

Role of epidemic models in public health policy support

Mirjam Kretzschmar

- Historical remarks
- What can models do/ not do?
- What type of model to use
- What can we offer to public health?
- Challenges for future pandemics

First model with public health impact

Do we really need modelling in epidemiology?

"As a matter of fact all epidemiology, concerned as it is with variation of disease from time to time or from place to place, must be considered mathematically (...), if it is to be considered scientifically at all. (...) And the mathematical method of treatment is really nothing but the application of careful reasoning to the problems at hand."

Sir Ronald Ross in *The Prevention of Malaria*, 1911

- Discovered lifecycle of malariaparasites
- 1902 Nobelprice Medicine

Utrecht

- Ross developed one of the first mathematical models in
- infectious disease epidemiology.

Public health impact: use of vector control to fight malaria

1857-1932

Pioneers in mathematical epidemiology

W.O. Kermack, A.G. McKendrick A contribution to the mathematical theory of epidemics **115** *Proc. R. Soc. Lond. A,* 1927

W.O Kermack 1898-1970 biochemist

A.G. McKendrick 1876-1948 physician

A Contribution to the Mathematical Theory of Epidemics. By W. O. KERMACK and A. G. MCKENDRICK.

(Communicated by Sir Gilbert Walker, F.R.S.-Received May 13, 1927.)

(From the Laboratory of the Royal College of Physicians, Edinburgh.)

SEIR model for COVID-19

Includes an exposed state: persons who are infected, but not yet infectious

Basic reproduction number

Transmission rate x duration infectious period

Deterministic compartmental models

Properties and assumptions => limitations

- Homogeneous mixing
- Constant infectivity
- Exponentially distributed time in compartments
- Large numbers in every compartment, no stochasticity

Advantages: mathematical tools available; flexibility

Many variants of SIR-type models have been developed

Hethcote HW. A thousand and one epidemic models. In Frontiers in mathematical biology 1994 (pp. 504-515). Springer

Important contributions

• Norman Bailey

- Klaus Dietz
- Roy Anderson, Bob May
- Odo Diekmann

THE MATHEMATICAL THEORY OF EPIDEMICS

> NORMAN T. J. BAILET, M.A. Barte & Barrey, Warren of State Denote Research of Delater Mark Entering of Controls

1957

1991

Mathematical Tools for Understanding Infectious Disease Dynamics

2012

Role of modelling for public health?

Smallpox modelling

A new situation:

Contingency planning has to rely on historical data for the analysis of control options in present society.

Weaponised smallpox virus could infect thousands in major cities

By **Anne Gulland**, GLOBAL HEALTH SECURITY CORRESPONDENT 15 March 2018 • 11:39am

A vial of smallpox vaccine used for military personnel in the US | CREDIT: Brenda McDermid/Reuters

Planning for smallpox outbreaks

Neil M. Ferguson, Matt J. Keeling, W. John Edmunds, Raymond Gani, Bryan T. Grenfell, Roy M. Anderson and Steve Leach Nature 425; 16 Oct 2003

Model answers to bioterror threat

Modelling has influenced research agendas and policies

The inspiration for the research agenda outlined by NIAID Director Anthony S. Fauci, M.D., and the Director of NIAID's Division of AIDS, Carl Dieffenbach, Ph.D., is a mathematical modeling study published by scientists from the World Health Organization (WHO) in *The Lancet* in January 2009. The model by Granich et al. predicts that within 10

Granich et al. Lancet 2009

Cycle of model development

Modeling for public health. Policy questions define the model's purpose. Initial model design is

Heesterbeek et al. Science 2015

Endemic versus epidemic infectious diseases

Endemic disease:

- Prevention/vaccination/screening
- Compare different strategies
- (Long term) Effect on prevalence
- Cost effectiveness

Epidemic disease:

- Predict future course
- Estimate parameters from outbreak data
- Assess intervention impact
- Monitoring

Long time scale

Short time scale

Data needs

Cori et al 2017 Key data for outbreak evaluation

outbreak incidence detected interventions implemented time What is the likely public health impact of the outbreak? key analyses How feasible is controlling the outbreak and what interventions would be appropriate? Are current interventions effective and could they be improved? assessing impact feasibility of control improving data interventions reassess all previous analyses elay distribution everity (CFR) everity neterogeneities ansmissibility terogeneities ansmission nort-term rojections long-term projections tervention Where do the data come from? aggregate case surveillance \rightarrow \mathbf{Y}^* counts Y Y Y Y Y data requirements lab results Y Y Y Y case line-list case records pairs Y Y Y contact tracing Y Y Y infector/infected genetic Y studies sequence data Y Y population sizes across Y Y Y Y census demographics and space serology → immunity levels Y Y Y Y health-care Y Y facilities centralized systems intervention scale Y Y individual Y Y trials → effectiveness of interventions

Can we predict the course of an outbreak?

INFECTIOUS DISEASE

Estimating the Ebola epidemic

Modelers of infectious diseases strive to predict spread of the virus—and how to stop it

Science 5 Sept 2014

Ebola outbreak

Liberia and Sierra Leone could see 1.4 million Ebola cases by January

Meltzer MI, et al; Centers for Disease Control and Prevention (CDC). Estimating the future number of cases in the Ebola epidemic--Liberia and Sierra Lecture 141705. Utween Suppl. 2014 Sep 26;63(3):1-14.

Cumulative number of cases

Ebola Epidemic Could Top a Million Victims If Not Contained, CDC Warns *U.S. officials unveil a computer model that*

shows infections could increase dramatically.

Ebola epidemic curve

West Africa Ebola virus disease epidemic

<u>Total</u> (suspect+probable+cofirmed) cases by MONTH using date of WHO Situation Reports/Summaries. Includes non-EVD cases, highlighting that many other initially similar looking diseases circulate in the region.

28.000 Ebola cases (suspected+probable+confirmed), 11.000 deaths

WHO Situation report Sep 2015.

September 2015

What can models do?

- Explain observations
- Compare interventions
- Estimate key quantities
- Link data from different sources
- Lead to testable hypotheses
- Help set up intervention trials

Lloyd-Smith et al. Science 2009

Infectivity and time of symptom onset

Variable infectivity and transmission before symptom onset

HIV

SARS-CoV2

Ashcroft et al 2020

Basic reproduction number R0

Definition

 R_0 is the average number of new cases of an infection caused by one case in a population of susceptibles

Determined by

- Duration infectious period
- Contact rate
- Transmission probability per contact

Threshold value $R_0 > 1$: infected person causes more than one new infection: \Rightarrow epidemic outbreak

 $R_0 < 1$: less than one new infection \Rightarrow epidemic stops

Time dependent reproduction number R(t)

Figure 1 The course of an epidemic in a homogeneous population. The schematic illustration shows the initial growth and decline of an epidemic, as measured by the prevalence of infection, and the related values of the reproductive number, R_1 , which initially equals the basic reproductive number, R_0 . For the endemic steady state the reproductive number is 1, which is only possible if there is a steady supply of new susceptible individuals. If there is no resupply of susceptible individuals, infection will certainly die out. Additionally, if the replenishment of the susceptible pool is slow infection may die out by chance.

Garnett STI 2002

Use of R(t) to monitor impact of interventions

Estimate R_t from incidence and generation time distribution

From: Public Health Measures and the Reproduction Number of SARS-CoV-2

JAMA. 2020;323(21):2186-2187. doi:10.1001/jama.2020.7878

Use of R₀ to estimate critical vaccination coverage

What vaccination coverage is needed for elimination?

Vaccinate fraction p at birth \Rightarrow fraction (1 - p) still susceptible $\Rightarrow R_p = R_0(1 - p)$

Control successful if

 $R_p < 1 \implies p > 1 - 1/R_0$

Examples

WHO strategic goal: Measles elimination by 2020 Smallpox: $R_0 = 5$ $p > 1 - \frac{1}{5} = 80\%$

Smallpox successfully eradicated

Herd immunity

Measles in NL: $R_0 \approx 18$ p > 94%

vaccination coverage $\approx 95\%$

If well-mixed, susceptibles protected by herd immunity

In NL susceptibles clustered Outbreaks every 5-6 years

Estimates of R₀ for 2009 influenza

Biggerstaff BMC Inf Dis 2014

Estimates of R₀ for SARS-CoV-2 Wuhan strain

Yousef

terval.

Journal of

Alimohamadi, et al.	Preven & Publ	Preventive Medicine & Public Health	
Study ID	ES (95% CI)	% Weight	
Wu et al.(2020)	2.68 (2.47, 2.86)	3.82	
Shen et al. (2020)	 6.49 (6.31, 6.66) 	3.82	
Liu et al.(2020)	2.90 (2.32, 3.63)	3.61	
Liu et al. (2020)	- 2.92 (2.28, 3.67)	3.58	
Read et al. (2020)	- 3.11 (2.39, 4.13)	3.45	
Majumder et al. (2020)	2.55 (2.00, 3.10)	3.67	
Liu et al.(2020) 🛨	1.95 (1.40, 2.50)	3.67	
Zhao et al.(2020)	2.24 (1.96, 2.55)	3.79	
Zhao et al.(2020)	► 3.58 (2.89, 4.39)	3.54	
Riou et al. (2020)	- 2.20 (1.40, 3.80)	3.16	
Tang et al. (2020)	6.47 (5.71, 7.23)	3.53	
Li et al. (2020)	- 2.20 (1.40, 3.90)	3.11	
Zhang et al. (2020)	2.28 (2.06, 2.52)	3.81	
Imai et al.(2020)	2.60 (1.50, 3.50)	3.34	
Shen et al. (2020)	 4.71 (4.50, 4.92) 	3.81	
Du et al.(2020)	1.90 (1.47, 2.59)	3.67	
Muniz-Rodriguez et al. (2020)	3.30 (3.10, 4.20)	3.67	
Zhou (2020)	2.12 (2.04, 2.18)	3.84	
Liu et al.(2020)	• 4.50 (4.40, 4.60)	3.83	
Liu et al.(2020)	 4.40 (4.30, 4.60) 	3.83	
Li et al. (2020)	2.23 (1.77, 3.00)	3.63	
Park et al. (2020)	3.10 (2.10, 5.70)	2.58	
Shao et al.(2020)	3.32 (3.25, 3.40)	3.84	
Zhou et al.(2020)	 5.50 (5.30, 5.80) 	3.80	
Lai et al. (2020)	2.60 (2.10, 5.10)	2.87	
Jung et al. (2020)	2.10 (2.00, 2.20)	3.83	
Jung et al. (2020)	3.20 (2.70, 3.70)	3.70	
Sanche et al. (2020)	 6.30 (3.30, 11.30) 	1.13	
Sanche et al. (2020)	4.70 (2.80, 7.60)	2.06	
Overall (I-squared = 99.4%, p = 0.000)	> 3.32 (2.81, 3.82)	100.00	
NOTE: Weights are from random effects analysis			
-11.3 0	11.3		

Based on data from China

Other estimates in the literature have similar range between 2.3 and 3.5

Figure 2. Forest plot of the estimated basic reproduction number of coronavirus disease 2019. ES, effect size; CI, confidence in-

UMC Utrecht Pooled estimate: R_0 =3.32 (Cl 2.81, 3.82)

Netherlands: introduction of conjugate vaccine against pneumococcal infections into NIP

Health Council advice 2002:

"De commissie concludeert dat de kosten van vaccinatie tegen pneumokokken bij de huidige vaccinprijs en vergeleken met andere programma's voor primaire preventie hoog zijn".

=> pneumococcal vaccine not cost effective

Health Council advice 2005

Gezondheidsraad Health Council of the Netherlands Datum : 25 oktober 2005

Vaccineren tegen pneumokokken bewezen effectief bij vier prikken

Verder blijkt dat een nieuwe raming van de kosten en baten van het bewezen effectieve vierprikkenschema een veel gunstiger beeld oplevert dan in 2002.

=> pneumococcal vaccine cost effective

What happened in between?

Persbericht

Sustained Reductions in Invasive Pneumococcal Disease in the Era of Conjugate Vaccine

Tamara Pilishvili,¹ Catherine Lexau,⁸ Monica M. Farley,^{3,4} James Hadler,⁵ Lee H. Harrison,⁶ Nancy M. Bennett,⁷ Arthur Reingold,⁹ Ann Thomas,¹⁰ William Schaffner,¹¹ Allen S. Craig,¹² Philip J. Smith,² Bernard W. Beall,¹ Cynthia G. Whitney,¹ and Matthew R. Moore,¹ for the Active Bacterial Core Surveillance/Emerging Infections Program Network⁸

Figure 2. Changes in invasive pneumococcal disease (IPD) incidence by serotype group among children aged <5 years (A) and adults aged ≥ 65 years (B), 1998–2007. *Seven-valent pneumococcal conjugate vaccine (PCV7) was introduced in the United States for routine use among young children and infants in the second half of 2000.

Figure 1. Changes in overall invasive pneumococcal disease (IPD) incidence rates by age group, 1998–2007. *Seven-valent pneumococcal conjugate vaccine (PCV7) was introduced in the United States for routine use among young children and infants in the second half of 2000.

Modelling approaches

- Deterministic compartmental models (SEIR model)
- Compartmental models with heterogeneity (e.g. age), metapopulations
- Network models
- Within-host between-host models
- Agent based models

From Colizza et al 2007

Areas of application of modelling

Modelling applications at RIVM

- Transmission modelling
- Risk assessment foodborne diseases
- Exposure modelling
- Dose response modelling
- Spatial spread and risk mapping
- Multicriteria decision analysis
- Disease burden estimation
- Economic impact assessment

Modellina

Burden of infectious disease in the Netherlands

Since 2014 Annual report

"State of infectious diseases in the Netherlands" → Estimation disease burden >32 diseases

6 sexually transmitted infections 11 vaccine-preventable infections 11 foodborne diseases 4 respiratory diseases

PLOS ONE

RESEARCH ARTICLE

Disease Burden of 32 Infectious Diseases in the Netherlands, 2007-2011

Alies van Lier^{1©}, Scott A. McDonald^{1©}*, Martijn Bouwknegt¹, EPI group¹¹, Mirjam E. Kretzschmar^{1,2}, Arie H. Havelaar³, Marie-Josée J. Mangen^{1,2}, Jacco Wallinga¹, Hester E. de Melker¹

Summary measure of population health

Disability Adjusted Life Years (DALYs) to express the burden of disease

Introduced by Murray & Lopez 1997: Global Burden of Disease Study

Average burden of infectious diseases 2017 - 2020

For Covid-19 the burden is for 2021

Covid modelling work done in Utrecht

- Impact of self imposed measures and awareness on epidemic spread
- Effectiveness of contact tracing and isolation/quarantine
- Effects of school closure on epidemic spread
- Effects of universal testing strategies
- Impact of loss of adherence to measures during vaccination rollout
- Testing and quarantine measures at schools to reduce transmission
- Effectiveness of corona pass for reducing transmission

Communication to members of advisory team for ministry of health Communication to media

Challenges

 Isaac Newton Institute for Mathematical Sciences
 What's On
 Visitors
 Documents
 Outread

Epidemics 38 (2022) 100546

Home > What's On > Programmes & Workshops

Infectious Dynamics of Pandemics: Mathematical and statistical challenges in understanding the dynamics of infectious disease pandemics

IDP

5 May 2020 to 18 December 2020

Challenges for modelling interventions for future pandemics

Mirjam E. Kretzschmar^{a,*}, Ben Ashby^b, Elizabeth Fearon^{c,d}, Christopher E. Overton^{e,f,g}, Jasmina Panovska-Griffiths^{h,i}, Lorenzo Pellis^{e,f,j}, Matthew Quaife^k, Ganna Rozhnova^{a,1}, Francesca Scarabel^{e,f,m}, Helena B. Stage^{e,f,n,o}, Ben Swallow^{p,q,1}, Robin N. Thompson^{f,r,s}, Michael J. Tildesley^{f,r,s}, Daniel Villela^t

Special issue Epidemics: https://www.sciencedirect.com/journal/epidemics/special-issue/10DM7ZPJKM9

Translating modelling theory about pathogen evolution into epidemic-specific interventions that limit the risk of variants of concern emerging

Interplay epidemiology and pathogen evolution

Changes in behaviour: difficult to include in model

Example:

Trends in compliance behaviours.

No difference observed between vaccinated and unvaccinated

Longitudinal study in UK

General Compliance

Liam Wright et al. J Epidemiol Community Health doi:10.1136/jech-2021-217179

©2021 by BMJ Publishing Group Ltd

SARS-CoV-2 in different countries

Fig. 2. Comparison of the COVID-19 pandemic in a selection of European countries grouped by geographical proximity. Many differences in reported incidence, reported deaths and excess mortality can be observed. Even though reported numbers are associated with wide uncertainty, the differences between countries and waves are evident. Data sources: https://ourworldindata.org/covid-cases and https://ourworldindata.org/covid-cases and https://ourworldindata.org/excess-mortality-covid (Accessed: June 29, 2021).

For discussion in this workshop

How can we contribute to support present and future public health policy?

- Enable more communication between modellers and policy makers
- Making advanced methods accessible
- Educating the public about aims other than prediction
- Develop ideas for translational research

Acknowledgements

Ganna Rozhnova Alexandra Teslya Martin Bootsma Michiel van Boven Bastiaan van der Roest Kim Romijnders Janneke van de Wijgert Marc Bonten

And many others

