

Stochastic epidemic models: introducing heterogeneities

Lorenzo Pellis

NORDITA Program

Stockholm, 29th May – 22nd June 2023

- Introduction
 - The infectivity profile (recap)
 - Key quantities of interest
- Multi-type models
 - Next-generation matrix
 - Basic reproduction number
 - Final size
 - Growth rate
- Network models
 - Local interactions
 - Basic reproduction number

- Households models
 - Model formulation
 - Reproduction numbers
 - Basic reproduction number
 - Comparisons between reproduction numbers
- Advanced concepts
 - Final size for the households model
 - Extensions: householdsworkplaces models

The University of Manchester

The infectivity profile (recap) Key quantities of interest

INTRODUCTION

- Introduction
 - The infectivity profile (recap)
 - Key quantities of interest
- Multi-type models
 - Next-generation matrix
 - Basic reproduction number
 - Final size
 - Growth rate
- Network models
 - Local interactions
 - Basic reproduction number

- Households models
 - Model formulation
 - Reproduction numbers
 - Basic reproduction number
 - Comparisons between reproduction numbers
- Advanced concepts
 - Final size for the households model
 - Extensions: householdsworkplaces models

The Reed-Frost model

- > Assumptions:
 - Latency of 1 time unit, instantaneous infectious period (discrete)
 - Each susceptible escapes infection from each infectious independently with probability q (non-random)
 - X_k, Y_k = random number of susceptibles and infective in gen k
- > Then:

$$P(Y_{k+1} = y_{k+1} | X_0 = x_0, Y_0 = y_0, ..., X_k = x_k, Y_k = y_k)$$

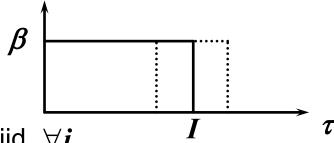
= $P(Y_{k+1} = y_{k+1} | X_k = x_k, Y_k = y_k)$
= $\binom{x_k}{y_{k+1}} (1 - q^{y_k})^{y_{k+1}} (q^{y_k})^{x_k - y_{k+1}}$

Andersson & Britton (2000)

Standard stochastic SIR model

- > Population of n individuals
- > Upon infection, each case i:
 - remains infectious for a duration $I_i \sim I$, iid $\forall i$
 - makes infectious contacts with each person in the population at the points of a homogeneous Poisson process with rate $\lambda = \beta/n$
- Contacted individuals, if susceptible, become infected
- Recovered individuals are immune to further infection

- Special cases:
 - Constant infectious period: $I \equiv t$
 - Markovian case: $I \sim \text{Exp}(\gamma)$

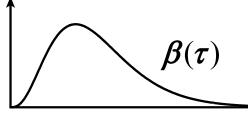


Time-varying-infectivity model (TVI) The University of

- Population of *n* individuals \geq
- At time τ after infection, each case *i*: \geq
 - makes infectious contacts with each person in the population at the points of an inhomogeneous Poisson process with rate

$$\lambda(\tau) = \beta(\tau)/n$$

- Contacted individuals, if susceptible, become infected
- Individuals do not recover (often you make them recover after a fixed amount of time)
- Special cases: \geq
 - Constant infectivity: $\beta(\tau) = \beta I_{\{0 < \tau < t\}}$

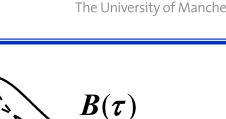


Random TVI model

- Population of *n* individuals \geq
- At time τ after infection, each case *i*: \triangleright
 - makes infectious contacts with each person in the population at the points of an inhomogeneous Poisson process with rate

$$\Lambda(\tau) = B(\tau)/n$$

- Contacted individuals, if susceptible, become infected
- Individuals do not recover (often you make them recover after a \geq fixed amount of time)
- Special cases: \geq
 - sSIR: $\boldsymbol{B}(\boldsymbol{\tau}) = \boldsymbol{\beta} I_{\{0 < \boldsymbol{\tau} < \boldsymbol{I}\}}$



MANCHEST

Introduction

- The infectivity profile (recap)
- Key quantities of interest
- Multi-type models
 - Next-generation matrix
 - Basic reproduction number
 - Final size
 - Growth rate
- Network models
 - Local interactions
 - Basic reproduction number

- Households models
 - Model formulation
 - Reproduction numbers
 - Basic reproduction number
 - Comparisons between reproduction numbers
- Advanced concepts
 - Final size for the households model
 - Extensions: householdsworkplaces models

Now focus on single (fast) epidemic in a large populations with few initial infectives only.

Can we provide some summary information of the full dynamics?

- Time-independent quantities:
 - Threshold condition
 - Probability of a large outbreak
 - Epidemic final size
 - Critical vaccination coverage
- Time-dependent quantities:
 - Real-time growth rate
 - Duration of an epidemic

The University of Manchester

Next-generation matrix Reproduction number Final size Growth rate

MULTI-TYPE MODELS

Multi-type models

- Distinguish individuals in "types":
 - Identify epidemiologically relevant characteristics (age, sexual activity, geographical location...)
 - Describe the interaction of each type towards each other type
- Note that "type" may be dependent or independent of infection
 - sometimes susceptibles have a type (e.g. age)
 - sometimes the type is attributed at the time of infection (e.g. strain)
- Most ideas carry on from single-type models:
 - Infectivity profiles
 - Small vs large population
 - Key epidemiological quantities of interest

- Introduction
 - The infectivity profile (recap)
 - Key quantities of interest
- Multi-type models
 - Next-generation matrix
 - Basic reproduction number
 - Final size
 - Growth rate
- Network models
 - Local interactions
 - Basic reproduction number

- Households models
 - Model formulation
 - Reproduction numbers
 - Basic reproduction number
 - Comparisons between reproduction numbers
- Advanced concepts
 - Final size for the households model
 - Extensions: householdsworkplaces models

Multitype epidemic model

- Different types of individuals
- Define the next generation matrix (NGM):

$$\boldsymbol{K} = \begin{pmatrix} \boldsymbol{k}_{11} & \boldsymbol{k}_{12} & \cdots & \boldsymbol{k}_{1n_t} \\ \boldsymbol{k}_{21} & \boldsymbol{k}_{22} & \vdots \\ \vdots & \ddots & \vdots \\ \boldsymbol{k}_{n_t 1} & \cdots & \cdots & \boldsymbol{k}_{n_t n_t} \end{pmatrix}$$

where k_{ij} is the average number of type-*i* cases generated by a type-*j* case, throughout the entire infectious period, in a fully susceptible population

Multitype epidemic model

- Different types of individuals
- Define the next generation matrix (NGM):

$$\boldsymbol{K} = \begin{pmatrix} \boldsymbol{k}_{11} & \boldsymbol{k}_{12} & \cdots & \boldsymbol{k}_{1n_t} \\ \boldsymbol{k}_{21} & \boldsymbol{k}_{22} & \vdots \\ \vdots & \ddots & \vdots \\ \boldsymbol{k}_{n_t 1} & \cdots & \cdots & \boldsymbol{k}_{n_t n_t} \end{pmatrix}$$

where k_{ij} is the average number of type-*i* cases generated by a type-*j* case, throughout the entire infectious period, in a fully susceptible population

Properties of the NGM:

- Non-negative elements
- We assume the matrix is primitive

Perron-Frobenius theory

- Single dominant eigenvalue $\Lambda = \rho(K)$, which is positive and real
- \succ "Dominant" eigenvector v has non-negative components
- > For every starting condition, after a few generations, the proportions of cases of each type in a generation converge to the components of the dominant eigenvector v, with per-generation multiplicative factor Λ

$$\boldsymbol{K} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad \boldsymbol{I}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \boldsymbol{m}_0 \boldsymbol{v}_0 \qquad \boldsymbol{m}_0 = |\boldsymbol{I}_0| = 1 \qquad \boldsymbol{v}_0 = \frac{\boldsymbol{I}_0}{\boldsymbol{m}_0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

The University of Manchester

$$K = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad I_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = m_0 v_0 \qquad m_0 = |I_0| = 1 \qquad v_0 = \frac{I_0}{m_0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = I_1 = KI_0 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} = (m_0) m_1 v_1 \qquad m_1 = 4 \qquad v_1 = \begin{pmatrix} 0.25 \\ 0.75 \end{pmatrix} = I_1 = I$$

$$\boldsymbol{K} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad \boldsymbol{I}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \boldsymbol{m}_0 \boldsymbol{v}_0 \qquad \boldsymbol{m}_0 = |\boldsymbol{I}_0| = 1 \qquad \boldsymbol{v}_0 = \frac{\boldsymbol{I}_0}{\boldsymbol{m}_0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\boldsymbol{I}_{1} = \boldsymbol{K}\boldsymbol{I}_{0} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} = (\boldsymbol{m}_{0}) \boldsymbol{m}_{1} \boldsymbol{v}_{1} \qquad \boldsymbol{m}_{1} = 4 \qquad \boldsymbol{v}_{1} = \begin{pmatrix} 0.25 \\ 0.75 \end{pmatrix}$$

$$\boldsymbol{I}_2 = \boldsymbol{K}\boldsymbol{I}_1 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 15 \end{pmatrix} = (\boldsymbol{m}_0 \boldsymbol{m}_1) \boldsymbol{m}_2 \boldsymbol{v}_2 \qquad \boldsymbol{m}_2 = 5.5 \qquad \boldsymbol{v}_2 \approx \begin{pmatrix} 0.32 \\ 0.68 \end{pmatrix}$$

$$\boldsymbol{K} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad \boldsymbol{I}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \boldsymbol{m}_0 \boldsymbol{v}_0 \qquad \boldsymbol{m}_0 = |\boldsymbol{I}_0| = 1 \qquad \boldsymbol{v}_0 = \frac{\boldsymbol{I}_0}{\boldsymbol{m}_0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\boldsymbol{I}_{1} = \boldsymbol{K}\boldsymbol{I}_{0} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} = (\boldsymbol{m}_{0}) \boldsymbol{m}_{1} \boldsymbol{v}_{1} \qquad \boldsymbol{m}_{1} = 4 \qquad \boldsymbol{v}_{1} = \begin{pmatrix} 0.25 \\ 0.75 \end{pmatrix}$$

$$\boldsymbol{I}_2 = \boldsymbol{K}\boldsymbol{I}_1 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 15 \end{pmatrix} = (\boldsymbol{m}_0 \boldsymbol{m}_1) \boldsymbol{m}_2 \boldsymbol{v}_2 \qquad \boldsymbol{m}_2 = 5.5 \qquad \boldsymbol{v}_2 \approx \begin{pmatrix} 0.32 \\ 0.68 \end{pmatrix}$$

$$\boldsymbol{I}_{3} = \boldsymbol{K}\boldsymbol{I}_{2} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 7 \\ 15 \end{pmatrix} = \begin{pmatrix} 37 \\ 81 \end{pmatrix} = \begin{pmatrix} \boldsymbol{m}_{0}\boldsymbol{m}_{1}\boldsymbol{m}_{2} \end{pmatrix} \boldsymbol{m}_{3}\boldsymbol{v}_{3} \qquad \boldsymbol{m}_{3} \approx 5.36 \qquad \boldsymbol{v}_{3} \approx \begin{pmatrix} 0.31 \\ 0.69 \end{pmatrix}$$

$$\boldsymbol{K} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad \boldsymbol{I}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \boldsymbol{m}_0 \boldsymbol{v}_0 \qquad \boldsymbol{m}_0 = |\boldsymbol{I}_0| = 1 \qquad \boldsymbol{v}_0 = \frac{\boldsymbol{I}_0}{\boldsymbol{m}_0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\boldsymbol{I}_{1} = \boldsymbol{K}\boldsymbol{I}_{0} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} = (\boldsymbol{m}_{0}) \boldsymbol{m}_{1} \boldsymbol{v}_{1} \qquad \boldsymbol{m}_{1} = 4 \qquad \boldsymbol{v}_{1} = \begin{pmatrix} 0.25 \\ 0.75 \end{pmatrix}$$

$$I_{2} = KI_{1} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 15 \end{pmatrix} = (m_{0}m_{1})m_{2}v_{2} \qquad m_{2} = 5.5 \qquad v_{2} \approx \begin{pmatrix} 0.32 \\ 0.68 \end{pmatrix}$$

$$\boldsymbol{I}_{3} = \boldsymbol{K}\boldsymbol{I}_{2} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 7 \\ 15 \end{pmatrix} = \begin{pmatrix} 37 \\ 81 \end{pmatrix} = \begin{pmatrix} \boldsymbol{m}_{0}\boldsymbol{m}_{1}\boldsymbol{m}_{2} \end{pmatrix} \boldsymbol{m}_{3}\boldsymbol{v}_{3} \qquad \boldsymbol{m}_{3} \approx 5.36 \qquad \boldsymbol{v}_{3} \approx \begin{pmatrix} 0.31 \\ 0.69 \end{pmatrix}$$

$$m_{k} \xrightarrow{k \to \infty} \Lambda \approx 5.37$$
$$v_{k} \xrightarrow{k \to \infty} v = \begin{pmatrix} 0.31\\ 0.69 \end{pmatrix}$$

where

 $Kv = \Lambda v$

Perron-Frobenius theory

- Single dominant eigenvalue $\Lambda = \rho(K)$, which is positive and real
- \succ "Dominant" eigenvector v has non-negative components
- > For every starting condition, after a few generations, the proportions of cases of each type in a generation converge to the components of the dominant eigenvector v, with per-generation multiplicative factor Λ

Interpret "typical" case as a linear combination of cases of each type given by v

Diekmann, Heesterbeek & Britton (2013)

- Introduction
 - The infectivity profile (recap)
 - Key quantities of interest
- Multi-type models
 - Next-generation matrix
 - Basic reproduction number
 - Final size
 - Growth rate
- Network models
 - Local interactions
 - Basic reproduction number

- Households models
 - Model formulation
 - Reproduction numbers
 - Basic reproduction number
 - Comparisons between reproduction numbers
- Advanced concepts
 - Final size for the households model
 - Extensions: householdsworkplaces models

Basic reproduction number *R*₀

Naïve definition:

" Average number of new cases generated by a **typical** case, throughout the entire infectious period, in a large and otherwise **fully susceptible** population "

Basic reproduction number *R*₀

Naïve definition:

" Average number of new cases generated by a **typical** case, throughout the entire infectious period, in a large and otherwise **fully susceptible** population "

What is a typical case?

Basic reproduction number *R*₀

Naïve definition:

" Average number of new cases generated by a **typical** case, throughout the entire infectious period, in a large and otherwise **fully susceptible** population "

What is a **typical** case?

What do we mean by **fully susceptible** population?

- Introduction
 - The infectivity profile (recap)
 - Key quantities of interest

Multi-type models

- Next-generation matrix
- Basic reproduction number
- Final size
- Growth rate
- Network models
 - Local interactions
 - Basic reproduction number

- Households models
 - Model formulation
 - Reproduction numbers
 - Basic reproduction number
 - Comparisons between reproduction numbers
- Advanced concepts
 - Final size for the households model
 - Extensions: householdsworkplaces models

Final size

➢ Given:

- n_i = number of individuals of typei, $i = 1, 2, ..., n_t$
- $h_i = n_i / N =$ fraction of population of type *i*
- k_{ij} = elements of the NGM
- ► Let:
 - z_i = fraction of type *i* population ultimately infected
- Then:

$$1 - z_{i} = e^{-\sum_{j} \frac{k_{ij}}{n_{i}} n_{j} z_{j}} = e^{-\sum_{j} \frac{h_{j}}{h_{i}} k_{ij} z_{j}} \qquad i = 1, 2, ..., n_{t}$$

and the overall fraction of the population infected is $z = \sum_{i=1}^{n_t} h_i z_i$

Andersson & Britton (2000)

- Introduction
 - The infectivity profile (recap)
 - Key quantities of interest

Multi-type models

- Next-generation matrix
- Basic reproduction number
- Final size
- Growth rate
- Network models
 - Local interactions
 - Basic reproduction number

- Households models
 - Model formulation
 - Reproduction numbers
 - Basic reproduction number
 - Comparisons between reproduction numbers
- Advanced concepts
 - Final size for the households model
 - Extensions: householdsworkplaces models

Real-time growth rate

- Single-type model:
 - r is the implicit solution of the Euler-Lotka equation

$$\boldsymbol{L}_{\boldsymbol{\beta}}(\boldsymbol{\theta}) = \int_{0}^{\infty} \boldsymbol{\beta}(\boldsymbol{\tau}) \mathbf{e}^{-\boldsymbol{\theta}\boldsymbol{\tau}} \mathrm{d}\boldsymbol{\tau} = 1$$

- Multitype model:
 - Construct the matrix

$$\boldsymbol{H}_{\boldsymbol{\theta}} = \left(\int_{0}^{\infty} \boldsymbol{\beta}_{ij}(\boldsymbol{\tau}) e^{-\boldsymbol{\theta}\boldsymbol{\tau}} d\boldsymbol{\tau} \right) = \begin{pmatrix} \boldsymbol{L}_{\boldsymbol{\beta}_{11}}(\boldsymbol{\theta}) & \dots & \boldsymbol{L}_{\boldsymbol{\beta}_{1n}}(\boldsymbol{\theta}) \\ \vdots & \ddots & \vdots \\ \boldsymbol{L}_{\boldsymbol{\beta}_{n1}}(\boldsymbol{\theta}) & \dots & \boldsymbol{L}_{\boldsymbol{\beta}_{nn}}(\boldsymbol{\theta}) \end{pmatrix}$$

- Compute its dominant eigenvalue $\rho(H_{\theta})$, which depends on θ
- r is the implicit solution of

$$\rho(H_{\theta}) = 1$$

Diekmann, Heesterbeek & Britton (2013)

Fraction of types in real-time

- > Once we have found r, we know that H_r has dominant eigenvalue 1
- > The corresponding eigenvector v_r gives the (constant) proportions of individuals of each type present at any point during the exponentially growing phase
- Simple case:

• If
$$\boldsymbol{\beta}_{ij}(\tau) = k_{ij}\boldsymbol{\omega}(\tau)$$
, then

$$\boldsymbol{H}_{r} = \left(\int_{0}^{\infty} \boldsymbol{\beta}_{ij}(\tau) \mathrm{e}^{-r\tau} \mathrm{d}\tau\right) = \left(\int_{0}^{\infty} \boldsymbol{k}_{ij} \boldsymbol{\omega}(\tau) \mathrm{e}^{-r\tau} \mathrm{d}\tau\right) = \left(\boldsymbol{k}_{ij}\right) \left(\int_{0}^{\infty} \boldsymbol{\omega}(\tau) \mathrm{e}^{-r\tau} \mathrm{d}\tau\right)$$

i.e.

$$\boldsymbol{H}_r = \frac{1}{\boldsymbol{R}_0} \boldsymbol{K}$$

1

• so $v_r = v$, even if generations tend to overlap

Diekmann, Heesterbeek & Britton (2013)

The University of Manchester

Local interactions Basic reproduction number

NETWORK MODELS

- Introduction
 - The infectivity profile (recap)
 - Key quantities of interest
- Multi-type models
 - Next-generation matrix
 - Basic reproduction number
 - Final size
 - Growth rate
- Network models
 - Local interactions
 - Basic reproduction number

- Households models
 - Model formulation
 - Reproduction numbers
 - Basic reproduction number
 - Comparisons between reproduction numbers
- Advanced concepts
 - Final size for the households model
 - Extensions: householdsworkplaces models

The problem of small mixing groups The University of Manchester

MANCHES

- > For large populations the concept of R_0 , r, small/large outbreak are useful, but result from a linearisation process (e.g. BP)
- In small populations, the linearisation is not possible but also not useful
- But if the population is large AND the number of individuals one interact with is small, the linearisation is useful, but not trivial
- Basic idea is still to imbed a branching process, though this is not always possible
- In general, one needs to solve the local dynamics, which are nonlinear because of **local depletion of susceptibles**

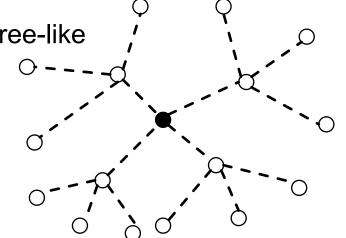
- Introduction
 - The infectivity profile (recap)
 - Key quantities of interest
- Multi-type models
 - Next-generation matrix
 - Basic reproduction number
 - Final size
 - Growth rate
- Network models
 - Local interactions
 - Basic reproduction number

- Households models
 - Model formulation
 - Reproduction numbers
 - Basic reproduction number
 - Comparisons between reproduction numbers
- Advanced concepts
 - Final size for the households model
 - Extensions: householdsworkplaces models

Network models

- People connected by a static network of acquaintances
- Simple case: no short loops, i.e. locally tree-like
 - Repeated contacts
 - First case is special
 - $E[X_1] = 1$ is not a threshold
 - Define:

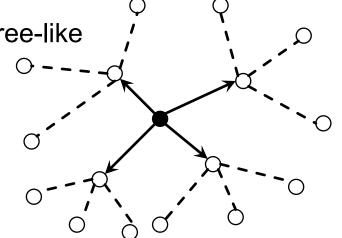
$$\boldsymbol{R}_0 = \mathrm{E}\left[\boldsymbol{X}_2 \mid \boldsymbol{X}_1 = 1\right]$$



Network models

- People connected by a static network of acquaintances
- Simple case: no short loops, i.e. locally tree-like
 - Repeated contacts
 - First case is special
 - $E[X_1] = 1$ is not a threshold
 - Define:

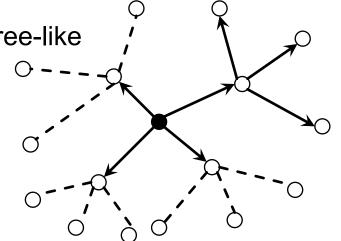
$$\boldsymbol{R}_0 = \mathrm{E}\left[\boldsymbol{X}_2 \mid \boldsymbol{X}_1 = 1\right]$$



Network models

- People connected by a static network of acquaintances
- Simple case: no short loops, i.e. locally tree-like
 - Repeated contacts
 - First case is special
 - $E[X_1] = 1$ is not a threshold
 - Define:

$$\boldsymbol{R}_0 = \mathrm{E}\left[\boldsymbol{X}_2 \mid \boldsymbol{X}_1 = 1\right]$$



Basic reproduction number *R*₀

Naïve definition:

" Average number of new cases generated by a **typical** case, throughout the entire infectious period, in a large and otherwise **fully susceptible** population "

What is a **typical** case?

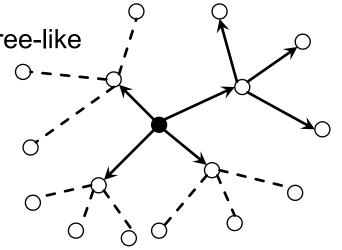
What do we mean by **fully susceptible** population?

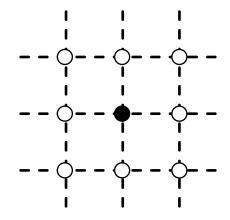
Network models

- People connected by a static network of acquaintances
- Simple case: no short loops, i.e. locally tree-like
 - Repeated contacts
 - First case is special
 - $E[X_1] = 1$ is not a threshold
 - Define:

$$\boldsymbol{R}_0 = \mathrm{E}\left[\boldsymbol{X}_2 \mid \boldsymbol{X}_1 = 1\right]$$

- Difficult case: short loops, clustering
 - Maybe not even possible to use branching process approximation or define R₀





The University of Manchester

Introduction Reproduction numbers Basic reproduction number Comparison between reproduction numbers

THE HOUSEHOLDS MODEL

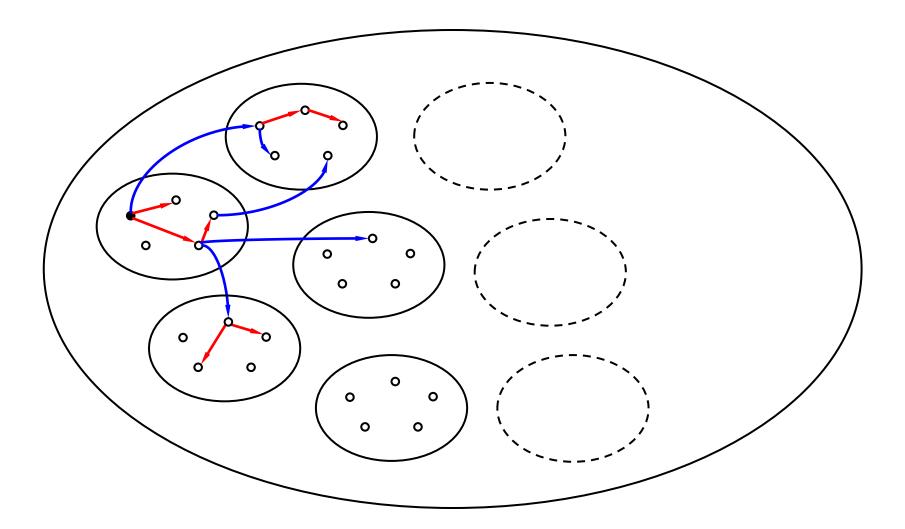
Outline

MANCHESTER 1824 The University of Manchester

- Introduction
 - The infectivity profile (recap)
 - Key quantities of interest
- Multi-type models
 - Next-generation matrix
 - Basic reproduction number
 - Final size
 - Growth rate
- Network models
 - Local interactions
 - Basic reproduction number

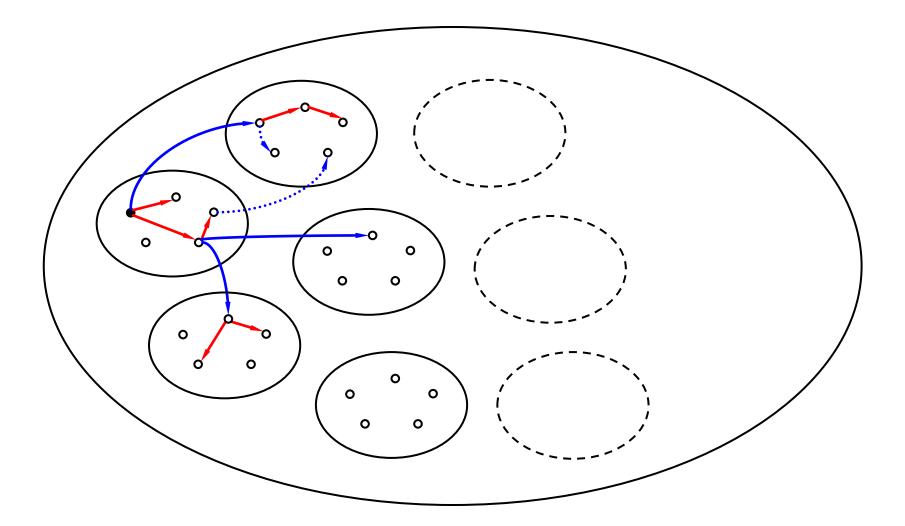
- Households models
 - Model formulation
 - Reproduction numbers
 - Basic reproduction number
 - Comparisons between reproduction numbers
- Advanced concepts
 - Final size for the households model
 - Extensions: householdsworkplaces models

Model illustration



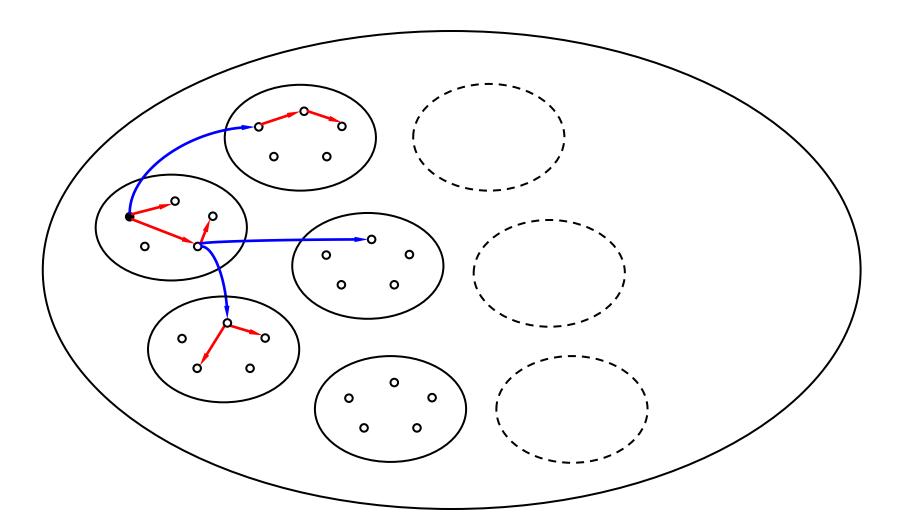
Pellis, Ferguson & Fraser (2009)

Model illustration



Pellis, Ferguson & Fraser (2009)

Model illustration



Pellis, Ferguson & Fraser (2009)

- > Population of *m* households with of size n_H
- > Upon infection, each case i:
 - remains infectious for a duration $I_i \sim I$, iid $\forall i$
 - makes infectious contacts with each household member according to a homogeneous Poisson process with rate $\lambda_L = \beta_L / n_H$
 - makes contacts with each person in the population according to a homogeneous Poisson process with rate $\lambda_G = \beta_G / N$
- Contacted individuals, if susceptible, become infected
- Recovered individuals are immune to further infection

- \rightarrow n_{H} = maximum size of a household
- h_n = probability that a randomly selected household has size *n*
- > Then the probability that the household of a randomly selected individual has size n is:

$$\pi_n = \frac{nh_n}{\sum_{n=1}^{n_H} nh_n}$$

- Every quantity of interest should simply be average over this distribution, e.g.
 - $\mu_L^{(n)}$ = average epidemic size in a household of size *n*
 - then

$$\pmb{R}_* \coloneqq \pmb{\mu}_{\pmb{G}} \left(1 + \pmb{\mu}_L \right)$$
 where

$$\boldsymbol{\mu}_{L} = \sum_{n=1}^{n_{H}} \boldsymbol{\pi}_{n} \boldsymbol{\mu}_{L}^{(n)}$$

Outline

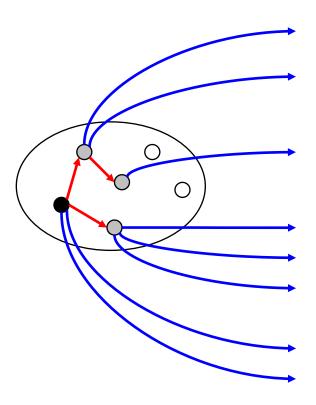
- Introduction
 - The infectivity profile (recap)
 - Key quantities of interest
- Multi-type models
 - Next-generation matrix
 - Basic reproduction number
 - Final size
 - Growth rate
- Network models
 - Local interactions
 - Basic reproduction number

- Households models
 - Model formulation
 - Reproduction numbers
 - Basic reproduction number
 - Comparisons between reproduction numbers
- Advanced concepts
 - Final size for the households model
 - Extensions: householdsworkplaces models

Household reproduction number R*

- Consider a within-household epidemic started by one initial case
- > Define:
 - μ_L = average household final size, excluding the initial case
 - μ_G = average number of global infections an individual makes
- "Linearise" the epidemic process at the level of households:

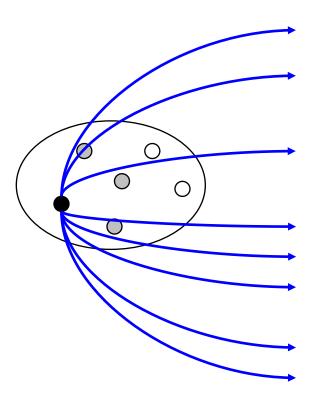
$$\boldsymbol{R}_* \coloneqq \boldsymbol{\mu}_{\boldsymbol{G}} \left(1 + \boldsymbol{\mu}_{\boldsymbol{L}} \right)$$



Household reproduction number R*

- Consider a within-household epidemic started by one initial case
- > Define:
 - μ_L = average household final size, excluding the initial case
 - μ_G = average number of global infections an individual makes
- "Linearise" the epidemic process at the level of households:

$$\boldsymbol{R}_* \coloneqq \boldsymbol{\mu}_{\boldsymbol{G}} \left(1 + \boldsymbol{\mu}_{\boldsymbol{L}} \right)$$



Pellis, Ball & Trapman (2012)

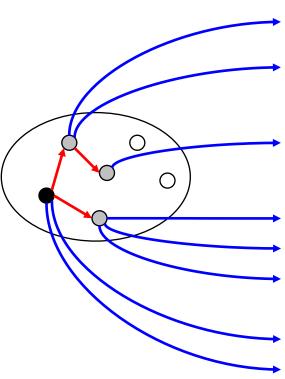
Attribute all further cases in a household to the primary case

$$\boldsymbol{M}_{I} = \begin{pmatrix} \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} \\ \boldsymbol{\mu}_{L} & \boldsymbol{0} \end{pmatrix}$$

 \succ **R**_I is the dominant eigenvalue of **M**_I:

$$\boldsymbol{R}_{I} = \frac{\boldsymbol{\mu}_{G}}{2} \left(1 + \sqrt{1 + \frac{4\boldsymbol{\mu}_{L}}{\boldsymbol{\mu}_{G}}} \right)$$

More weight to the first case than it should be



Pellis, Ball & Trapman (2012)

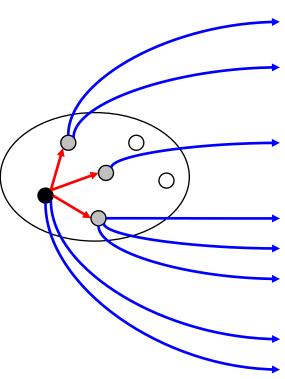
Attribute all further cases in a household to the primary case

$$\boldsymbol{M}_{I} = \begin{pmatrix} \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} \\ \boldsymbol{\mu}_{L} & \boldsymbol{0} \end{pmatrix}$$

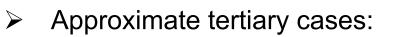
 \succ **R**_I is the dominant eigenvalue of **M**_I:

$$\boldsymbol{R}_{I} = \frac{\boldsymbol{\mu}_{G}}{2} \left(1 + \sqrt{1 + \frac{4\boldsymbol{\mu}_{L}}{\boldsymbol{\mu}_{G}}} \right)$$

More weight to the first case than it should be



Further improvement: R₂



- μ_1 = average number of cases infected by the primary case
- Assume that each secondary case infects b further cases
- Choose $\boldsymbol{b} = 1 \boldsymbol{\mu}_1 / \boldsymbol{\mu}_L$, such that

$$\boldsymbol{\mu}_{1}\left(1+\boldsymbol{b}+\boldsymbol{b}^{2}+\boldsymbol{b}^{3}+...\right)=\frac{\boldsymbol{\mu}_{1}}{1-\boldsymbol{b}}=\boldsymbol{\mu}_{L},$$

so that the household epidemic yields the correct final size

> Then:

$$\boldsymbol{M}_2 = \begin{pmatrix} \boldsymbol{\mu}_{\boldsymbol{G}} & \boldsymbol{\mu}_{\boldsymbol{G}} \\ \boldsymbol{\mu}_{\boldsymbol{I}} & \boldsymbol{b} \end{pmatrix}$$

and \boldsymbol{R}_2 is the dominant eigenvalue of \boldsymbol{M}_2

Pellis, Ball & Trapman (2012)

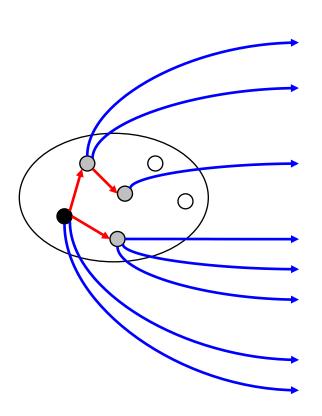
MANCHESTER

The University of Manchester

Opposite approach: R_{HI}

$$\boldsymbol{R}_{HI} \coloneqq \boldsymbol{\mu}_{G} + \frac{\boldsymbol{\mu}_{L}}{1 + \boldsymbol{\mu}_{L}}$$

Less weight on initial cases than what it should be



MANCHESTER

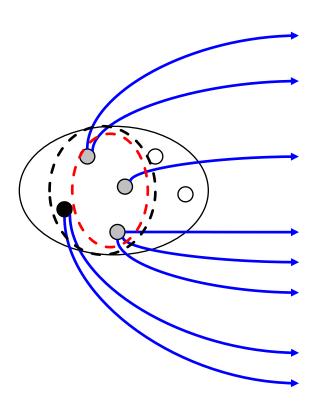
The University of Manchester

Opposite approach: R_{HI}

All household cases contribute equally

$$\boldsymbol{R}_{HI} \coloneqq \boldsymbol{\mu}_{G} + \frac{\boldsymbol{\mu}_{L}}{1 + \boldsymbol{\mu}_{L}}$$

Less weight on initial cases than what it should be



MANCHESTER

The University of Manchester

Vaccine-associated reproduction numbers R_v and R_{vL}

MANCHESTER 1824 The University of Manchester

Perfect vaccine

- > Assume $R_* > 1$
- Define p_C as the fraction of the population that needs to be vaccinated to reduce R_* below 1

> Then

$$\boldsymbol{R}_{V} \coloneqq 1 - \frac{1}{\boldsymbol{p}_{C}}$$

Leaky vaccine

- > Assume $R_* > 1$
- Define E_c as the critical vaccine efficacy (in reducing susceptibility) required to reduce R_* below 1 when vaccinating the entire population

> Then

$$\boldsymbol{R}_{VL} \coloneqq 1 - \frac{1}{\boldsymbol{E}_C}$$

Outline

- Introduction
 - The infectivity profile (recap)
 - Key quantities of interest
- Multi-type models
 - Next-generation matrix
 - Basic reproduction number
 - Final size
 - Growth rate
- Network models
 - Local interactions
 - Basic reproduction number

- Households models
 - Model formulation
 - Reproduction numbers
 - Basic reproduction number
 - Comparisons between reproduction numbers
- Advanced concepts
 - Final size for the households model
 - Extensions: householdsworkplaces models

- Consider a within-household epidemic started by a single initial case. Type = generation they belong to.
- > Define $\mu_0 = 1, \mu_1, \mu_2, ..., \mu_{n_H-1}$ the expected number of cases in each generation
- > Let μ_G be the average number of global infections from each case
- The next generation matrix is:

$$\boldsymbol{K} = \begin{pmatrix} \mu_{G} & \mu_{G} & \mu_{G} & \mu_{G} & \mu_{G} \\ \mu_{1} & & & 0 \\ & \mu_{2}/\mu_{1} & & \vdots \\ & & \ddots & & \vdots \\ & & & \mu_{n_{H}}/\mu_{n_{H}-1} & 0 \end{pmatrix}$$

More formal approach (I)

- > Notation:
 - $x_{k,i}$ = average number of cases in generation k and household-generation i
 - $x_k = \sum_{i=0}^{n_H 1} x_{k,i}$ =average number of cases in generation k and any household-generation

1

System dynamics:

$$x_{k,0} = \mu_G \sum_{i=0}^{n_H - 1} x_{k-1,i}$$

$$x_{k,i} = \mu_i x_{k-i,0} \qquad 1 \le i \le n_H - 1$$

Derivation:

$$\begin{aligned} x_{k,0} &= \mu_G x_{k-1} \\ x_{k,i} &= \mu_i \mu_G x_{k-i-1} \\ x_k &= \sum_{i=0}^{n_H - 1} x_{k,i} = \mu_G \sum_{i=0}^{n_H - 1} \mu_i x_{k-i-1} \\ \text{Pellis, Ball & Trapman (2012)} \end{aligned}$$

MANCHESTER 1824 The University of Manchester

More formal approach (II)

> System dynamics: $x_{k,0} = \mu_G x_{k-1}$

$$x_{k,i} = \mu_i \mu_G x_{k-i-1} \qquad 1 \le i \le n_H - 1$$
$$x_k = \sum_{i=0}^{n_H - 1} x_{k,i} = \mu_G \sum_{i=0}^{n_H - 1} \mu_i x_{k-i-1}$$

> Define
$$\underline{x}^{(k)} = (x_k, x_{k-1}, ..., x_{k-n_H+1})$$

System dynamics:

$$\underline{x}^{(k)} = A_{n_H} \underline{x}^{(k-1)}$$

where
$$A_{n_{H}} = \begin{pmatrix} \mu_{G}\mu_{0} & \mu_{G}\mu_{1} & \mu_{G}\mu_{2} & \cdots & \mu_{G}\mu_{n_{H}-1} \\ 1 & & 0 \\ & 1 & & \vdots \\ & & \ddots & & \vdots \\ & & & 1 & 0 \end{pmatrix}$$

More formal approach (III)

> Let

- $\Lambda = \rho(A_{n_H}) = \text{dominant eigenvalue of} A_{n_H}$ • $V = (w, w, \dots, w) = \text{"dominant" eigenvector}$
- $V = (v_0, v_1, \dots, v_{n_H-1}) =$ "dominant" eigenvector

> Then, for $k \to \infty$: $\underline{x}^{(k)} / \| \underline{x}^{(k)} \| \to V$ $\| \underline{x}^{(k)} \| / \| \underline{x}^{(k-1)} \| \to \Lambda$ $x_k / x_{k-1} \to \Lambda$

Therefore:

$$\boldsymbol{\Lambda} = \boldsymbol{R}_0$$

The University of Manchester

	Recall:					Define:	
	(μ_G)	μ_{G}	μ_{G}	μ_{G}	μ_{G}	$(\boldsymbol{\mu}_0)$	
	μ_1				0	μ_{1}	
K =		μ_2/μ_1		•		S =	
			•	1	:	μ_{n_H-2}	
			μ_{r}	μ_{n_H}/μ_{n_H-1}	0)	(μ_{n_H-1})	
	$\left(\mu_{G} \mu_{G} \right)$	$\mu_{G}\mu_{1}$	$\mu_G \mu_2$	$\cdots \mu_{G}$	$(\boldsymbol{\mu}_{n_{H}-1})$	> Then:	
$A_{n_H} =$	1				0	$\boldsymbol{K} = \boldsymbol{S}\boldsymbol{A}_{\boldsymbol{n}_{H}}\boldsymbol{S}^{-1}$	
		1			•	So:	
			•		•		
				1	0)	$\boldsymbol{\rho}(\boldsymbol{K}) = \boldsymbol{\rho}(\boldsymbol{A}_{\boldsymbol{n}_{\boldsymbol{H}}}) = \boldsymbol{R}_{0}$	

Outline

- Introduction
 - The infectivity profile (recap)
 - Key quantities of interest
- Multi-type models
 - Next-generation matrix
 - Basic reproduction number
 - Final size
 - Growth rate
- Network models
 - Local interactions
 - Basic reproduction number

Households models

- Model formulation
- Reproduction numbers
- Basic reproduction number
- Comparisons between reproduction numbers
- Advanced concepts
 - Final size for the households model
 - Extensions: householdsworkplaces models

➢ Goldstein *et al* (2009) showed that

$$\mathbf{R}_* = 1 \iff \mathbf{R}_{VL} = 1 \iff \mathbf{R}_r = 1 \iff \mathbf{R}_V = 1 \iff \mathbf{R}_{HI} = 1$$

➢ Goldstein *et al* (2009) showed that

$$\mathbf{R}_* = 1 \iff \mathbf{R}_{VL} = 1 \iff \mathbf{R}_r = 1 \iff \mathbf{R}_V = 1 \iff \mathbf{R}_{HI} = 1$$

In a growing epidemic:

➢ Goldstein *et al* (2009) showed that

$$\mathbf{R}_* = 1 \iff \mathbf{R}_{VL} = 1 \iff \mathbf{R}_r = 1 \iff \mathbf{R}_V = 1 \iff \mathbf{R}_{HI} = 1$$

In a growing epidemic:

$$R_* \geq R_V \geq R_{HI}$$

➢ Goldstein et al (2009) showed that

 $\mathbf{R}_{*} = 1 \iff \mathbf{R}_{VL} = 1 \iff \mathbf{R}_{r} = 1 \iff \mathbf{R}_{V} = 1 \iff \mathbf{R}_{HI} = 1$

To which we added

$$\Leftrightarrow \mathbf{R}_{\mathbf{I}} = 1 \quad \Leftrightarrow \quad \mathbf{R}_0 = 1 \quad \Leftrightarrow \quad \mathbf{R}_2 = 1$$

In a growing epidemic:

$$\geq$$
 R_{I} \geq R_{V} \geq R_{II} \geq R_{2} \geq

➢ Goldstein et al (2009) showed that

 $\mathbf{R}_{*} = 1 \iff \mathbf{R}_{VL} = 1 \iff \mathbf{R}_{r} = 1 \iff \mathbf{R}_{V} = 1 \iff \mathbf{R}_{HI} = 1$

To which we added

$$\Leftrightarrow \mathbf{R}_{I} = 1 \iff \mathbf{R}_{0} = 1 \iff \mathbf{R}_{2} = 1$$

In a growing epidemic:

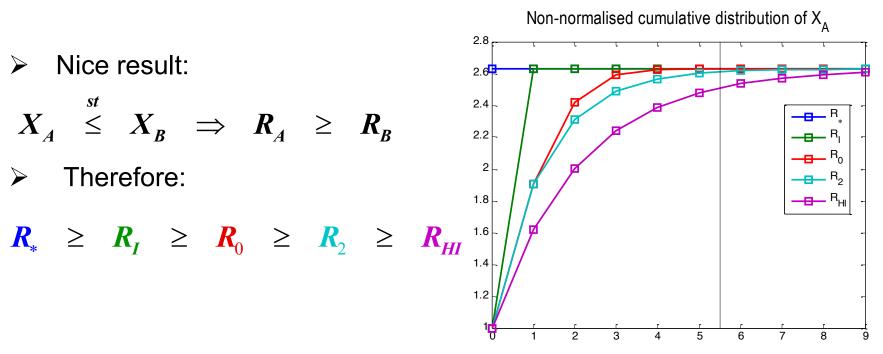
$$R_* \geq R_I \geq R_V \geq R_0 \geq R_2 \geq R_{HI}$$

To which we added that, in a **declining** epidemic:

$$R_* \leq R_I \leq R_V \leq R_0 \leq R_2 \leq R_{HI}$$

Fundamental interpretation

- > For each reproduction number R_A , define a r.v. X_A describing the generation index of a randomly selected infective in a household epidemic
- > Distribution of X_A is $P\{X_A = k\} = \frac{\mu_k^A}{1 + \mu_L}$, $0 \le k \le +\infty$



Pellis, Ball & Trapman (in preparation)

Practical implications

- > $\mathbf{R}_{V} \ge \mathbf{R}_{0}$, so vaccinating $\mathbf{p} = 1 \frac{1}{\mathbf{R}_{0}}$ is not enough
- ➢ Goldstein *et al* (2009):

$$R_* \geq R_V \geq R_{HI}$$

> Now we have sharper bounds for R_V :

$$R_* \geq R_I \geq R_V \geq R_0 \geq R_{HI}$$

Why so long to come up with R_0 ?

Basic reproduction number *R*₀

Naïve definition:

" Average number of new cases generated by a **typical** case, throughout the entire infectious period, in a large and otherwise **fully susceptible** population "

What is a **typical** case?

What do we mean by **fully susceptible** population?

- > Typical infective:
 - "Suitable" average across all cases during a household epidemic

$$\boldsymbol{K} = \begin{pmatrix} \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} \\ \boldsymbol{\mu}_{1} & & & 0 \\ & \boldsymbol{\mu}_{2}/\boldsymbol{\mu}_{1} & & \vdots \\ & & \ddots & & \vdots \\ & & & \boldsymbol{\mu}_{n_{H}}/\boldsymbol{\mu}_{n_{H}-1} & 0 \end{pmatrix}$$

- > Typical infective:
 - "Suitable" average across all cases during a household epidemic

$$\boldsymbol{K} = \begin{pmatrix} \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} \\ \boldsymbol{\mu}_{1} & & & 0 \\ & \boldsymbol{\mu}_{2}/\boldsymbol{\mu}_{1} & & & \vdots \\ & & \ddots & & & \vdots \\ & & & \boldsymbol{\mu}_{n_{H}}/\boldsymbol{\mu}_{n_{H}-1} & 0 \end{pmatrix}$$

- Types are given by the generation index:
 - not defined a priori
 - appear only in real-time

- > Typical infective:
 - "Suitable" average across all cases during a household epidemic

$$\boldsymbol{K} = \begin{pmatrix} \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} \\ \boldsymbol{\mu}_{1} & & & 0 \\ & \boldsymbol{\mu}_{2} / \boldsymbol{\mu}_{1} & & & \vdots \\ & & \ddots & & & \vdots \\ & & & \boldsymbol{\mu}_{n_{H}} / \boldsymbol{\mu}_{n_{H}-1} & 0 \end{pmatrix}$$

- Types are given by the generation index:
 - not defined a priori
 - appear only in real-time
- ➤ "Fully" susceptible population:
 - the first case is never representative
 - need to wait at least a few full households epidemics

The University of Manchester

Final size of households model Extensions: households-workplaces model

ADVANCED TOPICS

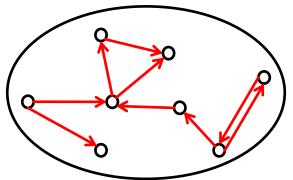
Outline

- Introduction
 - The infectivity profile (recap)
 - Key quantities of interest
- Multi-type models
 - Next-generation matrix
 - Basic reproduction number
 - Final size
 - Growth rate
- Network models
 - Local interactions
 - Basic reproduction number

- Households models
 - Model formulation
 - Reproduction numbers
 - Basic reproduction number
 - Comparisons between reproduction numbers
- Advanced concepts
 - Final size for the households model
 - Extensions: householdsworkplaces models

MANCHESTER 1824 The University of Manchester

- \succ Consider a household of size n
- Consider the epidemic graph
- Consider infections from outside as they occur during the epidemic

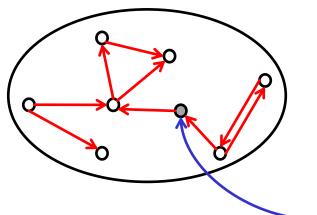


- Notice that in the end the within-household final size is the same you would obtain if all external infections occurred at the beginning
- $\Rightarrow \ \alpha_n(\varepsilon) = \text{ expected final size assuming that each individual escapes infection from outside independently with probability } \varepsilon$
 - the number of initial cases is $Y_0 \sim Bin(n, 1-\varepsilon)$
- $\succ \alpha_{x_0,y_0}$ = expected epidemic size in a household with x_0 and y_0 initial susceptibles and infectives, and no infection from outside

> Then
$$\alpha_n(\varepsilon) = \sum_{k=0}^n \binom{n}{k} (1-\varepsilon)^k \varepsilon^{n-k} \alpha_{n-k,k}$$

Ball,

- \succ Consider a household of size *n*
- Consider the epidemic graph
- Consider infections from outside as they occur during the epidemic

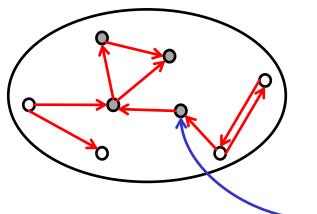


- Notice that in the end the within-household final size is the same you would obtain if all external infections occurred at the beginning
- $\Rightarrow \quad \alpha_n(\varepsilon) = \text{ expected final size assuming that each individual escapes infection from outside independently with probability } \varepsilon$
 - the number of initial cases is $Y_0 \sim Bin(n, 1-\varepsilon)$
- $\sim \alpha_{x_0,y_0} =$ expected epidemic size in a household with x_0 and y_0 initial susceptibles and infectives, and no infection from outside

> Then
$$\alpha_n(\varepsilon) = \sum_{k=0}^n \binom{n}{k} (1-\varepsilon)^k \varepsilon^{n-k} \alpha_{n-k,k}$$

Ball,

- \succ Consider a household of size *n*
- Consider the epidemic graph
- Consider infections from outside as they occur during the epidemic



- Notice that in the end the within-household final size is the same you would obtain if all external infections occurred at the beginning
- $\Rightarrow \quad \alpha_n(\varepsilon) = \text{ expected final size assuming that each individual escapes infection from outside independently with probability } \varepsilon$
 - the number of initial cases is $Y_0 \sim Bin(n, 1-\varepsilon)$
- $\sim \alpha_{x_0,y_0} =$ expected epidemic size in a household with x_0 and y_0 initial susceptibles and infectives, and no infection from outside

> Then
$$\alpha_n(\varepsilon) = \sum_{k=0}^n \binom{n}{k} (1-\varepsilon)^k \varepsilon^{n-k} \alpha_{n-k,k}$$

Ball,

The University of Manchester

- > Consider a household of size n
- Consider the epidemic graph
- Consider infections from outside as they occur during the epidemic
- Notice that in the end the within-household final size is the same you would obtain if all external infections occurred at the beginning
- $\Rightarrow \quad \alpha_n(\varepsilon) = \text{ expected final size assuming that each individual escapes infection from outside independently with probability } \varepsilon$
 - the number of initial cases is $Y_0 \sim Bin(n, 1-\varepsilon)$
- $\sim \alpha_{x_0,y_0}$ = expected epidemic size in a household with x_0 and y_0 initial susceptibles and infectives, and no infection from outside

> Then
$$\alpha_n(\varepsilon) = \sum_{k=0}^n \binom{n}{k} (1-\varepsilon)^k \varepsilon^{n-k} \alpha_{n-k,k}$$

Ball,

The University of Manchester

- > Consider a household of size n
- Consider the epidemic graph
- Consider infections from outside as they occur during the epidemic
- Notice that in the end the within-household final size is the same you would obtain if all external infections occurred at the beginning
- $\Rightarrow \ \alpha_n(\varepsilon) = \text{ expected final size assuming that each individual escapes infection from outside independently with probability } \varepsilon$
 - the number of initial cases is $Y_0 \sim Bin(n, 1-\varepsilon)$
- $\sim \alpha_{x_0,y_0}$ = expected epidemic size in a household with x_0 and y_0 initial susceptibles and infectives, and no infection from outside

> Then
$$\alpha_n(\varepsilon) = \sum_{k=0}^n \binom{n}{k} (1-\varepsilon)^k \varepsilon^{n-k} \alpha_{n-k,k}$$

Ball,

The University of Manchester

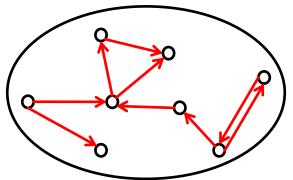
- > Consider a household of size n
- Consider the epidemic graph
- Consider infections from outside as they occur during the epidemic
- Notice that in the end the within-household final size is the same you would obtain if all external infections occurred at the beginning
- $\Rightarrow \ \alpha_n(\varepsilon) = \text{ expected final size assuming that each individual escapes infection from outside independently with probability } \varepsilon$
 - the number of initial cases is $Y_0 \sim Bin(n, 1-\varepsilon)$
- $\sim \alpha_{x_0,y_0}$ = expected epidemic size in a household with x_0 and y_0 initial susceptibles and infectives, and no infection from outside

> Then
$$\alpha_n(\varepsilon) = \sum_{k=0}^n \binom{n}{k} (1-\varepsilon)^k \varepsilon^{n-k} \alpha_{n-k,k}$$

Ball,

MANCHESTER 1824 The University of Manchester

- \succ Consider a household of size n
- Consider the epidemic graph
- Consider infections from outside as they occur during the epidemic



- Notice that in the end the within-household final size is the same you would obtain if all external infections occurred at the beginning
- $\Rightarrow \ \alpha_n(\varepsilon) = \text{ expected final size assuming that each individual escapes infection from outside independently with probability } \varepsilon$
 - the number of initial cases is $Y_0 \sim Bin(n, 1-\varepsilon)$
- $\succ \alpha_{x_0,y_0}$ = expected epidemic size in a household with x_0 and y_0 initial susceptibles and infectives, and no infection from outside

> Then
$$\alpha_n(\varepsilon) = \sum_{k=0}^n \binom{n}{k} (1-\varepsilon)^k \varepsilon^{n-k} \alpha_{n-k,k}$$

Ball,

The University of Manchester

- > Consider a household of size n
- Consider the epidemic graph
- Consider infections from outside as they occur during the epidemic
- Notice that in the end the within-household final size is the same you would obtain if all external infections occurred at the beginning
- $\Rightarrow \ \alpha_n(\varepsilon) = \text{ expected final size assuming that each individual escapes infection from outside independently with probability } \varepsilon$
 - the number of initial cases is $Y_0 \sim Bin(n, 1-\varepsilon)$
- $\sim \alpha_{x_0,y_0}$ = expected epidemic size in a household with x_0 and y_0 initial susceptibles and infectives, and no infection from outside

> Then
$$\alpha_n(\varepsilon) = \sum_{k=0}^n \binom{n}{k} (1-\varepsilon)^k \varepsilon^{n-k} \alpha_{n-k,k}$$

Ball,

The University of Manchester

- > Consider a household of size n
- Consider the epidemic graph
- Consider infections from outside as they occur during the epidemic
- Notice that in the end the within-household final size is the same you would obtain if all external infections occurred at the beginning
- $\Rightarrow \ \alpha_n(\varepsilon) = \text{ expected final size assuming that each individual escapes infection from outside independently with probability } \varepsilon$
 - the number of initial cases is $Y_0 \sim Bin(n, 1-\varepsilon)$
- $\sim \alpha_{x_0,y_0}$ = expected epidemic size in a household with x_0 and y_0 initial susceptibles and infectives, and no infection from outside

> Then
$$\alpha_n(\varepsilon) = \sum_{k=0}^n \binom{n}{k} (1-\varepsilon)^k \varepsilon^{n-k} \alpha_{n-k,k}$$

Ball,

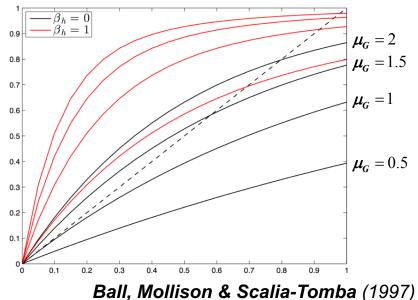
- \succ z = expected fraction of the population infected
- ➤ Then, approximately,

$$\boldsymbol{\varepsilon}(z) = \exp\left(-\frac{\boldsymbol{\mu}_G}{N}Nz\right) = \mathrm{e}^{-\boldsymbol{\mu}_G z}$$

- But because (almost) all households are identical and fully susceptible,
 z must also be the expected fraction of infectives in each household
- > The expected final size z must be the largest solution in [0,1] of

 $\boldsymbol{\theta} = \boldsymbol{\alpha}_n(\boldsymbol{\varepsilon}(\boldsymbol{\theta}))/n$

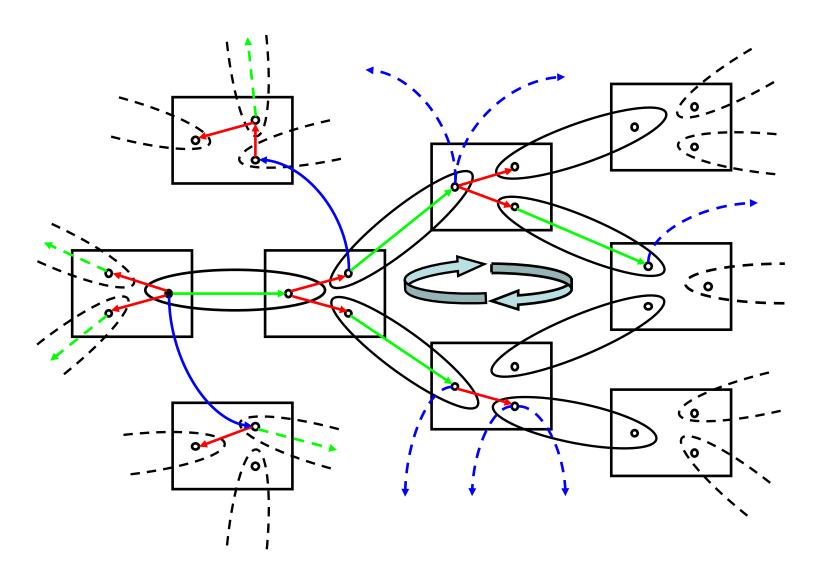
➢ It is possible to prove that z > 0 if and only if $R_* > 1$



Outline

- Introduction
 - The infectivity profile (recap)
 - Key quantities of interest
- Multi-type models
 - Next-generation matrix
 - Basic reproduction number
 - Final size
 - Growth rate
- Network models
 - Local interactions
 - Basic reproduction number

- Households models
 - Model formulation
 - Reproduction numbers
 - Basic reproduction number
 - Comparisons between reproduction numbers
- Advanced concepts
 - Final size for the households model
 - Extensions: householdsworkplaces models

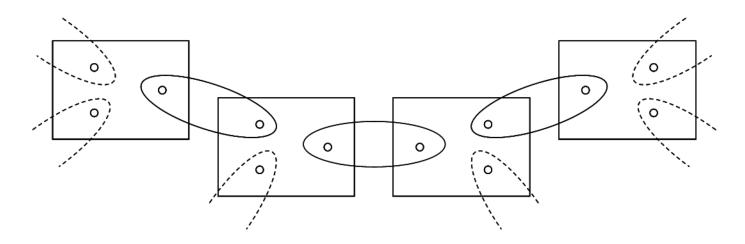


Pellis, Ferguson & Fraser (2009)

Model description

Assumptions:

- Each individual belongs to a household and a workplace
- > Rates λ_H , λ_W and λ_G of making infectious contacts in each environment
- No loops in how households and workplaces are connected, i.e. locally tree-like



Pellis, Ferguson & Fraser (2009)

Construction of R₀

- > Define $\mu_0^H = 1, \mu_1^H, \mu_2^H, ..., \mu_{n_H-1}^H$ and $\mu_0^W = 1, \mu_1^W, \mu_2^W, ..., \mu_{n_W-1}^W$ for the households and workplaces generations
- \succ Define $n_T = n_H + n_W$
- > Then R_0 is the dominant eigenvalue of

$$A_{n_{H}} = \begin{pmatrix} c_{0} & c_{1} & \cdots & c_{n_{T}-3} & c_{n_{T}-2} \\ 1 & & & 0 \\ & 1 & & & \vdots \\ & & \ddots & & \vdots \\ & & & 1 & 0 \end{pmatrix},$$

where
$$c_k = \mu_G \sum_{\substack{i+j=k \ 0 \le i \le n_H - 1 \ 0 \le j \le n_W - 1}} \mu_i^H \mu_j^W + \sum_{\substack{i+j=k+1 \ 1 \le i \le n_H - 1 \ 1 \le j \le n_W - 1}} \mu_i^H \mu_j^W$$
, $0 \le \mu_H$

 $k \leq n_T - 2$

Pellis, Ball & Trapman (2012)