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» Introduction
» The infectivity profile (recap)
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» Assumptions:

= Latency of 1 time unit, instantaneous infectious period (discrete)

» Each susceptible escapes infection from each infectious
independently with probability ¢ (non-random)

= X,,Y, = random number of susceptibles and infective in gen k

> Then:

P, =y.1X,=x,,Y,=y,...X, =x.,Y, =,)
=P = | Xy =x..Y, = y,)

_ X, oy Ve ye Yk Ykt
(ykﬂj(l ! ) (q )

Andersson & Britton (2000)
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Population of n individuals J/ —

Upon infection, each case i:
= remains infectious for a duration I, ~ I, iid Vi I

= makes infectious contacts with each person in the population at
the points of a homogeneous Poisson process with rate 4 = /n

Contacted individuals, if susceptible, become infected

Recovered individuals are immune to further infection

Special cases:
= Constant infectious period: I =1
= Markovian case: I ~EXxp(y)
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Time-varying-infectivity model (TVI)uiesoeimaes

A

» Population of n individuals m
» Attime 7 after infection, each case i: >

> 7

= makes infectious contacts with each person in the population at
the points of an inhomogeneous Poisson process with rate

A(r) = B(r)/n

» Contacted individuals, if susceptible, become infected

» Individuals do not recover (often you make them recover after a
fixed amount of time)

» Special cases:
= Constant infectivity: B(z)= 1

{0<z<1}

Pellis, Ferguson & Fraser (2010)
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Random TVI mOdeI The University of Manchester
A -
" . " " I/ \\
Population of n individuals ,'I 2N B(7)
1/’ \\\\\\
At time 7 after infection, each case i: /A —=--2 > T

= makes infectious contacts with each person in the population at
the points of an inhomogeneous Poisson process with rate

A(t)=B(t)/n

Contacted individuals, if susceptible, become infected

Individuals do not recover (often you make them recover after a
fixed amount of time)

Special cases:
= sSIR: B(r)=p1

{O<z<I}

Pellis, Ferguson & Fraser (2010)
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Key epidemiological quantities  miiesieimacies

Now focus on single (fast) epidemic in a large populations with few
initial infectives only.

Can we provide some summary information of the full dynamics?

» Time-independent quantities:
» Threshold condition
= Probability of a large outbreak
= Epidemic final size
= Critical vaccination coverage

» Time-dependent quantities:
» Real-time growth rate
» Duration of an epidemic
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Reproduction number
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» Distinguish individuals in “types”:

» |dentify epidemiologically relevant characteristics (age, sexual
activity, geographical location...)

= Describe the interaction of each type towards each other type

» Note that "type” may be dependent or independent of infection
= sometimes susceptibles have a type (e.g. age)
= sometimes the type is attributed at the time of infection (e.g. strain)

» Most ideas carry on from single-type models:
= |nfectivity profiles
= Small vs large population
= Key epidemiological quantities of interest
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» Multi-type models
= Next-generation matrix
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» Different types of individuals

» Define the next generation matrix (NGM):

k11 k12 o kln,
K = k21 kzz
k,, - o k,,

where k_ is the average number of type-i cases generated by a
type-j case, throughout the entire infectious period, in a fully
susceptible population

Diekmann, Heesterbeek & Britton (2013)
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M u Ititype e pidem ic mOdeI The University of Manchester

» Different types of individuals

» Define the next generation matrix (NGM):

k11 k12 o kln,
K = k, k,
k,, - -k,

where k. is the average number of type-i cases generated by a
type-j case, throughout the entire infectious period, in a fully
susceptible population

Properties of the NGM:
= Non-negative elements
= We assume the matrix is primitive

Diekmann, Heesterbeek & Britton (2013)
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Perron-Frobenius theory

Single dominant eigenvalue A = p(K), which is positive and real
“Dominant” eigenvector v has non-negative components

For every starting condition, after a few generations, the
proportions of cases of each type in a generation converge to the
components of the dominant eigenvector v , with per-generation
multiplicative factor A

Diekmann, Heesterbeek & Britton (2013)
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Exercise: find R, by iterations e

K:(l 2) 10:(1]:’”0"0 mo:|lo|:1 vozi:(ll
3 4 0 m, |0
11=K10=(1 2)[1j=(1j=(mo)mlvl m, =4 vlz(o.zsj

3 410 3 0.75
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Exercise: find R, by iterations e

3 4 0 m, \0
1 1 0.25
(O] = (J = (mo)mlv1 m, =4 V= (0.75j

7 ( ) 55 0.32
=\mm \m.,y m, =)D. Vv, R
oftt, ),V 2 2% 0.6%

1 2Y(7) (37 0.31
L=KL=| ) 157 g1 )7 (momma vy me =536 vim| ) o

where Kv=A
k—o \v:[()?)lj |4 14
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Perron-Frobenius theory

Single dominant eigenvalue A = p(K), which is positive and real
“Dominant” eigenvector v has non-negative components

For every starting condition, after a few generations, the
proportions of cases of each type in a generation converge to the
components of the dominant eigenvector v , with per-generation
multiplicative factor A

Define R, =A

Interpret “typical” case as a linear combination of cases of each
type given by v

Diekmann, Heesterbeek & Britton (2013)
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» Multi-type models

= Basic reproduction number
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Naive definition:
“ Average number of new cases generated by a typical case,
throughout the entire infectious period, in a large and otherwise

fully susceptible population ”
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“ Average number of new cases generated by a typical case,
throughout the entire infectious period, in a large and otherwise

fully susceptible population ”

What is a typical case?
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Basic reproduction number R,  unesyaimes

Naive definition:

111

Average number of new cases generated by a typical case,
throughout the entire infectious period, in a large and otherwise
fully susceptible population ”

What is a typical case?

What do we mean by fully susceptible population?
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» Multi-type models

= Final size
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Given:

" n, = number of individuals of typei, i =1,2,...,n
* h,=n,/ N = fraction of population of type i

. k,-,- = elements of the NGM

t

Let:
"z = fraction of type ; population ultimately infected
Then:
k,-j hj
—Z;njzj —szijzj .
l-z,=¢ '’ " =€ /" i=1,2,...,n

and the overall fraction of the population infected is 7 = Zh,.z,-
i=1

Andersson & Britton (2000)



MANCHESTER
1824

O u tI i n e The University of Manchester

» Multi-type models

= Growth rate
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Rea I -ti m e g rOWth rate The University of Manchester

» Single-type model:

= r is the implicit solution of the Euler-Lotka equation

Ly6)=[ Br)e*dr=1

» Multitype model:
= Construct the matrix

L, (0)
H, :(J‘oooﬂij(f)e_ard’t')= :

L, @)

L, (6)

L, @)

= Compute its dominant eigenvalue p(H ), which depends on 4

= r is the implicit solution of
p(H,)=1

Diekmann, Heesterbeek & Britton (2013)
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Fraction Of types in real-time The University of Manchester

Once we have found r, we know that H_, has dominant
eigenvalue 1

The corresponding eigenvector v, gives the (constant) proportions
of individuals of each type present at any point during the
exponentially growing phase

Simple case:
" If B,(t)=k,w(r), then

H, ([ B,@edz|=([ kowedr | (k)| oedr

.e. 1
Hr — ? K
0
= so v, =v, even if generations tend to overlap
Diekmann, Heesterbeek & Britton (2013)
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Local interactions
Basic reproduction number

NETWORK MODELS
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= Growth rate

> Network models
= [ ocal interactions
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The problem of small mixing groups s

>

For large populations the concept of R, r, small/large outbreak are
useful, but result from a linearisation process (e.g. BP)

In small populations, the linearisation is not possible but also not
useful

But if the population is large AND the number of individuals one
interact with is small, the linearisation is useful, but not trivial

Basic idea is still to imbed a branching process, though this is not
always possible

In general, one needs to solve the local dynamics, which are non-
linear because of local depletion of susceptibles
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> Network models

= Basic reproduction number
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People connected by a static network of
acquaintances

Q Q

Simple case: no short loops, i.e. locally tree-like ) \ O

\ s
= Repeated contacts O---d Redl
= First case is special RS ¢ o
* E[X,]=1 is not a threshold O 2 \\Q- -
= Define: o :;1\ SN 9

O

o 3J

RO:E[X2|X1=1]
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People connected by a static network of
acquaintances

Simple case: no short loops, i.e. locally tree-like ,? Q\‘ RS
= Repeated contacts O=--- g

» First case is special 7 N5
* E[X,]=1 is not a threshold O )

= Define: o~ " v O

R, =E[X,| X, =1]
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Netwo rk mOdeIs The University of Manchester

People connected by a static network of
acquaintances

Simple case: no short loops, i.e. locally tree-like

= Repeated contacts O=---

» First case is special Rt

* E[X,]=1 is not a threshold ©

= Define: o~ v O

R =E|X,| X, =1]
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Basic reproduction number R,  unesyaimes

Naive definition:

111

Average number of new cases generated by a typical case,
throughout the entire infectious period, in a large and otherwise
fully susceptible population ”

What is a typical case?

What do we mean by fully susceptible population?
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People connected by a static network of
acquaintances

Simple case: no short loops, i.e. locally tree-like

= Repeated contacts O=---

» First case is special R

* E[X,]=1 is not a threshold ©

= Define: o~ , v O
o \c‘> g ©

R =E|X,| X, =1]

Difficult case: short loops, clustering

| | |
| | |
O=-=-0--0-
| | |
| | |
= Maybe not even possible to use branching - - C,D- - ‘.- - <|>- -
process approximation or define R, l | |
Q- - ¢
| | |
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Introduction

Reproduction numbers

Basic reproduction number

Comparison between reproduction numbers

THE HOUSEHOLDS MODEL
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» Households models
= Model formulation
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Pellis, Ferguson & Fraser (2009)
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Population of m households with of size n,

Upon infection, each case i:
= remains infectious for a duration I, ~ 1, iid Vi

= makes infectious contacts with each household member
according to a homogeneous Poisson process with rate A, = 8, /n,,

» makes contacts with each person in the population according to
a homogeneous Poisson process with rate 4, = 8./ N

Contacted individuals, if susceptible, become infected

Recovered individuals are immune to further infection

Ball & Neal (2002)
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Household size distribution

n, = maximum size of a household
h = probability that a randomly selected household has size n

Then the probability that the household of a randomly selected
individual has size pn is:

T - nh,

n ny
anl nh,

Every quantity of interest should simply be average over this
distribution, e.g.

(n)
" H

= then

— average epidemic size in a household of size n

R, =y (1 + ,uL) where U, = iﬂnﬂin)
n=1

Pellis, Ball & Trapman (2012)
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» Households models

= Reproduction numbers
= Basic reproduction number

= Comparisons between
reproduction numbers
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Household reproduction number R* ‘i sines

>

Consider a within-household epidemic
started by one initial case

Define:

= u, = average household final size,
excluding the initial case

= u. = average number of global
infections an individual makes

“Linearise” the epidemic process at the
level of households:

R =pu,;(1+u,)

Pellis, Ball & Trapman (2012)
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>

Consider a within-household epidemic
started by one initial case

Define:

= u, = average household final size,
excluding the initial case

= u. = average number of global
infections an individual makes

“Linearise” the epidemic process at the
level of households:

R =pu,;(1+u,)
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Individual reproduction number R, inesyeriae

» Attribute all further cases in a household to the primary case
M, - (ﬂa ,u(;j
t#, O
» R, is the dominant eigenvalue of M, :
R, :&KH /1+ Hy j
2 Hg

» More weight to the first case than it should be

Pellis, Ball & Trapman (2012)
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» Attribute all further cases in a household to the primary case
M, - (ﬂa ,u(;j
t#, O
» R, is the dominant eigenvalue of M, :
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2 Hg

» More weight to the first case than it should be
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F u rt h e r i m p rove m e nt : R2 The University of Manchester

» Approximate tertiary cases:

= 4, = average number of cases infected by the primary case
= Assume that each secondary case infects p further cases
= Choose p :l_M//‘L’ such that

p#(1+b+b> + b +...)=%=h,

so that the household epidemic yields the correct final size

ﬂl b

and R, is the dominant eigenvalue of M,

Pellis, Ball & Trapman (2012)
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OppOSite approaCh: RHI The University of Manchester

» All household cases contribute equally

My
I+u

Ry, =g +

» Less weight on initial cases than what it
should be

Pellis, Ball & Trapman (2012)
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OppOSite approaCh: RHI The University of Manchester

» All household cases contribute equally

My
I+u

Ry, =g +

» Less weight on initial cases than what it
should be

Pellis, Ball & Trapman (2012)



Vaccine-associated
reproduction numbers Ry and Ry, euesieioe

Perfect vaccine

>
>

Assume R >1

Define p. as the fraction of
the population that needs to
be vaccinated to reduce R,

below 1

Then

R, :

Dc

MANCHESTER
1824

Leaky vaccine

> Assume R, >1

» Define E_ as the critical
vaccine efficacy (in reducing
susceptibility) required to
reduce R, below 1 when
vaccinating the entire
population

> Then

Pellis, Ball & Trapman (2012)
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» Households models

= Basic reproduction number
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Naive construction of R,

Consider a within-household epidemic started by a single initial
case. Type = generation they belong to.

Define u, = I»M»ﬂz»~~-»ﬂn,,_1 the expected number of cases in
each generation

Let u. be the average number of global infections from each case

The next generation matrix is:

He Mg M M M

y7; 0

K = M, / H, :
ﬂnH /ﬂnH—l O

Pellis, Ball & Trapman (2012)



More formal approach (l)

> Notation:
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= X, , = average number of cases in generation k and household-

generation {

ny -1 . .
"X, = Z X, ; =average number of cases in generation k and

i=0

any household-generation

» System dynamics:

> Derivation:

Xro = He Z Xk_1,i
i=0
Xii = HiXp_io I<i<n, -1
Xpo = HeXy_
Xpi = HiHeXy_i 1<i< ny —1

ng—1 ng—1

R ST
koo T He pr Hitiici Pellis, Ball & Trapman (2012)
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System dynamics: X, , = tsX,

Xpi = HiBeXy_i 1<i<mn, -1
ny -1 ny -1

X =Y X =l > X
i=0 i=0

- (k) _
Define x —(xk,xk_l,... X )

>V k—ng+1

System dynamics:
ONEPENNC)

where Hcly HcHi HcH,  HcH,
I 0
A, = 1 :
1 0 Pellis, Ball & Trapman (2012)




More formal approach (lil)

Let

= A= p(AnH ) = dominant eigenvalue o,
" V=,v,..,V, )= “‘dominant” eigenvector

”Iell, for k —> 0.
k k

k k-1
/="

—V

—> A

X, /x._ DA

Therefore:

R

MANCHESTER
1824

The University of Manchester

Pellis, Ball & Trapman (2012)



> Recall:

He
H,

\

He My
1

Similarity
2% He He He
0
M :
lunH /IunH—l O
Hcl  HcH, HcH,,
0
1 :
| 0

MANCHESTER
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> Define;
H

M,

S =
/‘lnH—Z
lunH—I/

> Then:

K=84, S
> So:

p(K)zp(AnH)=RO

Pellis, Ball & Trapman (2012)
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» Households models

= Comparisons between
reproduction numbers
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Comparison
between reproduction numbers et

» Goldstein et al (2009) showed that
R=1 < R,=1 & R=1 < R =1 < R,=1

Pellis, Ball & Trapman (in preparation)
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» Goldstein et al (2009) showed that
R=1 < R,=1 & R=1 < R =1 < R,=1

» In a growing epidemic:

R, > R

* = VL

> R, > R

HI

R > R

* — r

Pellis, Ball & Trapman (in preparation)



Comparison

1824

between reproduction numbers et

» Goldstein et al (2009) showed that
R=1 < R,=1 & R=1 < R =1 < R,=1

» In a growing epidemic:

<
\Y
=

HI

Pellis, Ball & Trapman (in preparation)
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between reproduction numbers et

» Goldstein et al (2009) showed that
R=1 < R,-1 © R=1 < R =1 & R,=1
» To which we added
< R =1 & R=1 & R =1
» In a growing epidemic:

> R > R

4

Pellis, Ball & Trapman (in preparation)
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between reproduction numbers et

» Goldstein et al (2009) showed that

R=1 < R,=1 & R=1 < R =1 < R,=1

» To which we added

< R =1 & R=1 < R =1

» In a growing epidemic:

R > R

* , > R, >

V

0

> R

v
=

2 HI

» To which we added that, in a declining epidemic:

<

0

< R, < R

HI

Pellis, Ball & Trapman (in preparation)
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Fundamental interpretation

» For each reproduction number R ,, define ar.v. X , describing the
generation index of a randomly selected infective in a household
epidemic

A
> Distribution of X, is P{X,=k}=—%—  0<k<+w
I+ p

Non-normalised cumulative distribution of XA

2.8

> Nice result: S

st
X, < X, = R, > R,

A

>  Therefore:

\Y
=
\Y

R > R, > R,

*k

r r r r r r r r
1 2 3 4 5 6 7 8 9

Pellis, Ball & Trapman (in preparation)
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Practical implications

1
» R, >R, ,sovaccinating p ZI—F is not enough

0

» Goldstein et al (2009):

R > R > R,

> Now we have sharper bounds for R,

R >R >R, > R > R,
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Basic reproduction number R,  unesyaimes

Naive definition:

111

Average number of new cases generated by a typical case,
throughout the entire infectious period, in a large and otherwise
fully susceptible population ”

What is a typical case?

What do we mean by fully susceptible population?
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Why so long to come up with Ry? e

» Typical infective:
= “Suitable” average across all cases during a household epidemic

( Hg Mg H¢ Hg Mg )
H, 0
K = M, / H, :

\ K., //unH—l 0 y,
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Why so long to come up with Ry? e

» Typical infective:
= “Suitable” average across all cases during a household epidemic

(/‘G Mg H¢ Hg /‘G\
y7; 0
K = /‘2//‘1 i
/unH /IunH—l O

» Types are given by the generation index:
» not defined a priori
= appear only in real-time
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» Typical infective:
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= “Suitable” average across all cases during a household epidemic

(/‘G Mg H¢
H,
K = M, / H,

Mg

/unH /IunH—l

» Types are given by the generation index:

>

» not defined a priori
= appear only in real-time

“Fully” susceptible population:

= the first case is never representative

= need to wait at least a few full households epidemics

Mg
0

0
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Final size of households model
Extensions: households-workplaces model

ADVANCED TOPICS
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» Advanced concepts

= Final size for the
households model
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with external infection

Consider a household of size n
Consider the epidemic graph

Consider infections from outside as they occur
during the epidemic

Notice that in the end the within-household final size is the same you
would obtain if all external infections occurred at the beginning

a, (€)= expected final size assuming that each individual escapes
infection from outside independently with probability g

= the number of initial cases is ¥, ~Bin(n,1-¢)

a, , = expected epidemic size in a household with x, and y, initial

X0,

susceptibles and infectives, and no infection from outside

n (n
Then a,(e)= Z(kj(l—g)kb‘"kank,k
k=0

Ball, Mollison & Scalia-Tomba (1997)
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Average epidemic final size

z = expected fraction of the population infected

Then, approximately,
luG —Hc2
g(z)=exp| ——=Nz |=e "¢
(2) p( N j

But because (almost) all households are identical and fully susceptible,
z must also be the expected fraction of infectives in each household

— =0 :

The expected final size 7 must w|=h=1 T wg=2
be the largest solution in [0,1] of =15
. 1 Mg =1

0=a,(s0))/n

It is possible to prove that z >0 if | #o =0

andonly if R >1

Ball, Mollison & Scalia-Tomba (1997)
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Households-workplaces model  woevenmaee

Pellis, Ferguson & Fraser (2009)



MANCHESTER
1824

Model description
Assumptions:
» Each individual belongs to a household and a workplace
» Rates A,,4, and 4. of making infectious contacts in each
environment
» No loops in how households and workplaces are connected, i.e.

locally tree-like

Pellis, Ferguson & Fraser (2009)
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Construction of R,

Define u' =L a1 .o, yand p =L’ ) ,.op, |
for the households and Workp}iaces generations

Define n, =n, +n,

Then R, is the dominant eigenvalue of

CO cl ch—3 ny—2
1 0
4, = 1 L
1 0

where ¢, =y, Z yl.Hy;V+ Z yl.H,u;V, 0<k<n,-2

i+j=k i+j=k+l1
0<i<ny -1 1<i<nj -1
0<j<ny -1 1<j<ny -1 Pellis, Ball & Trapman (2012)



