on initial cases than what it 
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Perfect vaccine

Ø Assume 

Ø Define       as the fraction of 
the population that needs to 
be vaccinated to reduce     
below 1

Ø Then

Leaky vaccine

Ø Assume 

Ø Define        as the critical 
vaccine efficacy (in reducing 
susceptibility) required to 
reduce       below 1 when 
vaccinating the entire 
population

Ø Then

Vaccine-associated 
reproduction numbers RV and RVL
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Naïve construction of R0

Ø Consider a within-household epidemic started by a single initial 
case. Type = generation they belong to.

Ø Define                                      the expected number of cases in 
each generation

Ø Let         be the average number of global infections from each case

Ø The next generation matrix is:
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More formal approach (I)

Ø Notation:
§ average number of cases in generation      and household-

generation 
§ average number of cases in generation      and 

any household-generation

Ø System dynamics:

Ø Derivation:
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More formal approach (II)

Ø System dynamics:

Ø Define

Ø System dynamics:

where 
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More formal approach (III)

Ø Let
§ dominant eigenvalue of
§ “dominant” eigenvector

Ø Then, for             :

Ø Therefore:
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Ø Recall: Ø Define:

Ø Then:

Ø So:

Similarity
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Comparison 
between reproduction numbers

Ø Goldstein et al (2009) showed that

1R* = 1VLR = 1rR = 1VR = 1HIR =Û Û Û Û
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Comparison 
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Ø Goldstein et al (2009) showed that
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Comparison 
between reproduction numbers

Ø Goldstein et al (2009) showed that

Ø To which we added

Ø In a growing epidemic:

Ø To which we added that, in a declining epidemic:

1R* = 1VLR = 1rR = 1VR = 1HIR =Û Û Û Û

1IR = 0 1R = 2 1R =Û Û Û

R* IR VR 0R³ ³³ 2R HIR³³

R* IR VR 0R£ ££ 2R HIR££

Pellis, Ball & Trapman (in preparation)



Fundamental interpretation

Ø For each reproduction number      , define a r.v.        describing the 
generation index of a randomly selected infective in a household 
epidemic 

Ø Distribution of        is

Ø Nice result:

Ø Therefore:
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Practical implications

Ø , so vaccinating                     is not enough

Ø Goldstein et al (2009):

Ø Now we have sharper bounds for      :

0³VR R
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11= -p
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0V HIIR R RR R* ³ ³ ³ ³

V HIR RR* ³ ³

VR



Why so long to come up with R0?



Basic reproduction number R0

Naïve definition:

“    Average number of new cases generated by a typical case, 
throughout the entire infectious period, in a large and otherwise 
fully susceptible population    ”

What is a typical case? 

What do we mean by fully susceptible population?



Why so long to come up with R0?
Ø Typical infective:

§ “Suitable” average across all cases during a household epidemic
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Why so long to come up with R0?
Ø Typical infective:

§ “Suitable” average across all cases during a household epidemic

Ø Types are given by the generation index:
§ not defined a priori
§ appear only in real-time
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Why so long to come up with R0?
Ø Typical infective:

§ “Suitable” average across all cases during a household epidemic

Ø Types are given by the generation index:
§ not defined a priori
§ appear only in real-time

Ø “Fully” susceptible population:
§ the first case is never representative
§ need to wait at least a few full households epidemics
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ADVANCED TOPICS

Final size of households model
Extensions: households-workplaces model
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Ø Notice that in the end the within-household final size is the same you 
would obtain if all external infections occurred at the beginning

Ø expected final size assuming that each individual escapes 
infection from outside independently with probability
§ the number of initial cases is

Ø expected epidemic size in a household with      and      initial 
susceptibles and infectives, and no infection from outside

Ø Then

Ø Consider a household of size 

Ø Consider the epidemic graph 

Ø Consider infections from outside as they occur 
during the epidemic

Household epidemic 
with external infection
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Ø The expected final size      must 
be the largest solution in          of 

Ø It is possible to prove that            if 
and only if   

Ø expected fraction of the population infected

Ø Then, approximately,

Ø But because (almost) all households are identical and fully susceptible,  
nnmust also be the expected fraction of infectives in each household

Average epidemic final size
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Households-workplaces model

Pellis, Ferguson & Fraser (2009)



Model description

Assumptions:

Ø Each individual belongs to a household and a workplace

Ø Rates               and        of making infectious contacts in each 
environment

Ø No loops in how households and workplaces are connected, i.e. 
locally tree-like

,H Wl l Gl

Pellis, Ferguson & Fraser (2009)



Construction of R0

Ø Define                                          and                                               
for the households and workplaces generations

Ø Define

Ø Then       is the dominant eigenvalue of

where         
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